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ABSTRACT 

This paper proposes a new approach to real time economic and 

emission dispatch by using orthogonal least-squares (OLS) and 

modified particle swarm optimization (MPSO) algorithms to 

construct the radial basis function (RBF) network. The objectives 

considered are fuel cost and NOx/CO2 emissions. The RBF 

network is composed of input, hidden, and output layers. The 

OLS algorithm provides a simple and efficient means for fitting 

radial basis function networks. The MPSO algorithm is 

implemented to tune the parameters in the network, including the 

dilation and translation of RBF centers and the weights between 

the hidden and output layer. The proposed approach has been 

tested on the IEEE 30-bus six-generator system. Testing results 

indicate that the proposed approach can make a quick response 

and yield accurate Real time economic and emission solutions.  
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1. INTRODUCTION 
As growing technology lot of techniques has been inventing to 

solve the real time economic and emission dispatch problem. 

Depending on convention, electrical power plants are operated 

based on minimizing operational cost while satisfying the system 

constraints[1][2]. As public concern the dispatch strategies, 

considering both economic factors and emission reduction [3]-[5]. 

Although economic and emission dispatch problems have been 

effectively solved by quite a lot of excellent techniques, the 

related dispatch programs need to be rerun when the system load 

changes and thus is unsatisfactory for the Real time dispatch.  

Artificial neural networks (ANN) [7], [8] are mathematical 

tools originally inspired by the way human brain processes 

information and applied to solve the real-time dispatch problem. 

These methods can accurately and efficiently capture complex 

input-output relations. However, ANN still has some unsolved 

problems, including the local and slow convergence during 

training and the fact that the network structure and parameters are 

problem dependent.  

The radial basis function networks [9]–[11] similar to ANN. 

However, in difference to ANN, the RBF network has a more 

compact topology and less training time for learning. a common 

learning algorithm for an RBF network is based on first choosing 

randomly some data points as radial basis centers and then the 

weights between hidden and output layer can then be estimated by 

using the stochastic gradient approach. However, it is clearly 

unsatisfactory to use such a mechanism to build RBF networks.  

This paper make use of orthogonal least-squares learning 

algorithm [12] to select a suitable set of centers from the input 

data.The MPSO approach is used to tune the parameters in the 

network, including the position of RBF centers, the width of 

RBFs, and the weighting values between hidden and output layer.  

The PSO was first introduced by Kennedy and Eberhart in 

1995 [13] and it is based on the behavior of individuals of a 

swarm. All individuals in a swarm approaches to the optimum 

through its present velocity, previous experience, and the 

experience of its neighbors. It has successfully been applied to 

solve the power dispatch problems [14]–[19].  

 

2.  PROBLEM FORMULATION 
As consideration of competitive and deregulated environment, the 

quick response of the Real time power dispatch (RTPD) problem 

will be more and more important for the power utilities than the 

vantage points of operating cost and environmental protection.  

2.1 Fuel Cost  
 

The fuel cost function of the system can be represented as a 

quadratic function of generator active power output as follows: 

 

   

Where F(PG)is the total fuel cost of the system; PGi is the power 

output of the ith unit; N indicates the number of generators; and 

ai,bi and ci are the cost coefficients. 

 

2.2 Emission  
The emission function of the system can be expressed as the 

polynomial function of generator active power output as follows: 

 

Where, αi, βi, γi and φi and are emission coefficients. 
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2.3  Economic and Emission Power Dispatch  
The economic and emission objective functions are having 

conflicting nature and cannot be minimized simultaneously. So 

the two conflicting functions can be converted into a single 

objective function by giving relative weights. 

 

Where W1 is the weight of the total cost, W2 is the weight of 

emissions, W1 + W2 =1.The optimization of (3) must be subjected 

to power balance constraints, generation capacity constraints. 

 

 

Where PD the total load demand; Ploss is the transmission loss 

of the system; PGi, min and PGi, max are the lower and upper limits of 

the ith power generation. 

2.4 Real-Time Power Dispatch  
Traditionally, various existing methods have been solving power 

dispatch problems by using the successive adjustment of 

weighting value as given in (3). However, these methods are 

needed to rerun when the system load changes so these methods 

are not suitable for the RTPD problem. 

 

Fig. 1. Schematic diagram of the proposed method. 

 

To overcome the limitations of existing EEPD methods, this 

paper proposes a combination of OLS and MPSO algorithms to 

construct the best RBF network. Once this network is constructed, 

scheduling the demand to available generators quickly and 

efficiently. 

 

3. PROPOSED APPROACH 
Before constructing the RBF network, have to need historical 

records of EEPD training data for different power demands with 

various weights are set up by the GA method. 

3.1 RBF Network 
A schematic of the RBF network with n inputs and a scalar output 

is depicted in Fig. 2. The network is comprised of three layers: 

input layer, hidden layer, and output layer. By implementing a 

learning algorithm, the error between the actual and desired 

response is minimized relative to some optimization criterion. 

 

Where  is an input vector; n is the 

number of input node; Ck is the th center node in the hidden layer, 

k=1,2,..,5 in which S is the number of hidden nodes;  

denotes Euclidean distance [12] between  and x vector;  is 

a nonlinear transfer function of the kth center; is the weighting 

value between the kth center and the ith output node; and m is the 

number of output nodes. Generally, the hidden unit function is 

Gaussian function  is chosen as follows: 

 

 

 

 

 

Fig. 2. Schematic diagram of RBF network. 

Where ψ and γ are the parameters that control the “width” 

and “position” of the RBF centers, respectively 

 

Fig. 3. RBF centers with different width and position. 

 

It follows from (6) and (7) that there are four sets of 

parameters governing the mapping properties of the network: the 

number of centers in the hidden layer, the position of RBF 

centers, the width of RBFs, and the weights Wik. In general, a 

sufficient number of centers are randomly chosen as a subset of 

the input space according to the probability density function of the 
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training data. Then the stochastic gradient approach is used to 

tune the parameters however it is very difficult to define number 

of centers.  

To overcome this limitation, this paper employs the OLS 

algorithm to determine the number of centers. 

 

3.2 OLS Algorithm 
The OLS algorithm can be implemented by introducing an error 

term ei in (6) as follows: 

 

Using matrix form, (8) can be expressed as 

 

 

 

By using the Gram–Schmidt orthogonalization [14], the 

regression matrix φ can be decomposed into a set of orthogonal 

basis vectors as follows 

 

 

Where   is an upper triangular matrix, and   

is a matrix with mutually orthogonal vector di . Aggregating (9) 

and (10), the desired network outputs can be rewritten as:  

 

 

Where G = AW. Since the Gram–Schmidt 

orthogonalization ensures the orthogonality between E and 

DG in (11). Therefore, the error reduction ratio (ERR) due 

to the inclusion of the kth center can be defined as 

 

 

 

The above equation selects the RBF centers in a forward 

regression manner. The regression is terminated at the S1th step 

when 

 

 

Where  is a tolerance value selected by the 

operators. 

3.3 MPSO Algorithm 
The PSO simulates the behavior of a swarm as a simplified social 

system. The particle tries to modify its position using the current 

velocity and the distance from Pbest and Gbest The current 

velocity and position are calculated as follows: 

 

Where  is the current velocity of the ith particle, 

i=1,..,p, in which p is the population size; d is the dimension of 

population;  is the best previous position of the ith 

particle; best previous position among all the particles in 

the swarm;   is the current position of the ith particle; α is an 

accelarated factor; represents the uniform random number 

between 0 and 1; C is constriction factor; ω represent the inertia 

weight. This is set according to the following equation [15]: 

 

Where itermaxthe maximum number of iterations and iter is is 

the current number of iterations. Equation (16) restricts the value 

ω to  the range. The next position of the th particle 

can be modified by 

 

To improve the convergence of PSO algorithm, the 

constriction factor is as follows: 

 

Where ; As φ increases, the factor C decreases 

and convergence becomes slower. 

3.4 Parameters adjustment using EPSO 
1) Initialization: Generate the initial trial vectors 

randomly , where p is the population 

size. , where ,  and  represent 

the desired values of the position of RBF centers, the width of 

RBFs, and the weighting vector, respectively. The element in 

vector is randomly generated as follows: 

 

Where designates te outcome of a uniformly 

distributed random variable ranging over the given lower- and 

upper-bounded values  and  of the weighting factors or 

the parameters of translation and dilation. 

2) Determination of Fitness Function: For each trial vector 

, a fitness value should be assigned and evaluated. The 

criterion of least-squared fitting error (LSFE) function defined 

below is adopted to stand for the fitness value of the RBF network 
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Where  is the ith computed output of the RBF network by 

using (6). is the corresponding actual output, and m is the 

number of network output nodes. 

3) Selection and Memorization: Each particle memorizes 

its own fitness value and chooses the minimum one that has been 

better so far as  . On the other hand, each particle also 

memorizes another particle’s fitness values to known their 

experiences. 

4) Modification of Velocity and Position: Modify the velocity 

of each particle according to (15). Modify the position of particle 

according to (17). 

5) Mutation: The particles with poor individuals are selected for 

mutation. In this step, the population size remains unchanged.  

 

6) Stopping Rule: Repeat Steps 2) to 5) until the best fitness 

value 

4. NUMERICAL RESULTS 
The proposed approach has been verified on the system under 

various power demands. For comparison, the conventional RBF 

network method and basic PSO method implemented by the 

commercial MATLAB package. 

4.1 IEEE 30-Bus Six-Generator System  
For the IEEE 30-bus six-generator system, the objectives of fuel 

cost and NO emission are converted into a single objective 

optimization problem as given in (3). Table I shows the 

coefficients of fuel cost and NO emission functions. 

Table 1. Coefficients of Fuel cost and Emission Functions 

 

Note: The lower and upper limits of each generating unit are 0.05 

and 1.5(p.u), respectively 

Table II shows the parameter settings for diverse methods. 

Note that the conventional RBF network has 315 centers 

distributed over the defined input space, while the proposed 

method employs an OLS algorithm to perform the reduction of the 

network size. Furthermore, the same numbers of input and output 

nodes are given to the existing and proposed methods, while the 

number of intermediate layers remains to be determined 

independently. 

Table II. Parameter Settings for Different Methods 

 

 

Table III.  Plan of training data created by GA Method 

 

 

Table IV. The results for different load levels in test system 
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Table III reveals the plan of training data created by the GA 

method. These load levels are defined in such a way that they 

cover the whole range of system load within the normal condition. 

As shown in table, a lot of 315 training samples are created.  

Fig 4 exhibits the typical relationship between number of 

iterations and error rate. While increasing the number of iterations 

the error rate gets reduce and stands as constant at certain iteration 

value. 

 

Fig 4 Error rate Vs Number of Iterations 

The input space and centers comprises of power demand Pd, 

weights w1 and w2. Below figure is a plot between Power 

demand (PD) and one of the weights say w1. It clearly signifies 

that as generated each and every pattern is equidistant from each 

other. There are 315 patterns generated for training RBF NN for 

6-Generator case.  

The below fig 5 clearly describes that the number of patterns 

available to RBF network for choosing centers in hidden layer. 

The RBF network chooses the number of centers from input 

vector pattern randomly initially.  

Fig 6 depicts the selection of centers from available centers 

through orthogonal least square algorithm (OLS) by adding error 

value to RBF network output. The ERR in(13) provides an 

effective criterion for selecting the RBF centers in forward 

regression, an adequate RBF center is selected so that the value of 

ERR is the maximum. The regression is terminated at given in 

(14). 

 

Fig 5 Distribution of input space and centers for RBF network 

 

Fig. 6. Distribution of initial (315) and retained (65) RBF centers. 

Table IV summarizes the comparisons of test results for 

various load levels. Notably, the cases of PD=237 and 277(mw) 

are in the range of trained historical data (interpolation cases), 

while the cases of PD = 217 and 337(mw) are beyond the trained 

range (extrapolation cases). Results of this table indicate that the 

proposed method is more accurate than the existing methods for 

both interpolation and extrapolation cases. The associated values 

of fuel cost and NOx emission are also listed for reference. Note 

that the values of fuel cost and NOx emission are obtained from 

table I. To compare the accuracy of different methods, the 

criterion of average percentage absolute error (APAE) is adopted 

in this paper, where m is the number of generators. 

 

5. CONCLUSION 
A new technique that combines OLS and MPSO algorithms to 

construct the optimal RBF network has been presented to solve 

the RTPD problem in this paper. Compared to the existing 

techniques, the superiority of the proposed method is summarized 

as follows.  

1) Compared with the conventional RBF network method, 

the proposed approach provides an effective method to simplify 

the network structure.  

2) Based on the same network structure, the proposed MPSO 

algorithm provides a more efficient search scheme to determine 

the related parameters of the RBF network than the PSO method.  

3) Testing on IEEE 30 bus six generator system has shown 

that the proposed approach is superior to the existing methods in 

constructing the network and estimating the outputs of the 

generating units.  

4) After the network is constructed, the proposed approach 

can make a quick response and yield accurate RTPD solutions as 

soon as the inputs of system load with the weight of cost are 

given. 
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