
International Journal of Computer Applications (0975 – 8887)
Volume 12– No.7, December 2010

13

Language Model for Information Retrieval

 Pritam Singh Negi
Department of Computer Science

H.N.B. Garhwal University
Srinagar Garhwal, India

 M.M.S. Rauthan

Department of Computer Science
H.N.B. Garhwal University
Srinagar Garhwal, India

 H.S. Dhami

Director Information communication
Technology,

Kumaun University, Nainital

ABSTRACT
In the present work an attempt has been made to discuss the
applicability of language model as an approach to calculate the
relevance of the document by utilizing user-supplied information
of those documents that are relevant to the query items. This
method shall have the advantage of improving retrieval
performance as we have utilized user-supplied information of
those documents that are relevant to the query in question. The

design and implementation of information retrieval systems is
concerned with methods for storing, organizing and retrieving
information from a collection of documents. The quality of a
system is measured by how useful it is to the typical users of the
system. In this approach, a query shall be considered generated
from an “ideal” document that shall satisfy the information need.
The system‟s job has been to calculate the frequency of the word
in the given document and rank them accordingly.

Keywords: Statistical language, Information retrieval, estimation
methods, traditional approach.

1. INTRODUCTION
The goal of language model is to identify documents relevant to a
user's query. In order to do this, system must assume some
measure of relevance between a document and a query, i.e., an
operational definition of a relevant document with respect to a
query. A fundamental problem in this model is thus to formalize
the concept of relevance; a different formalization of relevance
generally leads to a different model. Over the decades, many

different retrieval models have been proposed, studied, and tested.
Their mathematical basis spans a large spectrum, including
algebra, logic, probability and statistics. Fifty years ago Maron
and Kuhns published „„On Relevance, Probabilistic Indexing and
Information Retrieval” (1960). This was the first paper to present
a probabilistic approach to information retrieval, and perhaps the
first paper on ranked retrieval. To retrieve a ranked, or sorted, list
of documents in response to the user‟s search request, an IR

system must use evidence of similarity between the query and
each document. Different types of models have been proposed for
text retrieval. The most widely used include vector-space models
have been proposed by G. Salton et al (1975) and probabilistic
models propagated by Sparck Jones et al (2000). In the category
of other prominent workers of this area we can cite the works of
Bong-Hyun Cho et al (2003),Croft and Lafferty (2003), Bodoff &
Robertson (2004), Nick Crasswell (2005), Jhai and Lafferty

(2006), Liqi Gao et al (2006), Manning et al (2008), Victor P.
Lavrenko (2010), Jun Wang and Jianhan Zhu (2010) etc.to
mention only a few. A „language model‟ is created for each
document to represent its content; usually calculating the
frequency of the words occurring in the document. Since language
models became popular for use in information retrieval in the late
90s, many variant models have been proposed. However, reported
evaluations of the language modeling approach for adhoc search

tasks use different query sets and collections. With no formal
definition, but an approximate model of relevance, most retrieval
systems adopt the Probability Ranking Principle [59] for

identifying relevant documents. The principle suggests that the
ranking of documents be based on their probability of relevance.
IR systems compute a relevance value for each document and
rank documents in the decreasing order of their relevance value.
Relevance value estimation is tied to the representation adopted
for documents and queries. Words and/or phrases that occur in
documents and queries are typically used as elements, also
referred to as terms or features, in their representation. A

statistical retrieval system attempts to answer the basic question
that what is the probability of any word, which is relevant to the
query? Now, let consider a random variable Q represent a query
word and random variable I represent an word from a collection
of document I, and event r denote the relevance. Then we can
calculate the answer of the above mention question and calculate
the probability of relevance P(r|I,Q). This probability can be
estimated indirectly using the rule: P(r|I,Q) = P(I,Q|r)P(r)/P(I,Q).

Previously probabilistic models of document retrieval have been
studied extensively. In general, these approaches can be
characterized as methods of estimating the probability of
relevance of documents to user queries. One component of a
probabilistic retrieval model is the indexing model, i.e., a model
of the assignment of indexing terms to documents.

In this paper, we can describe how to do the indexing of the
document and calculate the frequency of the query items in the

document on the basis of occurrence of the query items in to the
document and then after calculate the probability of the relevance.

2. LOGIC AND ALGORITHM
For calculating the relevance of the document we will first remove

the stop words from those documents in which we want to
calculate the frequency of the words, which are present in the
query, and produces a file in which words are reduced to their
grammatical roots (called stems). Such as compute, computer,
computing, computation all derived from word comput. This
module is important so that it supports the partial matching
concept.

2.1 STEMMING
Stemming is a technique for improving IR performance. It is
provide searcher with ways of finding morphological variants of
search terms. We use the term conflation or stemming, meaning
the act of fusing or combining, as the general term for the process
of matching morphological term variants. Conflation can be either

manual as well as via programs like stemmers. Stemming is also
used in IR to reduce the size of index file since a single stem
typically corresponds to several full terms, by storing stems
instead of terms, compression factors of over 50 percent can be
achieved. For this purpose our program implements Porter‟s

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.7, December 2010

14

stemming algorithm, which is most widely, used algorithm for
stemming.

Fig. 2.1(a) Flow chart of Stemming Module

By using Porter algorithm we are doing stemming on the file. For
this first convert all the letters in lower case. Then remove the
prefixes like "kilo", "micro", "milli", "intra", "ultra", "mega",
"nano", "pico", "pseudo”
For example megabyte, kilobyte all converted as “byte”.

Now doing these five steps one by one
 Step 1
 • Remove “es” from words that end in “sses” or “ies”

For example passes converted as pass and cries
converted as converted as cri

 • Remove “s” from words whose next to last letter is
not an “s”
For example runs converted as run and fuss converted
as fuss

 • If word has a vowel and ends with “eed” remove the
“ed”

 For example agreed converted as agre
• Remove “ed” and “ing” from words that have no

other vowel
For example red converted as red, bothering
converted as bother, bring converted as bring

 • Add “e” is word has a vowel and ends with “ated” or

“bled”
For example enabled converted as enable, generated
converted as generate

• Replace trailing “y” with an “I” if word has a vowel
For example satisfy converted as satisfi, fly converted
as fly

Step 2
• With what is left, replace any suffix on the left with

suffix on the right

 For example
 conditional converted as condition
 nationalization converted as nationalize
 effectiveness converted as effective
 usefulness converted as useful

 nervousness converted as nervous
 nervously converted as nervous
 fervently converted as fervent
 inventiveness converted as inventive
 sensibility converted as sensible
Step 3
 • With what is left, replace any suffix on the left with

suffix on the right

 For example
 fabricate converted as fabric
 combativ converted as comb
 nationalize converted as national
 tropical converted as tropic
 faithful converted as faith
 inventiveness converted as inventive
 harness converted as har

Step 4
• Remove remaining standard suffixes

al, ance, ence, er, ic, able, ible, ant, ement, ment, ent,
sion, tion, ou, ism, ate, iti, ous, ive, ize, ise

Step 5
• Remove trailing “e” if word does not end in a vowel

 For example hinge converted as hing
 free converted as free

After doing these five steps on the file store all the word in to the
output file.

Fig. 2.1(b) Stemming Module

2.2 TOKANIZATION

Lexical analysis or tokenizing is the process of converting an
input stream of characters into a stream of words or tokens.
Tokens are groups of characters with collective significance.
Lexical analysis is the first stage of automatic indexing, and of
query processing. Lexical analysis of a query produces tokens that
are parsed and turned into an internal representation suitable for

comparison with indexes. In this module performs lexical analysis
on the text and produces a file which contains unique words that
are used for automatic Indexing and query processing which in
turn can be matched with the index file to return the desired result.
This is important module since all the documents need to be
indexed to be retrieved. This module tokenizes documents so that
they can be used for producing index terms.
Algorithm:
1. Enter the file Name getting from performing the stemming

operation.
2. Enter Output File Name where you want to store the tokens.
3. Read the input file
4. If not found ()
 Cannot Open File
 Otherwise

Start

Enter input and

output file names

Hard

Disk

Input

File

Stemming

(Porter Stemming

Algorithm)

Output

File

Hard

Disk

End

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.7, December 2010

15

 Open the output file in write mode
 Now check if null character is found
 Store the first token into the outputfile

Doing this process till end of the input file and store
every token in the output file.

Fig. 2.2(a) Flow chart of Tokenizing Module

Program:
 void WORDTOK()
 {
 char*infile,*outfile,*buf,c;
 FILE*fread,*fwrite;
 printf("\nEnter Input FIle Name:->");
 scanf("%s",infile);

 printf("\nEnter Output File Name:->");
 scanf("%s",outfile);
 fread=fopen(strcat(infile,".txt"),"r");
 if(fread==NULL)
 {
 printf("\nCannot Open FIle.");
 }
 else

 {
 fwrite=fopen(strcat(outfile,".txt"),"w");
 if(fwrite==NULL)

 {
 printf("\nCannot Open FIle.");
 }
 while((fscanf(fread,"%s",buf)!=EOF))
 {

 if(c!=' ')
 {
 buf[i]=c;
 i++;
 }//endif
 else if(c==' ')
 {
 buf[i]='\0';

 fprintf(fwrite,"%s\n",buf);
 i=0;
 }//endelse
 fprintf(fwrite,"%s\n",buf);
 }//endwhile
 }//endelse
 getch();
}

Fig. 2.2(b) Tokenization Module
Output: It can be generated in the form of the text file.

automat
care
 manual
tweak
artist

expert
thoma
marian
fine
salari
lac
float
number

baker
brush
acryl
canva
www
jwbart
sharma
automat

bush
pandel
titl
code
lexic
analyst
simul
descript

accept

Fig. 2.2(c) Tokenization of the given document

Start

Enter input

and output

file names

Hard

Disk

Input

File

Lexical

Analysis

Of the

Text

Output

File

Hard

Disk

End

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.7, December 2010

16

2.3 INDEX TERM FREQUENCY
Index terms are usually known as keywords. These are unique

words that are obtained from lexical analysis process. This
module finds the frequency and their relative position in the
document so that they can be fetched efficiently for the user query
retrieval. In this module we can take two text file one stemmed
file and one tokenized file and match each word of tokenized file
in the stemmed file. The result is put in the third file. This is
important module since the query must retrieve efficiently the
documents of user need.

1. Enter Tokenized filename.
2. Enter filename get after stemming operation.

Fig. 2.3(a) Index term frequencies and position Module

3. Take each and every word from tokenized file and compare

with the file get after stemming operation.
4. If token is found

Then store the token name, frequency and position of the token
in the output file.

Fig. 2.3(b) Flow chart of Index term frequencies and position Module

Program:
 int INDEX()
 {
 char *infile,*outfile,*buf,*rbuf,*tokfile,*temp;
 FILE*read,*write,*tok;

 int count=0,pos=0,arr[MAX],tempcount,i;
 printf("\nEnter Tokenized filename:->");
 scanf("%s",tokfile);
 if((tok=fopen(strcat(tokfile,".txt"),"r"))==NULL)
 {
 printf("\ncannot open file");
 }
 printf("\nEnter ReadFilename:->");

 scanf("%s",infile);
 read=fopen(strcat(infile,".txt"),"r");
 if(read==NULL)
 {
 printf("\nCannot Open File.");
 }
 else
 {

 printf("\nEnter output FIle name:->");
 scanf("%s",outfile);
 write=fopen(strcat(outfile,".txt"),"w");
 if(write==NULL)
 {
 printf("\nCannot Open file.");
 }
 else

 {
 fprintf(write,"%s","WORD(s)\t\t

FREQUENCY\t\t POSITION\n");
fprintf(write,"__________________________\n");

 while(fscanf(tok,"%s",rbuf)!=EOF)
 {
 count=0;
 pos=0;
 tempcount=0;

 while(fscanf(read,"%s",buf)!=EOF)
 {
 tempcount++;
 if(strcmp(buf,rbuf)==0)
 {
 count++;
 arr[pos]=tempcount;
 pos++;

 }
 }
 fseek(read,0,SEEK_SET);
 fprintf(write,"%s\t\t\t%d\t\t\t",rbuf,count);
 for(i=0;i<pos;i++)
 {
 fprintf(write," %d ",arr[i]);
 }

 fprintf(write,"\n");
 }
 }
 }
 fclose(read);
 fclose(write);
 getch();
 return 0;

 }

Start

Enter input

and output

file names

Hard

Disk

Input

Files

Index Term

Position And

Frequency

Output

File

Hard

Disk

End

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.7, December 2010

17

Fig. 2.3(c) Index Term Frequencies and their Relative Positions

3. CONCLUSIONS AND FUTURE WORK
The main objective of our system is to make the stemmed
document without stop words and tokens of that final document.
With the help of this system we can search the document easily.
By calculating the index term frequency we can get the relevance

of the document with the logic that a document in which more
query items are present that document shall get a top ranking. We
can also retrieve and estimate relevant (according to query)
information from the document. In this paper we have provided
the initial theory and empirical research for ranked retrieval on the
basis of frequency of the indexed items and have presented a best
way of looking at the problem of text retrieval based on
probabilistic language modeling that is both conceptually simple

and explanatory. We feel that our model will provide effective
retrieval and provide accurate representations of the data and any
one can understand our approach to retrieval.

For the future work, we are planning to add a number of
extensions to our language model for information retrieval. First
of all, we shall categorize the index term based on their parts of
speech and calculate the frequency of the individual word on the

basis of their parts of speech. We can also identify the collocation
of the word pairs within different boundaries of a document such
as paragraphs or sentences.

4. REFERENCES
[1] Bodoff, D., & Robertson, S. E. (2004). New unified

probabilistic model. Journal of the American Society for
Information Science and Technology, 55(6), 471–487.

[2] Bong-Hyun Cho, Changki Lee and Gary Geunbae Lee
(2003) Exploring term dependences in probabilistic
information retrieval model, Information processing and
Management, 39(4), pp.505-519.

[3] C.D. Manning, P. Raghavan, H. Schütze (2008) Classical
and web information retrieval systems: algorithms,
mathematical foundations and practical issues in
.Introduction to information retrieval, Cambridge.

[4] Croft, W. B., & Lafferty, J. (Eds.). (2003). Language
modeling for information retrieval. Boston: Kluwer
Academic.

[5] G.Salton, A. Wong, and C. S. Yang (1975), "A Vector
Space Model for Automatic Indexing," Communications of
the ACM, vol. 18, nr. 11, pages 613–620.

[6] Jun Wang and Jianhan Jhu (2010) On statistical analysis
and optimization of Information retrieval effectiveness
Metrics, In Proceedings of the 33rd International ACM
SIGIR conference on Research and Development in
Information Retrieval edited by Hsin-His Chen, Efthismis
N.Efthimiadis, Jacques Savoy, Fabio Crestani Lugano and
Stephane Marehand-Maillet, Association for Computing
Machinery, New York. pp. 226-233.

[7] K. Sparck Jones, S. Walker and S.E. Robertson (2000) A
probabilistic model of information retrieval: development
and comparative experiments. Information Processing and
Management 36, Part 1 779-808.

[8] Liqi Gao, Yu Zhang, Ting Liu & Guiping Liu (2006) Word
sense Language model for Information retrieval, Lecture
notes in Computer Science, Volume 4182/2006, 158-171.

[9] Maron, M. E., & Kuhns, J. (1960). On relevance,
probabilistic indexing and information retrieval. Journal of
the Association for Computing Machinery, 7(3), 216–244.

[10] Nick Craswell, Stephen Robertson, Hugo Zaragoza, and
Michael Taylor. Relevance weighting for query independent
evidence. In Proceedings of ACM SIGIR‟2005, Salvador,
Brazil, 2005.

[11] Victor P. Lavrenko (2010) Introduction to probabilistic
models in Information retrieval. In proceedings of the 33rd
International ACM SIGIR conference on Research and
Development in Information Retrieval edited by Hsin-His
Chen, Efthismis N.Efthimiadis, Jacques Savoy, Fabio
Crestani Lugano and Stephane Marehand-Maillet,
Association for Computing Machinery, New York. pp. 905.

[12] Zhai C. and Lafferty J. (2006) A risk minimization
framework for information retrieval. Information processing
and Management, 42(1), 31-55.

http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf
http://research.microsoft.com/users/nickcr/pubs/craswell_sigir05.pdf
http://research.microsoft.com/users/nickcr/pubs/craswell_sigir05.pdf
http://research.microsoft.com/users/nickcr/pubs/craswell_sigir05.pdf

