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ABSTRACT 
In the present work an attempt has been made to discuss the 
applicability of language model as an approach to calculate the 
relevance of the document by utilizing user-supplied information 
of those documents that are relevant to the query items. This 
method shall have the advantage of improving retrieval 
performance as we have utilized user-supplied information of 
those documents that are relevant to the query in question. The 

design and implementation of information retrieval systems is 
concerned with methods for storing, organizing and retrieving 
information from a collection of documents. The quality of a 
system is measured by how useful it is to the typical users of the 
system. In this approach, a query shall be considered generated 
from an “ideal” document that shall satisfy the information need. 
The system‟s job has been to calculate the frequency of the word 
in the given document and rank them accordingly.  

Keywords: Statistical language, Information retrieval, estimation 
methods, traditional approach. 

 

1. INTRODUCTION 
The goal of language model is to identify documents relevant to a 
user's query. In order to do this, system must assume some 
measure of relevance between a document and a query, i.e., an 
operational definition of a relevant document with respect to a 
query. A fundamental problem in this model is thus to formalize 
the concept of relevance; a different formalization of relevance 
generally leads to a different model. Over the decades, many 

different retrieval models have been proposed, studied, and tested. 
Their mathematical basis spans a large spectrum, including 
algebra, logic, probability and statistics. Fifty years ago Maron 
and Kuhns published „„On Relevance, Probabilistic Indexing and 
Information Retrieval” (1960). This was the first paper to present 
a probabilistic approach to information retrieval, and perhaps the 
first paper on ranked retrieval. To retrieve a ranked, or sorted, list 
of documents in response to the user‟s search request, an IR 

system must use evidence of similarity between the query and 
each document. Different types of models have been proposed for 
text retrieval. The most widely used include vector-space models 
have been proposed by G. Salton et al (1975) and probabilistic 
models propagated by Sparck Jones et al (2000). In the category 
of other prominent workers of this area we can cite the works of 
Bong-Hyun Cho et al (2003),Croft and Lafferty (2003), Bodoff & 
Robertson (2004),  Nick Crasswell (2005), Jhai and Lafferty 

(2006), Liqi Gao et al (2006), Manning et al (2008), Victor P. 
Lavrenko (2010),  Jun Wang and Jianhan Zhu (2010) etc.to 
mention only a few.  A „language model‟ is created for each 
document to represent its content; usually calculating the 
frequency of the words occurring in the document. Since language 
models became popular for use in information retrieval in the late 
90s, many variant models have been proposed. However, reported 
evaluations of the language modeling approach for adhoc search 

tasks use different query sets and collections. With no formal 
definition, but an approximate model of relevance, most retrieval 
systems adopt the Probability Ranking Principle [59] for 

identifying relevant documents. The principle suggests that the 
ranking of documents be based on their probability of relevance. 
IR systems compute a relevance value for each document and 
rank documents in the decreasing order of their relevance value. 
Relevance value estimation is tied to the representation adopted 
for documents and queries. Words and/or phrases that occur in 
documents and queries are typically used as elements, also 
referred to as terms or features, in their representation. A 

statistical retrieval system attempts to answer the basic question 
that what is the probability of any word, which is relevant to the 
query? Now, let consider a random variable Q represent a query 
word and random variable I represent an word from a collection 
of document I, and event r denote the relevance. Then we can 
calculate the answer of the above mention question and calculate 
the probability of relevance P(r|I,Q). This probability can be 
estimated indirectly using the rule: P(r|I,Q) = P(I,Q|r)P(r)/P(I,Q). 

Previously probabilistic models of document retrieval have been 
studied extensively. In general, these approaches can be 
characterized as methods of estimating the probability of 
relevance of documents to user queries. One component of a 
probabilistic retrieval model is the indexing model, i.e., a model 
of the assignment of indexing terms to documents.   
 
In this paper, we can describe how to do the indexing of the 
document and calculate the frequency of the query items in the 

document on the basis of occurrence of the query items in to the 
document and then after calculate the probability of the relevance. 
 

2. LOGIC AND ALGORITHM 
For calculating the relevance of the document we will first remove 

the stop words from those documents in which we want to 
calculate the frequency of the words, which are present in the 
query, and produces a file in which words are reduced to their 
grammatical roots (called stems). Such as compute, computer, 
computing, computation all derived from word comput. This 
module is important so that it supports the partial matching 
concept.  

2.1 STEMMING 
Stemming is a technique for improving IR performance. It is 
provide searcher with ways of finding morphological variants of 
search terms. We use the term conflation or stemming, meaning 
the act of fusing or combining, as the general term for the process 
of matching morphological term variants. Conflation can be either 

manual as well as via programs like stemmers. Stemming is also 
used in IR to reduce the size of index file since a single stem 
typically corresponds to several full terms, by storing stems 
instead of terms, compression factors of over 50 percent can be 
achieved. For this purpose our program implements Porter‟s 



International Journal of Computer Applications (0975 – 8887) 
Volume 12– No.7, December 2010  

14 

stemming algorithm, which is most widely, used algorithm for 
stemming.  
 

 
Fig. 2.1(a) Flow chart of Stemming Module 

 
By using Porter algorithm we are doing stemming on the file. For 
this first convert all the letters in lower case. Then remove the 
prefixes like "kilo", "micro", "milli", "intra", "ultra", "mega", 
"nano", "pico", "pseudo” 
For example megabyte, kilobyte all converted as “byte”. 

Now doing these five steps one by one 
 Step 1 
  •  Remove “es” from words that end in “sses” or “ies” 

For example passes converted as pass and cries 
converted as converted as cri 

  •  Remove “s” from words whose next to last letter is 
not an “s” 
For example runs converted as run and fuss converted 
as fuss 

  •  If word has a vowel and ends with “eed” remove the 
“ed” 

   For example agreed converted as agre 
• Remove “ed” and “ing” from words that have no 

other vowel 
For example red converted as red, bothering 
converted as bother, bring converted as bring 

  •  Add “e” is word has a vowel and ends with “ated” or 

“bled” 
For example enabled converted as enable, generated 
converted as generate 

•  Replace trailing “y” with an “I” if word has a vowel 
For example satisfy converted as satisfi, fly converted 
as fly 

Step 2 
• With what is left, replace any suffix on the left with 

suffix on the right 

   For example 
   conditional converted as condition 
   nationalization converted as nationalize 
   effectiveness converted as effective 
   usefulness converted as useful 

   nervousness converted as nervous 
   nervously converted as nervous 
   fervently converted as fervent 
   inventiveness converted as inventive 
   sensibility converted as sensible 
Step 3 
  •  With what is left, replace any suffix on the left with 

suffix on the right 

   For example  
   fabricate converted as fabric 
   combativ converted as comb 
   nationalize converted as national 
   tropical converted as tropic 
   faithful converted as faith 
   inventiveness converted as inventive 
   harness converted as har 

Step 4 
•  Remove remaining standard suffixes 

al, ance, ence, er, ic, able, ible, ant, ement, ment, ent, 
sion, tion, ou, ism, ate, iti, ous, ive, ize, ise 

Step 5 
•  Remove trailing “e” if word does not end in a vowel 

   For example hinge converted as hing 
   free converted as free 

After doing these five steps on the file store all the word in to the 
output file. 
 

 
Fig. 2.1(b) Stemming Module 

 

2.2 TOKANIZATION 

Lexical analysis or tokenizing is the process of converting an 
input stream of characters into a stream of words or tokens. 
Tokens are groups of characters with collective significance. 
Lexical analysis is the first stage of automatic indexing, and of 
query processing. Lexical analysis of a query produces tokens that 
are parsed and turned into an internal representation suitable for 

comparison with indexes. In this module performs lexical analysis 
on the text and produces a file which contains unique words that 
are used for automatic Indexing and query processing which in 
turn can be matched with the index file to return the desired result. 
This is important module since all the documents need to be 
indexed to be retrieved. This module tokenizes documents so that 
they can be used for producing index terms. 
Algorithm: 
1.  Enter the file Name getting from performing the stemming 

operation. 
2. Enter Output File Name where you want to store the tokens. 
3. Read the input file 
4. If not found () 
   Cannot Open File 
 Otherwise 

Start 
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 Open the output file in write mode 
 Now check if null character is found 
 Store the first token into the outputfile 

Doing this process till end of the input file and store 
every token in the output file.  

 
Fig. 2.2(a) Flow chart of Tokenizing Module 

 
Program: 
 void WORDTOK() 
 { 
  char*infile,*outfile,*buf,c; 
  FILE*fread,*fwrite; 
  printf("\nEnter Input FIle Name:->");  
  scanf("%s",infile); 

  printf("\nEnter Output File Name:->"); 
  scanf("%s",outfile); 
  fread=fopen(strcat(infile,".txt"),"r"); 
  if(fread==NULL) 
  { 
     printf("\nCannot Open FIle."); 
  } 
  else 

  { 
    fwrite=fopen(strcat(outfile,".txt"),"w"); 
     if(fwrite==NULL) 

      { 
           printf("\nCannot Open FIle."); 
      } 
   while((fscanf(fread,"%s",buf)!=EOF)) 
   { 

       if(c!=' ') 
      { 
          buf[i]=c; 
          i++; 
      }//endif 
    else if(c==' ') 
    { 
       buf[i]='\0'; 

      fprintf(fwrite,"%s\n",buf); 
      i=0; 
    }//endelse 
       fprintf(fwrite,"%s\n",buf); 
   }//endwhile 
  }//endelse 
 getch(); 
} 

Fig. 2.2(b) Tokenization Module 
Output: It can be generated in the form of the text file. 
 
automat 
care 
 manual 
tweak 
artist 

expert 
thoma 
marian 
fine 
salari 
lac 
float 
number 

baker 
brush 
acryl 
canva 
www 
jwbart 
sharma 
automat 

bush 
pandel 
titl 
code 
lexic 
analyst 
simul 
descript 

accept 

 

Fig. 2.2(c) Tokenization of the given document 
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2.3 INDEX TERM FREQUENCY 
Index terms are usually known as keywords. These are unique 

words that are obtained from lexical analysis process. This 
module finds the frequency and their relative position in the 
document so that they can be fetched efficiently for the user query 
retrieval. In this module we can take two text file one stemmed 
file and one tokenized file and match each word of tokenized file 
in the stemmed file. The result is put in the third file. This is 
important module since the query must retrieve efficiently the 
documents of user need. 

1. Enter Tokenized filename. 
2. Enter filename get after stemming operation. 
 

 
Fig. 2.3(a) Index term frequencies and position Module 

 
3. Take each and every word from tokenized file and compare 

with the file get after stemming operation. 
4. If token is found  

Then store the token name, frequency and position of the token 
in the output file. 
 

   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. 2.3(b) Flow chart of Index term frequencies and position Module 

Program: 
 int INDEX() 
 { 
    char *infile,*outfile,*buf,*rbuf,*tokfile,*temp; 
    FILE*read,*write,*tok; 

    int count=0,pos=0,arr[MAX],tempcount,i; 
    printf("\nEnter Tokenized filename:->"); 
    scanf("%s",tokfile); 
    if((tok=fopen(strcat(tokfile,".txt"),"r"))==NULL) 
    { 
   printf("\ncannot open file"); 
    } 
    printf("\nEnter ReadFilename:->"); 

    scanf("%s",infile); 
    read=fopen(strcat(infile,".txt"),"r"); 
    if(read==NULL) 
    { 
       printf("\nCannot Open File."); 
    } 
    else 
    { 

        printf("\nEnter output FIle name:->"); 
        scanf("%s",outfile); 
        write=fopen(strcat(outfile,".txt"),"w"); 
        if(write==NULL) 
        { 
           printf("\nCannot Open file."); 
        } 
        else 

      { 
   fprintf(write,"%s","WORD(s)\t\t 

FREQUENCY\t\t POSITION\n");     
fprintf(write,"__________________________\n"); 

           while(fscanf(tok,"%s",rbuf)!=EOF) 
            { 
      count=0; 
      pos=0; 
      tempcount=0; 

      while(fscanf(read,"%s",buf)!=EOF) 
      { 
       tempcount++; 
         if(strcmp(buf,rbuf)==0) 
        { 
           count++; 
           arr[pos]=tempcount; 
           pos++; 

        } 
           } 
     fseek(read,0,SEEK_SET); 
     fprintf(write,"%s\t\t\t%d\t\t\t",rbuf,count); 
     for(i=0;i<pos;i++) 
     { 
       fprintf(write," %d ",arr[i]); 
     } 

     fprintf(write,"\n"); 
           } 
       } 
    } 
    fclose(read); 
    fclose(write); 
    getch(); 
    return 0; 

 } 
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Fig. 2.3(c) Index Term Frequencies and their Relative Positions 

 

 

3. CONCLUSIONS AND FUTURE WORK 
The main objective of our system is to make the stemmed 
document without stop words and tokens of that final document. 
With the help of this system we can search the document easily. 
By calculating the index term frequency we can get the relevance 

of the document with the logic that a document in which  more 
query items are present that document shall get a top ranking. We 
can also retrieve and estimate relevant (according to query) 
information from the document. In this paper we have provided 
the initial theory and empirical research for ranked retrieval on the 
basis of frequency of the indexed items and have presented a best 
way of looking at the problem of text retrieval based on 
probabilistic language modeling that is both conceptually simple 

and explanatory. We feel that our model will provide effective 
retrieval and provide accurate representations of the data and any 
one can understand our approach to retrieval. 
 
For the future work, we are planning to add a number of 
extensions to our language model for information retrieval. First 
of all, we shall categorize the index term based on their parts of 
speech and calculate the frequency of the individual word on the 

basis of their parts of speech. We can also identify the collocation 
of the word pairs within different boundaries of a document such 
as paragraphs or sentences.  
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