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ABSTRACT 
The denoising of a natural image corrupted by Gaussian noise is 

a problem in signal or image processing Even though much 

work has been done in the field of wavelet thresholding, most of 

it was focused on statistical modeling of wavelet coefficients and 

the optimal choice of thresholds. This paper describes a new 

method for suppression of noise in image by fusing the wavelet 

Denoising technique with optimized thresholding function, 

improving the denoised results significantly by using partial 

biorthogonal wavelets. In today‘s scenario denoising techniques 

use the classical orthonormal wavelets for decomposition of an 

image corrupted with additive white Gaussian noise, upon which 

various thresholding strategies are built. We present a method to 

design partial biorthogonal wavelet bases and report on their 

potential for denoising. This paper describes a new method for 

suppression of noise in image by fusing the wavelet Denoising 

technique with optimized thresholding function, improving the 

denoised results significantly. Simulated noise images are used 

to evaluate the denoising performance of proposed algorithm 

along with another wavelet-based denoising algorithm. 

Experimental result shows that the proposed denoising method 

outperforms standard wavelet denoising techniques in terms of 

the PSNR and the preservation of edge information. The use of 

available biorthogonal wavelets in image denoising is less 

common because of their poor performance. But when we 

combine the approach of fusion with partial biorthogonal 

wavelets then the performance is increases in comparison of 

traditional methodology. This point to the importance of 

matching when using wavelet-based denoising. 
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1. INTRODUCTION 
The wavelet transform has been a powerful and widely used tool 

in image denoising because of its high energy compaction and 

multi resolution properties. Denoising an image corrupted with 

additive white Gaussian noise was initially proposed in [1] by 

thresholding the wavelet coefficients. Subsequently, various 

decomposition strategies and thresholding schemes were 

developed which have been proposed in [2], [3], [4]. But, the 

problem remain same most of these use classical orthogonal 

wavelets which are independent of the image and noise 

characteristics and focus on finding the best threshold. Unlike 

the Fourier transform with its complex exponential basis, the 

wavelet transforms do not have a unique basis. Noting this point 

several attempts at designing matched wavelets have been made 

with the goal of match varying from match to a signal [5] and 

energy compaction [6] to maximizing the signal energy in the 

scaling sub-space [7]. In this paper, we assume the noise to be 

additive white Gaussian and use the statistical properties of noise 
in the design.  

Many scientific data sets are contaminated with noise either 

because of data acquisition process or because of naturally 

occurring phenomenon. One classical task of image processing 

is to discriminate between noise and signal, and to remove the 

unwanted noise from the signal. Especially for the case of 

additive white Gaussian noise a number of techniques using 

wavelet-based thresholding have been proposed. Donoho and 

Johnston proposed hard and soft thresholding methods for 

Denoising. This scheme exterminates many wavelet coefficients 

that might contain useful image information. However, the 

major problem with both methods is the choice of a suitable 

threshold value. The definition of coefficient independent 

threshold given by Donoho and Johnston depends on the noise 

power and the size of the image. In practice, however one deals 

with images of finite size where the applicability of such a 

theoretical result is rather questionable. In addition, most signals 

show a spatially non-uniform energy distribution, which 

motivates the choice of a non-uniform threshold. Besides 

wavelet-thresholding, many other approaches have been 

suggested as well. For example wavelet-based denoising using 

Hidden Markov Trees, which was initially proposed by Crouse. 

has been quite successful, and it gave rise to a number of other 

HMT-based schemes. They tried to model the dependencies 

among adjacent wavelet coefficients using the HMT, and used 

the minimum mean-squared error (MMSE)-like estimators for 

suppressing the noise [8][9][10]. Specifically, we propose a 

design that will generate a partial biorthogonal wavelet bases for 
a given corrupted image which can be used for its denoising. 

 The remaining of this paper is organized as follows. We discuss 

Adaptive matched Partial biorthogonal wavelets in Section 2. In 

Section 3 we discuss about Wavelet Thresholding .The proposed 

method working process in section 4. In section 5 we discuss 

about the Challenges with corresponding discussion. The 

conclusions and future directions are given in Section 6. Finally 
references are given. 

 

2. ADAPTIVE MATCHED PARTIAL 

BIORTHOGONAL WAVELETS 
We use the concept of separable kernel proposed by Mallat [11] 

in our design of matched wavelets for images. Hence, two sets of 

1D matched wavelets are designed for two 1-D signals generated 

from the given image, obtained by row and column orderings 

instead of designing the two dimensional matched wavelets. We 

have opted for separable kernel mainly for simplicity of the 

design procedure. Now the problem of finding image-matched 

biorthogonal wavelets is essentially one of designing 2-channel 

1D FIR perfect reconstruction filter bank for each of the two 1-D 

signals satisfying some necessary and sufficient conditions. The 

design of FIR filters makes the obtained wavelets to be 

compactly supported. Our criterion for matching is based on 

maximizing the projection of signal characteristics into the 

scaling subspace rather than the wavelet subspace, based on 
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knowledge of the noise characteristics. Such a matching criteria 

will lead to a higher SNR in the coarsest approximation 

subspace when a noisy signal is decomposed with the matched 

as opposed to a fixed wavelet. Thus a thresholding process 

which passes the coarsest approximation sub-band and 

attenuates the rest of the sub-bands should decrease the amount 

of residual noise in the overall signal after the denoising process. 

A similar approach was proposed by Gupta et al. [12] for 

designing wavelets for signal and image compression. However, 

their wavelets would not work for the denoising applications as 

they are matched directly to the input image which is a noisy 

image in denoising applications i.e their technique would 

maximize the projection of noisy image features into the scaling 

subspace and not the clean image features. Next, we present our 
design in detail. 

Often in digital signal processing the need arises to decompose 

signals into low and high frequency bands, after which need to 

be combined to reconstruct the original signal. Such an example 

is found in subband coding (SBC). This demo shows an example 

of perfect reconstruction of a two-channel filter bank, also 

known as the Quadrature Mirror Filter (QMF) Bank since it uses 

power complementary filters. We will simulate our perfect 

reconstruction process by filtering a signal made up of 

Kronecker deltas. Plots of the input, output, and error signal will 

be provided, as well as the magnitude spectra of the signals. The 

mean-square error will also be computed to measure the 
effectiveness of the perfect reconstruction filter bank. 

Perfect reconstruction is a process by which a signal is 

completely recovered after being separated into its low 

frequencies and high frequencies. Below is a block diagram of a 

perfect reconstruction process which uses ideal filters. The 

perfect reconstruction process requires four filters, two lowpass 

filters (H0 and G0) and two highpass filters (H1 and G1). In 

addition, it requires a downsampler and upsampler between the 

two lowpass and between the two highpass filters. Note that we 

have to account for the fact that our output filters need to have a 
gain of two to compensate for the preceding up sampler. 

 

Fig 1 Perfect Reconstruction 

The Filter Design Toolbox™ provides a specialized function, 

called FIRPR2CHFB, to design the four filters required to 

implement an FIR perfect reconstruction two-channel filter bank 

as described above. FIRPR2CHFB designs the four FIR filters 

for the analysis (H0 and H1) and synthesis (G0 and G1) sections 

of a two-channel perfect reconstruction filter bank. The design 

corresponds to so-called orthogonal filter banks also known as 

power-symmetric filter banks, which are required in order to 

achieve the perfect reconstruction. 

An adaptive image coding method and system are disclosed. The 

system accepts an input image, divides it into image segments, 

and assigns each segment to a wavelet transform filter from a 

bank of such filters for transformation. The bank preferably 

comprises filters adapted for different types of image content, 

e.g., sharp edges, slowly-varying contours, etc. Filters are 

preferably assigned so as to produce minimal distortion for their 

assigned image segments at a given target bit rate, each filter 

produces transform coefficients for its segment using scale and 

subband settings common to the entire image. The valid 

coefficients for each segment are then combined in a composite 

wavelet coefficient image, which resembles a single wavelet 

transform of an entire image—although different filters are used 

to create different portions of the coefficient image. The 

composite image allows joint, rate-distortion optimized coding 

for a segmented image. Joint coding allocates bits between the 

transforms of the image segments optimally, and produces an 

easily scaleable bit stream. 

 

Fig 2 Adaptive Reconstruction 

 

3. WAVELET THRESHOLDING 

Wavelet Thresholding is a simple non-linear technique, which 

operates on one wavelet coefficient at a time. In its most basic 

form, each coefficient is threshold by comparing against 

threshold, if the coefficient is smaller than threshold, set to zero; 

otherwise it is kept or modified. Replacing the small noisy 

coefficients by zero and inverse wavelet transform on the result 

may lead to reconstruction with the essential signal 

characteristics and with less noise. Wavelet thresholding 

involves threes steps A linear forward wavelet transform, 

nonlinear thresholding step& a linear inverse wavelet transform. 

Let us consider a signal { ij x , j i, = 1,2…M} denote the M X M 

matrix of the original image to be recovered and M is some 

integer power of 2.During transmission the signal is corrupted 

by independent and identically distributed (i.i.d) zero mean, 

white Gaussian Noise ij z with standard deviation ζ i.e ij z j ~ N 

(0, ζ2) as follows. 

 
From this noisy signal ij y , we want to find an approximation ij 

x .The goal is to estimate the signal ij x from noisy observations 

ij y such that Mean Squared error (MSE) is minimum. ie 
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Let W and W-1 denote the two-dimensional orthogonal discrete 

wavelet transform (DWT) matrix and its inverse respectively. 

Then the above equation can be written as  

 
With = d W y , c =W x , ε=W z .Since W is orthogonal transform, 

jε is also an i.i.d Gaussian random variable with ij ε ≈(0, 

ζ2).Now T(.) be the wavelet thresholding function then the 

wavelet thresholding based Denoising scheme can be expressed 

as x =W -1(T (Wy))  

Wavelet transform of noisy signal should be taken first and then 

thresholding function is applied on it. Finally the output should 

be undergone inverse wavelet transformation to obtain the 

estimate x . There are four thresholds frequently used, i.e. hard 

threshold, soft threshold, semi-soft threshold, and semi-hard 

threshold. The hard-thresholding function keeps the input if it is 

larger than the threshold; otherwise, it is set to zero. It is 

described as 

 
The hard-thresholding function chooses all wavelet coefficients 

that are greater than the given threshold λψand sets the others to 

zero. The threshold λ is chosen according to the signal energy 

and the noise variance 2 ζ . If a wavelet coefficient is greater 

than λ, we assume that as significant and attribute it to the 

original signal. Otherwise, we consider it to be due to the 

additive noise and discard the value. The soft-thresholding 

function has a somewhat different rule from the hard-

thresholding function. It shrinks the wavelet coefficients by λ ψ 

towards zero, which is the reason why it is also called the 

wavelet shrinkage function. 

 

 
 

The soft-thresholding rule is chosen over hard-thresholding, for 

the soft-thresholding method yields more visually pleasant 

images over hard thresholding. 

 

4. PROPOSED METHOD AND 

WORKING PROCESS 
Let's design a filter bank with filters of order 99 and pass band 

edges of the lowpass and highpass filters of 0.45 and 0.55, 

respectively: 

N = 99; 

[H0, H1, G0, G1] = firpr2chfb(N,.45); 

 

Note that the analysis path consists of a filter followed by a 

downsampler, which is a decimator, and the synthesis path 

consists of an upsampler followed by a filter, which is an 

interpolator. So, we can use the multirate filter objects available 

in the Filter Design Toolbox to implement our analysis and 

synthesis filter bank by using a decimator followed by an 

interpolator, respectively. 

 

% Analysis filters (decimators). 

Hlp = mfilt.firdecim(2,H0); 

Hhp = mfilt.firdecim(2,H1); 

 

% Synthesis filters (interpolators). 

Glp = mfilt.firinterp(2,G0); 

Ghp = mfilt.firinterp(2,G1); 

 

Looking at the first lowpass filter we can see that it meets our 

0.45 cutoff specifications. 

 

hfv = fvtool(Hlp); 

legend(hfv,'Hlp Lowpass Decimator'); 

set(hfv, 'Color', [1 1 1]) 

 

Finding an optimized value (λ) for thresholding is a major 

problem. A small threshold will surpass all the noisy coefficients 

so the denoised signal is still noisy. Conversely a large threshold 

value makes more number of coefficients as zero which leads to 

smooth signal and destroys details that may cause blur and 

artifacts. So, optimum threshold value should be found out, 

which is adaptive to different subband characteristics. Here, we 

describe an efficient method for fixing the threshold value for 

denoising by analyzing the statistical parameters of the wavelet 

coefficients. This customized thresholding function which is 

similar to the soft thresholding function but with a smooth 

transition around λ. The thresholing function we proposed as 

 

 
Where 0< λ γ< and 0 1 ≤ ≤ α . This idea is similar to that of the 

semi soft or firm shrinkage proposed by Gao and Bruce , and the 

non-negative garrote thresholding function suggested by Gao , in 

the sense that they are continuous at λψand can adapted to the 

signal characteristics. In the thresholding function ( ) x fc , γψ is 

the cut-off value, below which the wavelet coefficients are set 

zero, and αψ is the parameter that decides the shape of the 

thresholding function ( ) x f . 

 
 

set(hfv, 'Filters', [Hlp,Hhp,Glp,Ghp]); 

legend(hfv,'Hlp Lowpass Decimator','Hhp Highpass 

Decimator',... 

 'Glp Lowpass Interpolator','Ghp Highpass Interpolator'); 

 

For the sake of the demo let p[n] denote the signal 
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and let the signal x[n] be defined by 

 
NOTE: Since MATLAB® uses one-based indexing, delta[n]=1 

when n=1. 

x = zeros(512,1); 

x(1:3)   = 1; x(8:10)  = 2; x(16:18) = 3; x(24:26) = 4; 

x(32:34) = 3; x(40:42) = 2; x(48:50) = 1; 

stemplot(x,'x[n]'); 

set(gcf, 'Color', [1 1 1]) 

 

The innovative aspects of the present work consist of estimating 

appropriate threshold by analyzing the statistical parameters of 

the wavelet coefficients. Our threshold is based on universal 

thresholding function. In this work, merits of interscale 

dependencies of adjacent scale wavelets are incorporated in the 

multiscale thresholding scheme for the purpose of denoising. In 

this scheme, two adjacent wavelet subbands are multiplied to 

amplify the significant features and condense noise. Then, 

thresholding is applied to the multiscale products instead of the 

wavelet coefficients.  

 

In general, a small threshold value will leave behind all the noisy 

coefficients, and subsequently the resultant denoised image may 

still be noisy. On the other hand, a large threshold value converts 

more number of coefficients to zero, which directs to smooth the 

signal, destroys details and the resultant image may cause blur 

and artifacts. Therefore, an optimum threshold value should be 

found out that is adaptive to different subband characteristics. 

 

The original work of Donoho proposed universal threshold 

 

 

 

This threshold depends on the image size ( N ) and the noise 

standard deviation ζn. It is easy to implement over smooth 

images. Based on this, we proposed our threshold by estimating 

a parameter-weighted variance (δ) . Instead of applying a pre-

selected uniform threshold, we propose a background - support 

threshold selection scheme for a coefficient-dependent choice of 

the threshold. We define weighted variance for coefficient Y [ 

m, n ] for threshold determination. The parameter-weighted 

variances δ involve neighboring coefficients of the wavelet 

decomposition for the estimation of the local variance. It is 

based on the estimation of the local weighted variance ζw [ m, n 

] 2 of each wavelet coefficient Y [ m, n ] at level l and orientation 

O using a window N of size 5 × 5. The weighted variance of a 

coefficient Y [ m, n ] with respect to the window of size 5 × 5 

with weights is defined by 

 

After finding the threshold, the coefficients are thresholded by 

 

if L = 1, 2, … K 

 

Multiscale product is obtained by multiplying the adjacent scale 

wavelet coefficients. In our work, we perform two levels of 

decomposition, and the product is taken between adjacent scale 

wavelet coefficients. For 2-D images, the multiscale products 

have two components 

 

 

 

 

The parameter noise variance ζ2 needs to be estimated first. It 

may be possible to measure ζ2 based on information other than 

the corrupted image, and it is estimated from the subband HH 1 

by the robust median estimator, 

 

Weighted variance (d) of a given wavelet coefficient is 

determined by the weight in a local window. 

 

5. Challenges and Discussion 

In order to study the performance of matched wavelets w.r.t the 

frequency content of the image, the test images were also 

classified by their frequency distribution. For doing so, the PSD 

of the given image is calculated in three intervals of full 

spectrum such as i)0 to _/3, ii)_/3 to 2_/3 and iii)2_/3 to _. Now 

the images were classified as low pass, band pass and high pass 

when PSD is maximum in interval1, interval2 and interval3 

respectively. The experiments were carried on the set of low 

pass and high pass images only, because they are the ones which 

are found more often in general and in our datasets. We have 

also made comparisons with the Wiener filter, the best linear 

filtering possible. The version used is the adaptive filter, 

wiener2, in the MATLAB image processing toolbox, using the 

default settings The PSNR results are shown in Table 1, and they 

are considerably worse than the nonlinear thresholding methods, 

especially when ζ is large. The image quality is also not as good 

as those of the thresholding methods. It is clear from Table 1, 

that the proposed thresholding technique outperforms the 

VisuShrink and the filters like wiener. The proposed method 

removes noise significantly and remains within 4% of the oracle 

shrink. 
 

6. CONCLUSION AND FUTURE 

DIRECTION 
In this paper, a simple and subband adaptive threshold is 

proposed to address the issue of image recovery from its noisy 

counterpart. It is based on the generalized Guassian distribution 

modeling of subband coefficients. The image denoising 

http://www.jr.ietejournals.org/article.asp?issn=0377-2063;year=2009;volume=55;issue=3;spage=135;epage=143;aulast=Sudha#ref2#ref2
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algorithm uses soft thresholding to provide smoothness and 

better edge preservation at the same time. We also explored the 

utility of using image-matched partial biorthogonal filters for 

denoising. Our design of image-matched biorthogonal wavelet 

bases uses the constraint that most of the energy of clean image 

is projected into scaling subspace rather than the wavelet 

subspace. We have compared denoising performance of our 

matched wavelets with CDF biorthogonal wavelets with two 

well-known thresholding strategies for various image datasets. 

The results show that adapted biorthogonal wavelets performed 

much better denoising than the available biorthogonal wavelets 

for low SNR i.e where the actual need for adaptation arises.  

 

7.  REFERENCES 
[1] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation 

by wavelet shrinkage. Biometrika, 81:425–455, March 1994. 

 

[2] G. Chang, B. Yu, and M. Vetterli. Adaptive wavelet 

thresholding 

for image denoising and compression. IEEE Transa-tions on 

Image Processing, 9:1532–1546, September 2000. 

 

[3] L. Sendur and I.W. Selesnick. Bivariate shrinkage functions 

for wavelet-based denoising exploiting interscale 

dependency.IEEE Transactions on Signal Processing, 50:2744–

2756, November 2002 

 

[4] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. 

Image denoising using scale mixtures of gaussians in the wavelet 

domain. IEEE Transactions on Image Processing,12:1338–1351, 

November 2003. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] J. O. Chapa and R. M. Rao. Algorithms for designing 

wavelets to match a specified signal. IEEE Transactions on 

Signal Processing, 2000. 

 

[6] A. H. Twefik, D. Sinha, and P. Jorgensen. On the optimal 

choice of a wavelet for signal representation. IEEE Transactions 

on Information Theory, 38:747–765, February 1992. 

 

[7] A. Gupta, S. D. Joshi, and S. Prasad. A new approach for 

estimation of statistically matched wavelet. IEEE Transactions 

on Signal Processing, 53:1778–1793, May 2005. 

 

[8] I. Daubechies. (1992). ‗‗Ten Lectures on Wavelets‖, 

Philadelphia SIAM. 

 

[9] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, ―Wavelet-

based statistical signal processing-Markov models,"IEEE Trans. 

Signal Processing, vol. 46, no. 4, pp. 886-902, April 1998. 

 

[10] J. K. Romberg, H. Choi, and R. Baraniuk, ―Bayesian tree-

structured image modeling using wavelet-domain hidden 

Markov model," in Proc. of SPIE, Denver, CO, July 1999, vol. 

3816, pp. 31. 

 

[11] S. Mallat. A theory for multiresolution signal 

decomposition:The wavelet representation. IEEE Trans. Pattern 

Anal.Mach. Intell., 11:674–693, July 1989. 

 

[12] A. Gupta, S. D. Joshi, and S. Prasad. A new approach for 

estimation of statistically matched wavelet. IEEE Transactions 

on Signal Processing, 53:1778–1793, May 2005. 


