Sensor Fusion of Intelligent Sensors using Probability Density

Dr.L.Mary Immaculate Sheela Professor R.M.D Engineering College

ABSTRACT

The accuracy of a system is the distance of the system's results from the results desired. The precision of a system is the size of the range of values returned by the system. The algorithm will terminate with each PE Processing Element. A value that is within the given value of all the values held by the other PEs. This method is called Approximate Agreement method.

Keywords

Expected Output, Intelligent Sensor, Processing Element (PE), Fault Sensor F.

1. INTRODUCTION

In this chapter I have analyzed Dolve's algorithm and extended the same approach for Intelligent Sensors[1]. First I introduce Dolev's Approximation Algorithm for Intelligent Sensors. Then a method introduced to find expected value for intelligent sensor and produce an algorithm for getting a better result than the Approximate Agreement method.

2. PROCESSING ELEMENT

A sensor is called a processing element (PE). The number of PEs is N and F is the number of malfunctioning PEs.These algorithm is intended to return a valid value from a set of readings from N PEs given F of them are known (or supposed) to be wrong ; not to establish how many sensors are faulty.[2][5]

3. DOLEV'S ALGORITHM

Input :A set of sensors each with a value
 N – Total Number of Sensors
 F – Total Number of Fault Sensors
 Output:A set of sensors each with a new value converging toward a common value.

Method

- Step 1 : Each sensor broadcasts its value.
- Step 2 : Each sensor receives the values from other Sensors and sorts the values into vector V.
- Step 3 :The lowest F values and highest F values are discarded from V at each sensor [Theorem 1]
- Step 4 : Each sensor forms new vector V' by taking the remaining values V(i*F) Where i = 0,1... (the smallest remaining values and every remaining F^{th} value in order).

Step 5: The new value is the mean of the values in V.

3.1 Example

Consider a system having four sensors out of which at the most one may give false value. Therefore N = 4, F = 1. Sensor values are expressed as ranges. The Dolev's algorithm was applied to the following table:

Table 1 Sensor and Values

Sensor	Lower	Higher
S ₀	2	7
S ₁	3	8
S_2	4	9
S ₃	7	12

Take each sensor value is the midpoint of its range. The values are stored in the following table:

Sensor	Mid values
S ₀	4.5
S ₁	5.5
S ₂	6.5
S ₃	9.5

Table 2 Sensor and midvalues

calculate the new value of V'

$$V = \{(4.5,5.5, 6.5,9.5)\}$$

V' = {(5.5, 6.5)}
= {(5.5 + 6.5) / 2}

The new value of $V' = \frac{12}{2} = 6$.

The new value of v' is present within the range of sensors S_0 , S_1 , S_2 . The sensor S_3 range is outside the new value of V'. Therefore S_3 is the fault sensor.

4. INTELLIGENT SENSORS

In the approximate agreement problem[8] each sensor gave an output $x \pm \varepsilon$. When ε is the accuracy of the results produced by the sensor. In this section we assume *intelligent sensors* which are capable of calculating the probability density function defined over the interval (x- ε , x + ε). [6][9][10].

4.1 Condition

Assume ϵ is a constants for all Sensors $S_0,\,S_1,\,S_2\,\ldots\ldots\,S_{N\text{-}1}$

Table1.3 Approximate Intelligent Sensors Readings

cas	S ₀	S ₁	S_2	•••	SI	S _{N-1}
e						
1	$x_0 \pm \epsilon$	$x_1 \pm$	$x_2 \pm \epsilon$		$x_i\pm\epsilon$	x_{N-1} ±
		3				3
2	$x_0\pm\epsilon$	$x_1\pm\epsilon$	$x_2\pm\epsilon$		$x_i\pm\epsilon$	x_{N-1} ±
•						3
3						
•						
Ι	$x_0\pm\epsilon$	$x_1 \pm$	$x_2\pm\epsilon$		$x_i\pm\epsilon$	x_{N-1} ±
		3				3
N	$x_0\pm\epsilon$	$x_1 \pm$	$x_2 \pm \epsilon$		$x_i\pm\epsilon$	x_{N-1} ±
		3				3

5. APPROXIMATE AGREEMENT FOR INTELLIGENT SENSORS

Let $S_0, S_1, S_2, \dots S_{N-1}$ be N *intelligent sensors*. The output of S_i is given below.

$S_{I} = \begin{bmatrix} x_{10} & x_{11} & x_{12} & \dots & p_{0i} & \dots & p_{0i} \\ \hline x_{10} & x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1l} \\ \hline p_{10} & p_{11} & P_{12} & \dots & p_{1j} & \dots & p_{1l} \\ \hline S_{i} & \hline x_{i0} & x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{in} \\ \hline \end{array}$	\mathbf{S}_0	x ₀₀	x ₀₁	x ₀₂		x _{0j}	 x ₀ n ₀
$S_{I} = \begin{bmatrix} p_{10} & p_{11} & P_{12} & \dots & p_{1j} & \dots & p_{1l} \end{bmatrix}$ $S_{i} = \begin{bmatrix} x_{i0} & x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{in} \end{bmatrix}$	\mathbf{S}_0	p ₀₀	p ₀₁	P ₀₂		p _{0j}	 $p_0 n_0$
$S_{I} = \begin{bmatrix} p_{10} & p_{11} & P_{12} & \dots & p_{1j} & \dots & p_{1l} \end{bmatrix}$ $S_{i} = \begin{bmatrix} x_{i0} & x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{in} \end{bmatrix}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S.	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1j}	 x_1n_1
Si	57	<i>p</i> ₁₀	<i>p</i> ₁₁	<i>P</i> ₁₂		p_{1j}	 $p_1 n_1$
S _i							
S _i		x _{i0}	x _{i1}	x _{i2}		x _{ii}	 x _i n _I
p_{i0} p_{i1} P_{i2} p_{ii} p_{in}	\mathbf{S}_{i}						
		p_{i0}	p _{i1}	P _{i2}	•••	p _{ij}	 p _i n _i
				1		1	

S _{N-1}	x _{N-1,0}	x _{N-1,1}	x _{N-1,2}	 x _{N-1,j}	 x _{N-1,} n _{N-1}
	p _{N-1,0}	р _{N-1,1}	p _{N-1,2}	 p _{N-1,i}	 p _{N-1} , n _{N-1}

6. TO FIND THE EXPECTED OUTPUT VALUE OF AN INTELLIGENT SENSOR

The expectation of the probability density function of the intelligent sensor Si is called the expected output value ei. [Bai02].

\mathbf{S}_{i}	x _{i0}	x _{i1}	x _{i2}	 x _{ij}	 x _i n _i
	p_{i0}	p_{i1}	p_{i2}	 \mathbf{p}_{ij}	 $p_i n_i$

 n_i

$$e_i = \sum Xi * Pi$$

i = 0

7. DOLEV'S APPROXIMATION FOR INTELLIGENT SENSOR

- 1. Find ei for sensor.
- 2. Ignore F sensors having lowest ei values and F sensors having ei values.
- 3. Do column sum using remaining sensors.
- 4. Find sum of column sum and divide each column by its sum.
- 5. Output the PDF value.
- 6. Output e_i value for each sensor.

8. EXAMPLE FOR APPROXIMATE PROBABILIT

8.1 Example

A set of 5 Sensors one of them is working in a fault manner. The fault sensor broadcast different value to each of the other four sensors. The values are:

Sensor	S ₀	S ₁	S_2	S_3
Values	4.7 ± 0.2	1.6 ± 0.2	3.0 ± 0.2	1.8 ± 0.2
S ₄ values	3.0 ± 0.2	1.0 ± 0.2	2.5 ± 0.2	0.9 ± 0.2

8.2 Approximate Agreement

So	4.5	4.6	4.7	4.8	4.9
\mathbf{S}_0	0.2	0.2	0.3	0.2	0.1
		E-maste	J of C	1 (9	

Expected value of $S_0 = 4.68$

S_1	1.4	1.5	1.6	1.7	1.8					
~ 1	0.1	0.3	0.4	0.1	0.1					
	Expected value of $S_1 = 1.58$									

S	2.8	2.9	3	3.1	3.2
\mathbf{S}_2	0.25	0.2	0.4	0.3	0.05

Expected value of $S_2 = 3.01$

S_3	1.6	1.7	1.8	1.9	2
5	0.1	0.3	0.3	0.2	0.1

Expected value of S₃ = 1.79

S_4	2.8	2.9	3	3.1	3.2
~4	0.15	0.1	0.5	0.2	0.05

Table 1.4 Sensors Expected Value

Sensor	ei	Dolev's Approxim ation	Remark
S ₀	4.68	X	Highest Value Discard (F=1)
S_1	1.58	X	Lowest value Discard (F=1)
S ₂	3.01	*	Select
S ₃	1.79	×	Select
S ₄	2.99	~	Select

Table 1.5 Sensors Probability Value

			r			r				
	1.6	1.7	1.8	1.	2	2.8	2.	3	3.1	3.
				9			9			2
S ₃	0.1	0.3	0.3	0.	0.1					
				2						
S_2						0.2	0.	0.4	0.3	0.
						5	2			05
S4						0.1	0.	0.5	0.2	0.
						5	1			05
Colu	0.1	0.3	0.3	0.	0.1	0.4	0.	0.9	0.5	0.
mn				2			3			1
sum										
(CS)										
CS/3	0.03	0.1	0.1	0.	0.03	0.1	0.	0.3	0.1	0.
	3			6	3	33	1		67	03
				6						3
				_						3
				7						
L										

Х	1.6	1	1.8	1.9	2	2.8	2.9	3	3.1	3.2
		7								
p (x)	0.0 33	0 1	0.1	0.6 67	0.0 33	0.1 33	0.1	0. 3	0.1 67	0.0 33

CONCLUSION

1.6 Result Table

One iteration of Dole approximate agreement algorithm requires finding the F largest and F smallest of N values. This can be done by finding and removing the maximum and minimum of the values F times or by sorting the set in increasing order. *Intelligent sensors* which are capable of calculating the probability density function defined over the interval (x- ε , x + ε). It is desirable not only to tolerate sensor failures but also to increase the expected accuracy of each sensors with PDF.

9. REFERENCES

- [1] Asada G, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J. Kaiser, and H. O. Marcy, "Wireless Integrated Network Sensors: Low Power Systems on a Chip", presented at The 24th IEEE European Solid-State Circuits Conference, Den Hague, The Netherlands, 1998.
- [2] Barborak 1993 M.Barborak, M.Malek, and A.Dahbura. "The Consensus problem in Fault Tolerant Computing," ACM Computing Surveys 25, 2 (June pp 171-220,1993.
- [3] Bedworth M D and J. O'Brien. *The Omnibus Model: A New Architecture for Data Fusion?* In Proceedings of the 2nd Interna-tional Conference on Information Fusion (FUSION'99), Helsinki, Finnland, July 1999.
- [4] Blackman S.S. Introduction to Sensor Systems, Chapter Multiple Sensor Tracking and Data Fusion. Artech House, Norwood, Mas-sachusetts, 1988.

- [5] Brignell J.E and J. K. Atkinson, "Sensors, intelligence and networks", presented at Solid State and Smart Sensors, IEE Colloquium on, 1988.
- [6] Brooks R and S.Iyengar, "Robust Distributed Computing and Sensing Algorithm", IEEE Computer, pp.53-60, June 1996.
- [7] Dasarathy B V. Information Fusion what, where, why, when, and how? Information Fusion, 2(2):75–76, 2001. Editorial.
- [8] Dolev D et al., "Reaching Approximate Agreement in the Presence of Faults," J. ACM, July 1986, pp. 499-516.
- [9] Girija G, Raol J R, Appavu Raj R, Banerjee P 1999 Intelligent multi sensor data fusion. Presented at the National Seminar on Intelligent and Autonomous Systems, Computer Society of India, Mumbai.
- [10] Iyengar S S, L.Prasad and M.Min, Advances in Distributed Sensor Technology. Environmental and Intelligent manufacturing system series, Upper Saddle River, NJ: Prentice Hall PTR, 1995.
- [11] Iyengar S S, D. N. Jayasimha, and D. Nadig, "A versatile architecture for the distributed sensor integration problem", IEEE Transactions on Computers, vol.57 43, pp. 175-185, 1994.
- [12] Subbiah A and D. M. Blough. Distributed Diagnosis in Dynamic Fault Environments. IEEE Trans.on Parallel and Distributed Systems, pages 453–467, 2004.
- [13] Yaron Weinsberg, Danny Dolev, Scott Kirkpatrick and Tal Anker, On a NIC's Operating System, a Scheduler and High-Performance Networking Applications, International Conference on High Performance Computing and Communications (HPCC 2006), Munich, Sep. 2006.