
International Journal of Computer Applications (0975 – 8887)
Volume 12– No.9, January 2011

37

Analysis of Delivery of Web Contents for Kernel-mode

and User-mode Web Servers

 Syed Mutahar Aaqib Lalitsen Sharma

 Research Scholar Associate Professor

Department of Computer Science & IT Department of Computer Science &

IT University of Jammu University of Jammu

ABSTRACT
In this paper, the architecture of kernel-mode and user-mode web-
servers and the constraints that affect their performance are
studied. A set of experiments have been performed to measure
and analyze performance of kernel-mode and user-mode web

servers on an open source Scientific Linux CERN platform. Web
servers under study include kernel-mode TUX web server and
user-mode Apache web server for varying static workload sizes.
The results of the experiments revealed that the performance of
kernel mode web servers greatly exceeds to that of user-space
web servers.

General Terms: Performance analysis

Keywords: Web servers, Web performance analysis, kernel-

mode, user-mode web servers

1. INTRODUCTION
World Wide Web (WWW), in addition of being an internet service
is also being used as an interface to various underlying internet
services. With the exponential growth of the number of internet
users and increase in the number of various internet services, the
load of a web server has increased tremendously. Depending on
its architecture, a web server is implemented either in user-space
or in the kernel of the operating system, respectively referred to as
user-mode web servers and kernel-mode web servers. The user-

mode web servers include process-driven, threaded and Event-
driven. Process-driven and threaded web servers are the most
common, with Apache being the most popular1.Web servers that
use threads include JAWS [17] and Sun Java System Web Server
[22]. Web servers like Flash [12], Zeus [10] are the examples of
event-driven architecture web servers. In kernel-mode web
servers such as kHTTPd [24], TUX [23] and AFPA [3], HTTP
server is tightly integrated with the host’s TCP/IP stack. The

whole of the web server is implemented within the operating
system-kernel itself, thus reducing the overhead associated with
the expensive transitions within the user-space. In this paper, two
web server architectures, user-mode and kernel mode web servers
are briefly reviewed and their comparative performance analysis
is presented.

2. KERNEL-MODE WEB SERVERS

The first kernel-mode web server, kHTTPd [24], developed by
Arjan van de Ven for Linux in 1999, creates one thread for each
CPU on the system. Requests are divided into a number of states
with a queue for each state. As the state changes, requests are
transferred from one queue to the next. These states include Wait
for accept, Wait for HTTP-header, Send data to user mode web

1 URL:www.news.netcraft.com/archives/category/web-server-
survey as accessed on 02 Nov 2010

server and Cleanup state. The first state “wait for accept” is
handled by the operating system itself while the other queues are
handled by kHTTPd. As kHTTPd has access to the data structures
and functions inside the kernel, it can directly transfer the
incoming request to the user-mode web server if its intended for

it. Another kernel-mode web server is TUX [23] [25], which
stands for “Threaded linUX HTTP layer” designed and
implemented by Ingo Molnar at Red Hat. Like kHTTPd it is also
a kernel mode web server but it differs in design and features.
TUX takes a different approach than kHTTPd while responding to
network events, Instead of using a normal socket interface from
kernel mode and using non-blocking calls to examine the
connections for activity, TUX hooks in to the TCP/IP-stack by

changing function pointers in the internal structure representing a
socket to point to functions provided by TUX so that when a
network event occur it will be called directly and can respond to
it. Responses from both kHTTPd and TUX are derived in a thread
or interrupt-context. kHTTPd uses socket interfaces in kernel-
mode while TUX uses a threaded model [18].

3. USER-MODE WEB SERVERS
Apache web server being a user-mode web server, its architecture
follows a multi-process programming paradigm. When an HTTP
connection request arrives, that request is first parsed by the main
root process of the Apache daemon which then spawns a new
process to fetch or form the HTML file. If the requested file is a
static file, it is loaded from the disk else the request is forwarded

to one of its modular processes. The multi-processing module
allows multiple processes to prepare HTML files concurrently.
When too many processes are working simultaneously, the
overhead of context switching causes the performance to degrade.
This can be prevented by configuring and setting a limit to the
maximum number of allowed processes in Apache.

4. RELATED LITERATURE
Contemporary web servers require special techniques to handle a
large number of concurrent connections. To handle thousands of
such requests concurrently without degrading the performance,

Pai et al.[1, 2] proposed different server architectures to handle
such problems. Joubert et. al [3] reported the techniques to
improve the user-space web server performance by elimination of
data copies and reads, reduction of scheduling and context
switching overhead due to event notification, and reduction of
overall communication overhead in the socket layer, TCP/IP
stack, link layer, and network interface hardware. Eliminating
copies and reads for a Web transaction offers significant

performance improvements for large responses. However it is
difficult to avoid it in user-mode web server where the data that is
to be sent resides in the file system cache unless the data is
already mapped into the user-mode address space. To further
reduce the overhead of event notification, Pai et al. [1] developed

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.9, January 2011

38

a mapping between threads and requests as multiple
process/thread (MP) or single process event driven (SPED). Web
servers such as Zeus [10], IIS [11] use a SPED model. Flash also
uses a SPED model for cached content, using only one thread for
serving cache hits. The Windows 2000 APIs implementing zero

copy data transfer and efficient event notification are described in
[13]. Various researchers have also proposed modifications in
operating system interfaces and mechanisms for efficient
notification and delivery of network events to user-space servers
[4, 5, 6, 7] thus reducing the amount of data copied between the
kernel and the user-space [8], reducing the number of kernel
boundary crossings and a combination of the above [9]. Some of
the researchers have tailored existing socket API’s and

implemented new APIs with newer web servers in mind [14]
while others [15] have redesigned and improved the TCP/IP stack
for Web server workloads to efficiently manage short-lived
connections. To reduce the event notification overhead, Banga et
al. [16, 17] optimized the implementation of select () and poll ()
system calls thereby improving the already existing interfaces and
their implementation. Banga et al. [19] implemented a scalable
version of select() system call and the kernel routine that allocates

a new file descriptor, They later proposed an entirely new event
delivery mechanism for UNIX to overcome inherent limitations in
the scalability of the select() system call [20]. More recent work
by Brecht et al. [21] focuses on the scalability of the accept()
system call.

5. EXPERIMENTAL TEST-BED
The test environment consists of two clients connected to a server
via a 100Mbits/s Ethernet switch.

5.1. CLIENT & SERVER CONFIGURATION

The two client machines are running Scientific Linux CERN 5
(2.6.18). Each machine has a single 2.0 GHz Intel processor with
1 GB of RAM and uses “RAM-disk" (a virtual disk in Linux) of
128 MB for collecting statistics during testing using httperf [26]
workload generator. The server machine in our test environment

is an Intel Core 2 Duo 2.4 GHz machine also running Scientific
Linux CERN 5 (2.6.18) with 2 GB of RAM. The hardware
configuration is identical to that of the clients.

5.2. PERFORMANCE TUNING

The number of available file descriptors was increased (from
1024 to 32,678) and the limit of the local port range was also

increased. TCP TIME_WAIT recycling was enabled to free up
sockets in a TIME_WAIT state more quickly, thus allowing
clients to generate and sustain high request rate. Also, all the non-
essential processes and services on the server as well as client
machines were disabled.

5.3. CLIENT BENCHMARK PROGRAM

The httperf [26] is an open source benchmark developed by David
Mosberger at Hewlett-Packard Research Labs. The httperf
benchmark is a flexible HTTP client that requests a file from a
web server multiple times and for number of parallel threads and
then prints out detailed statistics. Its source code is modified in
order to print the server response rate information more
frequently. Thus the output of the httperf provides information
about TCP (TCP connection rate) and HTTP (request and reply
rate) behaviors on second by second basis.

5.4. WEB SERVERS TESTED

The comparison of user-mode and kernel-mode HTTP servers
was performed by examining some widely popular web servers in
both categories. In the experiments Apache 2.2.3 was used as a
user-mode web server running at port 8080 and TUX 3.0.0, being

a kernel-mode Web server running at port 80. Both the web
servers were restarted between each experiment.

5.5 EXPERIMENTAL DESIGN

Subject and Metrics

The tests were focused on several key metrics: Workload file size,
TCP connection rate, HTTP request rate, HTTP reply rate, HTTP
reply time, Throughput. Other factors i.e. network I/O and the
CPU utilization was taken into account as well. Workloads were
categorized into small, medium and large-file sizes. For requests
involving small files (1KB), most of the time would be spent on

setting up the TCP connection and processing the request. The
number of requests per second thus gives good information on the
performance. For larger file sizes most of the time would be spent
on the task of reading file data from the file system and sending it
to the TCP/IP-stack. So in this case throughput is chosen to be a
metric to depict the performance differentiation between web
servers. Another metric is to measure how a web server handles
large number of concurrent connections; this will show whether

the connections are handled in an efficient way or if processing
time goes just in administrating and sustaining the connections.
Table 1 lists the connection rates for varying workloads.

Web

Server

Workload Size Connection Rate

TUX Small (1kb)

Medium(320kb)

Large (900kb)

500,1000,2000, …, 20000

200,400,600,…,2000

10,20,40,80,… 640

Apache Small (1kb)

Medium(320kb)

Large (900kb)

500,1000,2000, …, 20000

200,400,600,…,2000

10,20,40,80,… 640

Table 1: Connection rates for varying workload sizes

6. RESULTS AND DISCUSSIONS
The following table summarizes the performance results for both
kernel and user mode web server under varying static workload
sizes when the web server attains its saturation level by listing the

average number of TCP, HTTP requests, HTTP responses and
throughput per second.

Table 2: Performance measurements of kernel and user-mode

web servers at saturation levels
Web

Server

Workload

Size

TCP

connections

/sec

HTTP

requests

/sec

HTTP

responses

/sec

Throughput

(kb/sec)

TUX

3.0.0

Small 10,100 9700 9700 400-12300

Medium 1000 1000 1000 64058-

320309

Large 320 320 300 9551-

305395

Apac

he

2.2.0

Small 1500 1381 1300 400-1670

Medium 699 641 634 64058-

202086

Large 346 258 245 9551-

233933

Figure 2 shows the comparative results for small-workload file

using Apache and TUX web server. In figure 2(a), there are eight
sets of data plotted. It presents the average number of TCP
connections established per second, average HTTP request and
response rates and also the reply deviation for both TUX and
Apache httpd server. The time unit for each point on the graph is
2 minutes as it is the test duration for each test in the experiment.

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.9, January 2011

39

Figure 2: Comparison of results of 1KB

2(a)

 2(b)

 2(c)

Figure 2(b) shows the Network IO for the 1 KB file. It shows that
the total throughput increased from 400 KB/sec to up to
12300KB/Sec for TUX and from 400-1670 KB/sec for the
Apache web server after which it degrades.

Figure 2(c) shows the error rate for both Apache and TUX for
1KB workload. As it is obvious, the error rate for Apache is more
than that of the kernel mode TUX. Also the target rate after which
the error rate increases for TUX is 10,100 and for Apache it is
1500. Similar graphs are shown in Figure 3 and 4 for the medium
and large workload file results for both TUX and Apache web
server.

Comparison results of kernel mode TUX and user mode httpd

for medium and large workload file.

Figure 3: Comparison of results for 320 KB file.

3(a)

 3(b)

 3(c)

Figure 5 shows the connection lifetime and the connection
establishment times and reply rate/sec for TUX and Apache for
different workloads.

Figure 5(a) shows that the connection establishment time for 1KB
workload TUX web server is negligible up to the target request

rate of 8000 reqs/sec after which it increases slightly up to 10 ms
and the connection lifetime which is maximum up to 255 ms
before the saturation level then increases more than 3000 ms. This
occurs because the server is overloaded at that time and has
attained its saturation level.

Figure 5(b) plots the reply rate per second for time taken in the
1kb file experiment. It shows that there is a uniform growth of the
reply rates up to the saturation level; the intervals are separated by
the idle time period during which the graph has no value. In this
graph it also shows the saturation point is up to 10,000 requests

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.9, January 2011

40

per second which took up to 1500 seconds. Hence the time it took
for the server to saturate for a 1kb file in a kernel based server is
1500 seconds.

Similarly, Figures (6,7) show the connection times and reply rate
graphs for medium and large workload files using TUX web
server, Whereas graphs in figures (8,9,10) show these results for

small, medium and large workload files using Apache web
servers..

Figure 4: Comparison of results for 900 KB file.

 4(a)

 4(b)

 4(c)

Figure 5: Connection times and reply rate for 1KB workload file

for TUX Web server.

 5(a)

 5(b)

Figure 6: Connection times and reply rate for 320 KB workload

file for TUX Web server.

 6(a)

6(b)

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.9, January 2011

41

Figure 7: Connection times and reply rate for 900KB workload

file for TUX Web server.

7(a)

7(b)

Figure 8: Connection times and reply rate for 1KB workload file

for Apache web server.

 8(a)

 8(b)

Figure 9: Connection times and reply rate for 320 KB workload

file for Apache web server.

 9(a)

 9(b)

Figure 10: Connection times and reply rate for 900 KB workload

file for Apache web server.

 10(a)

 10(b)

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.9, January 2011

42

7. CONCLUSION
The measurement results revealed that the kernel-mode web
servers have a significant performance improvement over
user-mode web servers on Linux platform. Here the metric that
improved most in kernel mode is the throughput and achieved rate

which means that a larger number of requests per second can be
handled; this was found for smaller files where the kernel mode
web server on Linux was up to ten times faster than user mode
web server. As the size of the workload file increases this
difference decreases up to 32%. The reason for the big
improvement in achieved rate and throughput is because a kernel
mode web server avoids process scheduling. Throughput is
improved in the kernel mode web servers but the difference

decreases as we use larger workload files. The main reason
behind the higher throughput from the kernel mode web server
TUX is that that it avoids data copies and reads, scheduling
overhead, context switching and also reduction of overall
communication overhead in socket layer. Thus, it results in
handling large number of requests per second and also helps in
increasing the throughput. By comparing absolute performance
between the two types of web servers we have made this

observation that kernel mode web server is faster than user-mode
web servers for static workloads. Thus, kernel mode web servers
should be worth considering from a performance point of view
even though kernel mode web servers do not provide security and
reliability benefits as in user-mode web servers.

8. ACKNOWLEDGMENTS
The authors are thankful to Prof. Devanand, Head, Department of
Computer Science and IT, University of Jammu, for his kind

support.

9. REFERENCES
[1] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash:

An efficient and portable web server. In Proceedings of the
USENIX 1999 Annual Technical Conference, June 1999.

[2] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable internet services. In
Proceedings of the Eighteenth Symposium on Operating
Systems Principles, October 2001.

[3] Philippe Joubert, Robert B. King, Richard Neves, Mark

Russinovich, and John M.Tracey. High-performance
memory-based web servers: Kernel and user-space
performance. In USENIX Annual Technical Conference,
General Track, pages 175–187, 2001.

[4] N. Provos and C. Lever. Scalable network I/O in Linux. In
Proceedings of USENIX Annual Technical Conference,
FREENIX Track, June 2000.

[5] Abhishek Chandra and David Mosberger. Scalability of Linux
event-dispatch mechanisms. In Proceedings of the 2001
USENIX Annual Technical Conference, pages 231–244,
2001.

[6] G. Banga, J.C. Mogul, and P. Druschel. A scalable and
explicit event delivery mechanism for UNIX. In Proceedings

of the 1999 USENIX Annual Technical Conference, June
1999.

[7] Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag.
Comparing and evaluating epoll, select, and poll event
mechanisms. In Proceedings of 6th Annual Linux
Symposium, july 2004.

[8] Vivek Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A
unified I/O buffering and caching system. ACM Transactions

on Computer Systems, Vol. 18:37–66, 2000.

[9] Erich Nahum, Tsipora Barzilai, and Dilip Kandlur.
Performance issues in WWW servers. IEEE/ACM
Transactions on Networking, Vol. 10, February 2002.

[10] Zeus Technology Ltd. Zeus web server. URL:
http://www.zeus. com.

[11] Microsoft Corporation. IIS, Internet information services
features.http://www.microsoft.com/windows2000/guide/serv
er/features web.asp.

[12] Flash web server URL: http://www.cs.princeton.edu/∼vivek/
flash/.

[13]James C. Hu, Irfan Pyarali, and Douglas C. Schmidt. High
performance Web servers on Windows NT: Design and

performance. In USENIX, editor, The USENIX Windows
NT Workshop 1997, August 11–13, 1997. Seattle,
Washington, pages 149–149, Berkeley, CA, USA, August
1997. USENIX.

[14] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Better
operating system features for faster network servers. In
Proceedings of the Workshop on Internet Server
Performance (held in conjunction with ACM SIGMETRICS
’98), Madison, WI, June 1998.

[15] Jeffrey C. Mogul. Operating systems support for busy
internet servers. Technical Report Technical Note TN- 49,

Digital Western Research Laboratory, Palo Alto, CA., May
1995.

[16] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A
scalable and explicit event delivery mechanism for UNIX. In
Usenix Annual Technical Conference, pages 253–265, 1999.

[17] The JAWS adaptive web server, URL: http://www.dre.vander
bilt.edu/JAWS

[18] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IOlite:
A unified I/O buffering and caching system. In Operating
Systems Design and Implementation (OSDI ’99), pages 15–
28, 1999.

[19] Gaurav Banga and Jeffrey C. Mogul. Scalable kernel
performance for Internet servers under realistic loads. In
Proceedings of the 1998 USENIX Annual Technical
Conference, New Orleans, LA, 1998.

[20] Gaurav Banga, Jeff Mogul, and Peter Druschel. A scalable
and explicit event delivery mechanism for unix. In
Proceedings of the USENIX Annual Technical Conference,
Monterey, CA, June 1999.

[21] Tim Brecht, David Pariag, and Louay Gammo. accept()able
Strategies for Improving Web Server Performance. In
Proceedings of the 2004 USENIX Annual Technical
Conference, Boston, MA, 2004.

[22] Sun Java System web server, URL: http://docs.sun.com/app/
docs/coll/1308.3

[23] Tux reference manual, URL: http://www.redhat.com/docs/
manuals/ tux/TUX-2.1-Manual/.

[24] khttpd web server, URL: http://www.fenrus.demon.nl/

[25] Ingo Molnar. TUX: Threaded linUX http layer. URL: http://
people.redhat.com/mingo/ TUX-patches/.

[26] David Mosberger. httperf: A Tool for Measuring Web Server

Performance. URL: http://www.hpl.hp.com/personal/David_
Mosberger /httperf.html

