
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.1, January 2011

40

Analysis and Design of Software Visualization Tool for
the Behavior of Object Oriented Programming

 Ashok Kumar Behera Rajesh Tiwari
 Bhilai Institute of Technology Sri shankaracharya College of
 Durg (CG) Engineering & Technology, Bhilai

ABSTRACT
The software visualization tools are highly required by the

industry and research centers. In past, many specific tools have

been developed, whose rate of development does not match the

rate of requirement of industry. In this paper, we are going to

discus the analysis of the similar tools available and design &

development of our Software Visualization Tool, which

focuses the class diagram with attributes and methods of class

of object oriented programming. We design the common

algorithm for visualization of object oriented program. The aim

of our tool is to simplify the design of complex code, which can
be easily maintainable and usable.

Keywords: Software visualization, re-engineering, reverse

engineering.

1. INTRODUCTION
Software reverse engineering is most costly activity in software

development. Different tools have been proposed to understand

the software system. The application of different visualization

techniques [3] has the potential to provide the solution for

complex system. The success of the tool depends upon, how it
fulfills the need of user.

 The tools are widely necessary for the industry for

maintenance of the software. The task of tool is to identify the

design from the coding of the system. This assists the user of

software to understand better about the system.

 This paper presents the software visualization

support[11] to simplify the complexity of program to lower

level. This tool is designed in C++. This provides the

information that is required to maintain the programs written in

specifically in C++. This tool provides the design of the

program with respect to class and lower up to attributes along

with methods. This will help for re design and maintain the
project.

2. PREVIOUS WORK
In past the tools of software visualization was developed

according to the need of user. The tools are Code crawler[1,7],

Goose[1, 7], Jaliot, CVSgrab, Code Visual to Flowchart, etc.

 Code crawler is a language independent software

visualization[3,5] tool written in Smalltalk[1]. Code crawler

provides the class structure[2,7] and relation of class &

functions. It works along the moose reengineering

environment. It collects and stores the data and later on is

visualized[3]. It picks classes, functions from the code directly

and design flowchart. The other tools are designed to form the

class diagram, object diagram. Presently most of the tools are
no use as all are requirement specific.

 Code Visual to Flowchart provides the flowchart of

the program. The flowchart is language dependent, as the

flowchart build directly from block of code, not in generalize
form.

3. MOTIVATION
As discussed earlier, the past tools provide the flowchart,

sequence diagram, class diagram and its relation with other
classes. Apart from that, it provides inheritance.

It is necessary to find out, which attributes, the class contain

and which attributes, it inherited from the parent classes[2].

How attributes transfer from one class to other, whether it is

static or dynamic. How attribute type will be identified? All

these are necessary to simplify the requirement of user. From

this requirement we motivate to design the tool that is low level

design like attributes along with class diagram. This will help
developers for better and easier redesign of software.

4. VISUALIZATION TOOL
This tool is to analyze the object oriented programming[6],

taking command line argument and provides menu based

solutions. Then it scans the code word by word and store in

different stack like class, attribute and method. The attributes

and methods are divided according to their access-specifier.

Whenever the class is inherited, it matches the type of

inheritance to access-specifier for inheritance properties. The
reference model[4] is shown in fig(1).

Fig 1: Reference model

Program Code: - The source code of input system. Here we

are considering C++ programming as input, from which design
would be extracted.

Data Table: - Retrieved data like attributes, methods, classes

along with relations. Data table extracted from source code
through SV-tool are stored in a file from.

Structure View: - Representation of relations. The relation is

build in pictorial form, it is class diagram, inheritance and

properties present in classes.

Program

Code

Data

Table

Structure

View

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.1, January 2011

41

4.1 Design of the Tool
Our focus is to simplify the design of complex code, which can
be easily maintainable and user-friendly. The main focus is

(a) Need :- The requirement of tool to user. It is

designed for research and education purpose.

(b) User :- The users of this tool are research scholar,

student and instructors of the institutes.

(c) Representation :- We represent the tool very simple

and user friendly. It provides the information on

menu based.

Firstly, the program is passed through analyzing tool, which

provides the required data necessary for retrieval. The retrieved

data is stored in a file for future enhancement. In the next step

the information available in the file is represented in graphical

format, which can be accessed by the user.

4.2 Algorithm of the Tool
The algorithm is designed in two parts; one is to extract class

along with its attributes and methods. Second part is to design

the extracted information in menu based format. Along with the

algorithm we are given the complexity of it. Figure 2 shows the

first part and figure 3 shows second part.

SV(file X)

1. For each char ch in X

2. if ch != ‘ ‘ or ch !=‘\n’

3. ch1[i]  ch

4. i  i+1

5. ch1[i] = ‘\0’

6. if ch1=class

7. then file1  class-name

8. While ch != end-of-class

9. file1  var

10. file1  method

Fig:2 Extraction of members.

This algorithm provides variables and methods of class. The

worst case of time complexity is O(n). As the main loop will

continue for N times, where N is no of character present in the

program. The second loop will run for M times and M<N.

Inheritance (file x)

1. for each char ch in x

2. if ch = ‘:’

3. then f  f+1

4. else ch1[i]  ch

5. if b = 1

6. base  ch1

7. else derv  ch

Fig:3 Graphical representation

The worst case of time complexity is O(n). As the main loop

will continue for N times, where N is no of character present in

the program.

4.3 Architecture of the Tool
This tool provides the sequential architecture, which is of two

stages. Stage1 is of metamodel and stage 2 is of visualization.
Information will pass through bridge.

Fig.2 Architecture of the Tool

Source Code is the program written in C++, which have no

documentation and required for maintenance. This required

visualization of the source code. This pass to the metamodel for

tokenize.

Metamodel[7] uses the algorithm shown in figure 2. This is the

base model that tokenizes the source code, i.e. the C++

program and stored in a file. All information regarding the

visualization of source code are stores in the specified class

having attributes as variables and methods. All the information

extracted through metamodel are stored in structural way for

better representation. This model used for static code. The

stored file is then passing for graphical representation.

Visualization is the representation of the design of the code in

pictorial form, which can be easily understood by the developer

or the user. It includes class diagram along with the behavior of

the attributes and methods through inheritance.

 4.4 Visualization Engine
The visualization engine[6,7] of SV tool is the user interactive

tool itself. It provides the real work of visualization of object

oriented program, specifically C++ program. The algorithms

stated in this program are implemented in C++.

The sample class diagram of the program is shown in fig 3.

Fig.3 Class diagram

Here in figure 3 the class name along with the properties are

given. The properties include the attributes and methods used

in class. This tool extracts all classes available in the program.

These classes will be displayed and stored in a separate file

which can be utilized later. This tool also provides relation

between the classes. How the properties are inherited through

access-specifier, along with the attributes and methods

specified in the class. It shows all types of inheritance. From

Metam

odel

Visuali

zation

Source

Code

Test

Int p

void display()

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.1, January 2011

42

the inheritance we can extract the properties used by the

classes. The sample example is given in figure 4.

Fig.4 Inheritance of classes

5. CONCLUSION
This paper presents a visualization design of object oriented

software with focus on the inheritance of properties. This

provides actual design of program, flow of data and methods

from one class to other.

 This paper describes the concept of the tool and the

techniques used in it. The target of these systems is to provide

multiple object-oriented environments. This tool is already

implemented in our research lab. This is mostly helpful for

research students and industries used C++ programs. As per the

testing concern, it can extract small and medium scale

programs and provide the required output. We will further

enhance this tool for large scale programs.

6. REFERENCES
[1] Michele Lanza: Code Crawler- Lessons learned in building

a software visualization tool. IEEE Conf. on Software
Maintenance & Reengineering, 2003. pp 409 – 418.

[2] Stephane Ducasse, Michele Lanza: The class blueprint:

Visually Supporting the Understanding of Classes. IEEE
Journal 2005, Vol-31, Issue 1. pp 75 – 90.

[3] Thorsten Schater, Mira Mezini: Towards more flexibility

in software visualization Tools. IEEE Conf.on Visualizing
Software for Understanding & Analysis, 2005. pp 1 – 6.

[4] R. Ian Bull and Margaret-Anne Storey, Jean-Marie Favre:

An architecture to support model driven software
visualization. IEEE 2006

[5] Jonathan I Maletic, Aridrian Marrcus, Michael L. Collard:

A Task Oriented view of software visualization. IEEE

Conf. on Visualizing Software for Understanding &
Analysis, 2002. pp 32 – 40.

[6] Michael P. Smith and Malcolm Munro: Runtime

visualization of object oriented software. IEEE Conf. on

Visualizing Software for Understanding & Analysis, 2002.

pp 81 – 89.

[7] Anslow C., Noble J., Marshall S., Tempero E.: Towards

End-User Web Software Visualization. IEEE Symposium

on Visual Languages and Human-Centric Computing.
2008. pp 256 – 257.

[8] Blaine Price, Ronald Backer, Ian Small: An introduction to
Software Visualization.

[9] Timo Raitalaakso: Dynamic Visualization of C++ Programs
with UML sequence diagrams.

[10] Mariam Sensalire and Patrick Ogao: Visualizing object

oriented software: Towards a point of reference for
developing tools for industry. IEEE 2008

[11] Craig Anslow, Stuart Marshall, James Noble, Robert
Biddle: Software visualization tool for component reuse.

[12] Wim De Pauw, David Lorenz, John Vlissides, Mark

Wegman: USENIX – Execution patterns in object oriented
visualization:URL– http://www.usenix.org

abc

Test

pqr
