
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

37

Novel Devaki-Paul Algorithm for Multiple Pattern Matching

Devaki Pendlimarri
Swarnandhra Institute of Engineering

and Technology
Narsapur – 534 280, India

Paul Bharath Bhushan Petlu
Swarnandhra College of Engineering

and Technology
Narsapur – 534 280, India

Dr. Ramesh Babu Satrasala
Swarnandhra College of Engineering

and Technology
Narsapur – 534 280, India

ABSTRACT
Pattern matching is one of the major issues in the area of network

security and also in many other areas. The increase in network

speed and traffic may cause the existing algorithms to become a

performance bottleneck. Therefore, it is very necessary to develop

more efficient pattern matching algorithm, in order to overcome

troubles on performance. There are several algorithms in use, in

which, DP algorithm (Devaki – Paul algorithm) is yielding good

results in many cases. However, this algorithm was proposed only

for the single pattern matching. But, now-a-days it is very

necessary to find the multiple patterns in NIDS etc. In this paper,

we are giving a new proposal to the DP algorithm (Devaki – Paul

algorithm) to make it efficient and works also for the multiple

pattern matching. The algorithm was tested and validated and the

results have proved that the performance of DP algorithm is better

than BM algorithm (Boyer – Moore algorithm) and the Quick

Search algorithm. In case of tests with repeated character, its

performance is greater than 1%~50% with BM and Quick Search

algorithms. In case of tests with the English Text and Random

Pattern, it’s greater than 33%~91% with BM and 37%~85% with

Quick Search algorithms. In case of tests with the English Text

and Random Pattern of an unsuccessful search, its performance is

greater than BM and Quick Search algorithms with 100%, if

either the first and/or the last character of the pattern in the given

text were not present.

General Terms
Exact String matching algorithms, pattern matching, Network

Security Systems, Algorithms et. al.

Keywords
Devaki-Paul algorithm, pattern matching, string matching

algorithm, Boyer-Moore algorithm and network security.

1. INTRODUCTION
Pattern matching is one of the basic and most important issues,

which have been studied, in the research areas of computer

science. In a standard problem, we are required to find all

occurrences of the pattern in the given input text, known as single

pattern matching [6]. Suppose, if more than one pattern are

matched against the given input text simultaneously, then it is

known as, multiple pattern matching. The multiple patterns

matching technique can be used in many applications. It is used in

data filtering or data mining (to find selected patterns from a

stream of new feed), network security applications (to detect

certain suspicious keywords), glimpse to support Boolean queries

by searching for all terms at the same time and then intersecting

the results, DNA searching, patterns that can have several forms

such as dates, names etc and also in many areas.

String matching algorithms are used also in Network Intrusion

Detection Systems (NIDS)[3] which is widely recognized as a

powerful tool for identifying deterring and deflecting malicious

attacks over the network. In network security realm, the pattern is

a string indicating a network intrusion, attack, virus, snort, spam

or dirty network information etc [9]. Besides, there are many other

applications which can be found in [4], [5], [6], and [7]. Here, we

are proposing an enhancement to the preprocessing phase of the

DP algorithm (Devaki – Paul algorithm). With this enhanced

preprocessing phase the DP algorithm is able to find all the

occurrences of multiple patterns in a given input text.

Since the evolution of the Boyer – Moore (BM algorithm) [8]

and the Knuth–Morris–Pratt (KMP algorithm) [2] and [12]

algorithms, many more techniques were proposed by many

researchers, to find the exact pattern matching, by improving the

performance and efficiency. The BM algorithm is considered as

one of the most efficient pattern matching algorithm in general

applications and is also known as the best average-case

performance algorithm of any algorithm [8], [9] and [10]. The

algorithm requires a preprocessing of the given input text with

respect to the given pattern to construct a table before starting the

search, which takes O(m+σ) time. If we want to search for more

patterns in the same given input text, we need to repeat the

preprocessing phase on the same given input text with respect to

every new pattern. Hence, the BM algorithm is yielding a good

result in case of single pattern matching, but, not for multiple

patterns matching.

The DP algorithm [1] is yielding good results when compared

with the above said algorithms in many cases for single pattern

matching. The key features of DP algorithm for single pattern

matching are:

• The preprocessing phase is of O(m) time.

• The search phase time complexity is directly proportional

to the number of occurrences of the first and the last

characters of the pattern in the given input text.

• If either the first and/or the last character occurrences is

zero in the preprocessing phase, then the time complexity

of the search phase is of O(1) time.

• If the search is for another pattern for which the first and

the last character are same as the previous pattern, then

the preprocessing phase is not required. The previously

computed table of occurrence can be used.

But, the DP algorithm also requires a preprocessing phase

every time for every new pattern which results to a poor

performance.

Hence, in this paper, we propose a novel DP algorithm for

multiple patterns matching, which undergoes preprocessing phase

only once for all patterns before search phase. This algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

38

requires a preprocessing phase of O(m+σ) time, where m is the

size of the given input text, and σ is the fixed amount of time

required to construct the table of ASCII character set.

2. METHODOLOGY
The DP algorithm (Devaki–Paul algorithm), for single pattern

matching can be made efficient also for multiple pattern matching

by replacing the preprocessing phase with this novel

methodology.

Here, we present a novel multiple patterns matching

algorithm, called, Devaki–Paul algorithm (DP algorithm). This

algorithm requires a preprocessing phase, in which it prepares a

table which constitutes a 256 member ASCII character set to store

the occurrences of each character in the given input text. The

given input text is scanned once and the occurrences of each

character are stored in the respective 256 member ASCII character

set table.

2.1 Preprocessing Phase
In this phase, we find the occurrences of each character of the

256 member ASCII character set table in the given input text.

Preprocessing(char x[], int m)

/* Constructing a table of occurrences for each character of the

256 member ASCII character set in the given input text*/

Step 1: [initialization]

Construct a table constituting with 256 member ASCII

character set

Step 2: [scan the given input text]

Find all the occurrences of each character represented

in the 256 member ASCII character set in the given

input text

Save these occurrences in the respective character entry

in the 256 member ASCII character table.

Step 3: [Finish]

 return

Then, it performs a search phase for the multiple pattern

matching based on the pre-computed table with a set of rules.

2.2 Search Phase
In this phase, we find the probability of having an occurrence

of a pattern in the given input text by using the table of

occurrences of pre-processing phase.

Searching(char x[], int m, char y[], int n, int a[], int alen, int

b[], int blen)

/* Search Phase: This algorithm will find the chances of getting

pattern match */

Step 1: [initialing the variables]

Initialize all index and other variables

Step 2: [get occurrences]

 Read the first character occurrences of the pattern from

the pre-computed 256 member ASCII character set

occurrences table

 Read the last character occurrences of the pattern from

the pre-computed 256 member ASCII character set

occurrences table

Step 3: [find the probability of occurrence of a pattern and do

match]

Repeat step4 until the end of the table of last character

occurrences

Step 4: [calculate the difference between the last and first

character occurrence]

Case 1: difference > n – 1

Update the index of the table of first

character occurrence

 Go to step 3

 Case 2: difference < n – 1

Update the index of the table of last character

occurrence

 Go to step 3

 Case 3: difference = n – 1

 Match()

Update the indices of both tables of first and

last character occurrence

 Go to step 3

Step 5: [finish]

 return

In the above algorithm, once we find the probability of occurrence

of a pattern in the given input text, we perform an exact pattern

matching by comparing the remaining characters of the pattern

sequentially with the characters of the given input text.

3. IMPLEMENTATION
The DP algorithm for multiple pattern matching requires a

preprocessing of the given input text to prepare a table of the

occurrences of the 256 member ASCII character set. This table is

used to find the probability of having a match of the pattern in the

given input text, which reduces the number of comparisons,

improving the performance of the pattern matching algorithm. The

probability of having a match of the pattern in the given text is

mathematically proved.

3.1 Mathematical Proof
Here, we get the occurrences of the first and the last characters

of the given pattern from the already pre-computed 256 member

ASCII character set. If the difference between any two

occurrences of the last and the first characters of the pattern in the

pre-computed table is less than the size of the pattern by one,

then, it is taken as one probability for occurrence of an exact

pattern match.

Let, x, be the given text of size m and y, be the given pattern

of size n, where m ≥ n. Let us assume that, ,

is an array, in which, , represents the occurrences

of the first character of the given pattern, y, from the pre-

computed 256 member ASCII character set, where,

. Similarly, , is an array, in

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

39

which, , represents the occurrences of the last

character of the given pattern, y, from the pre-computed 256

member ASCII character set, where, .

We know that,

y[1] = the position of the first character in the pattern

y[n] = the position of the last character in the pattern

then, the offset between the last character and the first character in

the pattern is:

 (1)

Now, from the pre-computed table,

If A[i] = ai = one of the positions of the first character of the

pattern in the given input text then the position of the last

character of the pattern in the given input text in case of exact

pattern match must be:

 (2)

Let, if b[j] = one of the positions of the last character of the

pattern in the given input text then,

 (3)

From equations (2) & (3), we get

Substituting equation (1), we get

 (4)

Hence, we proved that, any condition which satisfies with the

equation (4), is a probability of occurrence of a pattern.

3.2 Description
Let us assume that the example text and patterns are as in Fig 1.

The table of occurrences of the first and last characters of the

pattern in the given input text will be obtained from the pre-

computed 256 member ASCII character set. After the pre-

processing phase a search phase begins, where we use Search

algorithm as given in the methodology, to find the probability of a

pattern match. Here, we get three possibilities:

Possibility 1: B[j] – A[i] > one less than the size of the pattern,

i.e., n-1, where j ≥ i at all times

From the table, we have: B[j] = 16 and A[i] = 12. Hence, the

condition given in possibility 1 is satisfied. This specifies that

there is no possibility of having an occurrence of the pattern in the

given input text at the current location. Hence, the index, i, is

incremented to search for the next possibility.

Possibility 2: B[j] – A[i] < one less than the size of the pattern,

i.e., n-1, where j ≥ i at all times

From the table, we have: B[j] = 16 and A[i] = 15 as the index

variables, i, was incremented two times in the possibility 1.

Hence, the condition given in possibility 2 is satisfied. This

specifies that there is no possibility of having an occurrence of the

Fig. 1 The example text and pattern with the table of

occurrence of the first and the last characters of the pattern in

the given input text.

pattern in the given input text at the current location. Hence, the

index, j, is incremented to search for the next possibility.

Possibility 3: B[j] – A[i] = one less than the size of the pattern,

i.e., n-1, where j ≥ i at all times

From the table, we have: B[j] = 20 and A[i] = 18 as the index

variable, i and j, were incremented in the possibilities 1 and 2.

Hence, the condition given in possibility 3 is satisfied. This will

be taken as a probability of occurrence of a pattern in the given

input text at the current location and then execute the algorithm,

Match(), which finds whether the pattern exists in that place or

not by comparing the remaining character of the given pattern

with the character in the given input text sequentially. In this

example, here, we find the pattern. Index variables, i and j, are

incremented to search for the next possibility.

4. RESULTS AND ANALYSIS
We have implemented and tested the novel DP algorithm for

multiple patterns matching using object oriented programming

with Java and the results are as below.

4.1 Tests with Repeated Characters
The input text and the patterns are either taken with the same

character or with the repeated set of characters. It provides the

worst case situation for the pattern matching algorithm. A text of

size 1024 bytes was taken as given below and tested with the

multiple patterns as shown in the table 1.

“agaacgcagagacaaggttctcattgtgtctcgcaatagtgttaccaactcgggtgcctattg

gcctccaaaaaaggctgttcaacgctccaagctcgtgacctcgtcactacgacggcgagtaa

gaacgccgagaaggtaagggaactaatgacgcgtggtgaatcctatgggttaggatcgtgtct

accccaaattcttaataaaaaacctaggacccccttcgacctagactatcgtattatggacaagc

tttaactgtcgtactgtggaggcttcaaaacggagggaccaaaaaatttgcttctagcgtcaatg

aaaagaagtcgggtgtatgccccaattccttgctgcccggacggccaggcttatgtacaatcc

acgcggtactacatcttgtctcttatgtagggttcagttcttcgcgcaatcatagcggtacttcata

atgggacacaacgaatcgcggccggatatcacatctgctcctgtgatggaattgctgaatgcg

caggtgtgaatactgcggctccattcgttttgccgtgttgatcgggaatgcacctcggggactgt

tcgatacgacctgggatttggctatactccattcctcgcgagttttcgattgctcattaggctttgc

ggtaagtaagttctggccacccacttcgagaagtgaatggctggctcctgagcgcgtcctccg

tacaatgaagaccggtctcgcgctaaatttcccccagcttgtacaatagtccagtttattatcaaa

Text:

… … a b a b b C a b a c …

 11 12 13 14 15 16 17 18 19 20

Pattern1:

b a c

Table[]:

A[] … 12 14 15 18 …

B[] … … 16 20 … …

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

40

gatgcgacaaataaattgatcagcataatcgaagattgcggagcataagtttggaaaactggg

aggttgccagaaaactccgcgcctactttcgtcaggatgattaagagtatcgaggccccgccg

tcaataccgatgttcttcgagcgaataagtactgctattttgcagaccctttgccaggccttgtcta

aaggtatgttacttaatattgacaatacatgcgtatggccttttccggttaactccctg”

TABLE 1: Patterns with their sizes

S. No. Pattern
Size

(bytes)

1 A 1

2 AG 2

3 CAT 3

4 AACG 4

5 AAGAA 5

6 AAAAAACG 8

7 TTCTTAATAAAA 12

8 GGCTGTTCAACGCTCC 16

The results were compared with the BM algorithm and the

Quick Search algorithm and are shown in the table 2 and also

plotted in the graph as shown in the Fig. 2. The performance of

DP algorithm has been improved with respect to the BM

algorithm with 2.8%~74.71% and the Quick Search algorithm

with 3.86%~74.71%.

TABLE 2: Comparison with BM and QS algorithms

Patterns

Occurr

-ences

(respec

t-ively)

Character

Comparisons
Least

BM* QS* DP

A 259 1024 1024 259
259

DP

A, AG 259, 52 1758 1676 711
711

DP

A, AG, CAT
259, 52,

11
2399 2283 1228

1228

DP

A, AG, CAT,

AACG

259, 52,

11, 4
2909 2787 1754

1754

DP

A, AG, CAT,

AACG, AAGAG

259, 52,

11, 4, 2
3282 3153 2281

2281

DP

A, AG, CAT,

AACG,

AAGAG,

AAAAAACG

259, 52,

11, 4, 2,

0

3554 3529 2831
2831

DP

A, AG, CAT,

AACG,

AAGAG,

AAAAAACG,

TTCTTAATAA

AA

259, 52,

11, 4, 2,

0, 1

3731 3729 3398
3398

DP

A, AG, CAT,

AACG,

AAGAG,

AAAAAACG,

TTCTTAATAA

AA,

GGCTGTTCAA

CGCTCC

259, 52,

11, 4, 2,

0, 1, 0

4041 4086 3928
3928

DP

*preprocessing is required for every pattern before search with

respect to that pattern in using BM and QS algorithms, where as

pre-processing phase is required only once in case of DP

algorithm.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8

DP BM Quick Search
No. of patterns

ch
a

ra
ct

e
r

co
m

p
a

ri
so

n
s

Fig. 2 The Performance of DP algorithm with Repeated

characters

4.2 Tests with an English Text and Random

Patterns:
A text of size 1024 bytes was taken as given below and tested

with the multiple patterns as given in the table 3.

“patternmatchingisoneofthebasicandmostimportantissuesintherese

archareasofcomputersciencethemeaningofthepatternmatchingisthat

findingtheoccurrencesofagivenpatterninthegiventextpatternmatchi

ngisoneofthemajorissuesintheareaofnetworksecurityandalsoinman

yotherareastheincreaseinnetworkspeedandtrafficmaycausetheexisti

ngalgorithmstobecomeaperformancebottleneckthereforeitisveryne

cessarytodevelopmoreefficientpatternmatchingalgorithminorderto

overcometroublesonperformancethereareseveralalgorithmsinusein

whichdpalgorithmisyieldinggoodresultsinmanycaseshoweverthisal

gorithmwasproposedonlyforthesinglepatternmatchingbutnowaday

sitispatternmatchingisoneofthebasicandmostimportantissuesinther

esearchareasofcomputersciencethemeaningofthepatternmatchingis

thatfindingtheoccurrencesofagivenpatterninthegiventextpatternmat

chingisoneofthemajorissuesintheareaofnetworksecurityandalsoinm

anyotherareastheincreaseinnetworkspeedandtrafficmaycausetheexi

stingalgorithmstobecomeaperformancebottleneckthereforeitisvery

necessarytodevelopmoreefficientpatte”,

TABLE 3: Patterns with their sizes

S. No. Pattern
Size

(bytes)

1 H 1

2 OF 2

3 AND 3

4 MOST 4

5 GIVEN 5

6 MATCHING 8

7 PATTERNMATCH 12

8 ONEOFTHEBASICAND 16

The results obtained by using DP algorithm for multiple

patterns matching were compared with that of the BM algorithm

and the Quick Search algorithm and are shown in the table 4 and

also plotted in the graph as shown in the Fig. 2.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

41

TABLE 4: Comparison with BM and QS algorithms

Patterns

Occurr-

ences

(respect-

ively)

Character

Comparisons
Least

BM* QS* DP

H 48 1024 1024 48
48

DP

H, OF 48, 12 1571 1440 133
133

DP

H, OF, AND 48, 12, 6 1963 1787 233
233

DP

H, OF, AND,

MOST

48, 12, 6,

2
2295 2054 375

375

DP

H, OF, AND,

MOST,

GIVEN

48, 12, 6,

2, 4
2587 2292 495

495

DP

H, OF, AND,

MOST,

GIVEN,

MATCHING

48, 12, 6,

2, 4, 8
2812 2506 595

595

DP

H, OF, AND,

MOST,

GIVEN,

MATCHING,

PATTERNMA

TCH

48, 12, 6,

2, 4, 8, 8
3028 2732 738

738

DP

H, OF, AND,

MOST,

GIVEN,

MATCHING,

PATTERNMA

TCH,

ONEOFTHEB

ASICAND

48, 12, 6,

2, 4, 8, 8,

2

3173 2907 850
850

DP

*preprocessing is required for every pattern before search with

respect to that pattern in using BM and QS algorithms, where as

pre-processing phase is required only once in case of DP

algorithm.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

DP BM Quick Search

ch
a

ra
ct

e
r

co
m

p
a

ri
so

n
s

pattern length

Fig. 3 The performance of DP algorithm with an English Text

and Random Pattern

The performance of DP algorithm has been improved with

respect to the BM algorithm with 73.21%~95.31% and the Quick

Search algorithm with 70.76%~95.31%.

4.3 Tests with English Text and Random

Patterns (Unsuccessful Search):
In this case, we have taken a set of patterns as an example,

which leads to an unsuccessful search as given in the table 5 and a

text as in the case of tests with English text and random patterns.

TABLE 5: Patterns with their sizes

S. No. Pattern
Size

(bytes)

1 Z 1

2 QE 2

3 ZOO 3

4 ZYLO 4

5 QUEUE 5

6 QUESTION 8

7 ZEROXANSWERS 12

8 QUESTIONONANSWER 16

The results obtained by using DP algorithm for multiple

patterns matching were compared with that of the BM algorithm

and the Quick Search algorithm and are shown in the table 6 and

also plotted in the graph as shown in the figure Fig. 2.

Here, irrespective of the sizes of the patterns and the texts, the

number of character comparisons is zero. For example, if either

the first and/or the last characters of the patterns are not present in

the given input text, then certainly, there is no possibility of

having an occurrence of the pattern in the given input text. In this

case, the performance of DP algorithm for multiple patterns

matching is 100% better than the BM algorithm and the Quick

Search algorithm. However, if both the first and the last characters

of the pattern are present in the given input text, then the search

case will be as in the second case, i.e., tests with English text and

random patterns.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

DP BM Quick Search

pattern length

ch
a

ra
ct

e
r

co
m

p
a

ri
so

n
s

Fig. 4 The performance of DP algorithm with an English Text

and Random Pattern (Unsuccessful Search)

TABLE 6: Comparison with BM and QS algorithms

Patterns

Occurr-

ences

(respect-

ively)

Character

Comparisons
Least

BM* QS* DP

Z 0 1024 1024 0 0 DP

Z, QE 0 1609 1395 0 0 DP

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

42

Z, QE, ZOO 0 1975 1664 0 0 DP

Z, QE, ZOO,

ZYLO
0 2247 1889 0 0 DP

Z, QE, ZOO,

ZYLO,

QUEUE

0 2493 2079 0 0 DP

Z, QE, ZOO,

ZYLO,

QUEUE,

QUESTION

0 2682 2250 0 0 DP

Z, QE, ZOO,

ZYLO,

QUEUE,

QUESTION,

ZEROXANSW

ERS

0 2816 2365 0 0 DP

Z, QE, ZOO,

ZYLO,

QUEUE,

QUESTION,

ZEROXANSW

ERS,

QUESTIONO

NANSWER

0 2935 2486 0 0 DP

*preprocessing is required for every pattern before search with

respect to that pattern in using BM and QS algorithms, where as

pre-processing phase is required only once in case of DP

algorithm.

The time complexity of DP algorithm is directly proportional

to the total number of occurrences of the first and the last

characters of the pattern in the given input text.

5. CONCLUSION
We presented a Novel Devaki-Paul Multiple Pattern Matching

Algorithm with a simple logic which is very easy to implement.

We evaluated its performance with different texts and various set

of patterns. The results were proved that the performance of the

DP algorithm is greater than BM algorithm with 33%~91% and

Quick Search algorithm with 37%~85%, in most of the cases. In

case of unsuccessful search, the DP algorithm has zero character

comparisons with irrespective of the size of the text and pattern,

provided if either the first or the last character was not present in

the given input text. In this case, the performance of the DP

algorithm has been improved by 100%. The algorithm requires a

pre-processing of the given input text only once before the search

phase. It doesn’t require further pre-processing phase for every

pattern to search in the same given input text. The time

complexity of the DP algorithm is directly proportional to the

total number of occurrences of the first and the last characters of

the patterns in the given input text.

6. ACKNOWLEDGMENTS
We thank Mr. R. S. Boyer and J. S. Moore for their research in

single pattern matching. We thank also to the other experts/

researchers who have contributed their research towards the

innovative ideas/algorithms in the area of pattern matching.

We thank our colleagues and others who contributed towards the

development of this paper.

7. REFERENCES
[1] Devaki Pendlimarri and Paul Bharath Bhushan Petlu: “Novel

Pattern Matching algorithm for Single Pattern Matching”,

(IJCSE) International Journal on Computer Science and

Engineering, Vol. 02. No. 08. 2010, 2698-2704.

[2] Knuth D, J. Morris and V. Pratt: “Fast Pattern Matching in

String”, SIAM J. Computing 6(1977) 323-350.

[3] M. Fisk, and G. Varghese: “Fast content-based packet

handling for intrusion detection”, UCSD Technical Report

CS2001-0670, May 2001

[4] U. Manber: “Finding Similar Files in a Large File System”,

USENIX Winter 1994 Technical Conference, San Fransisco

(January 1994), pp 110.

[5] U. Manber and S. Wu: “GLIMPSE: A Tool to search through

entire file systems”, USENIX Winter 1994 Technical

Conference, San Fransisco (January 1994).

[6] Wu S., and U. Manber: “Agrep – A Fast Approximate

Pattern-Matching Tool”, USENIX Winter 1992 Technical

Conference, San Francisco (January 1992), pp 153 162.

[7] Wu S., and U. Manber: “Fast Text Searching Allowing

Errors”, Communications of the ACM 35 (October 1992), pp

83 91.

[8] R. S. Boyer and J. S. Moore: “A fast String Searching

algorithm”, Communications of the ACM, Vol 20, no. 10,

pp. 762-772, 1977.

[9] C. Charras and T. Lecroq: “Exact string matching

algorithms”, http://www.igm.univ-mlv.fr/~lecroq/string/,

1997.

[10] M. Fisk and G. Varghese: “An analysis of fast string

matching applied to content-based forwarding and intrusion

detection”, Technical Report CS2001-0670 (updated

version), 2002.

[11] M. Crochemore, C. Hancart: “Pattern Matching in

Algorithms and Theory of Computation Handbook”, CRC

Press Inc. Bocaaton, FL. 1999.

[12] Knuth, D. and J. Morris, V. Pratt, “Fast pattern matching in

strings”, SIAM J. Computing 6(1977) 323-350.

AUTHORS PROFILE

Pendlimarri Devaki, received MCA degree from S. V.

University, Tirupati, India, in 2000. She is pursuing project of M.

Tech. degree final semester in Computer Science and Engineering

in Jawaharlal Nehru Technological University, Kakinada, India.

Her main area of interests in research is intrusion detection,

network security and data mining.

Paul Bharath Bhushan Petlu, received MCA degree from S. V.

University, Tirupati, India, in 2000. He has been received the M.

Tech. degree in Computer Science and Engineering from Sam

Higginbottom Institute of Agriculture, Technology and Science –

Deemed University, India in 2004. His main area of interests in

research is network security and data mining.

Dr. Ramesh Babu Satrasala, received B.E. (Electrical) degree

from Osmania University, Hyderabad, India in 1979. He also

received M. Tech. (Plant Engineering and Management) degree

from Jawaharlal Nehru Technological University (JNTU),

Hyderabad in 1983. He received doctorate degree Ph. D. from

Allahabad University, Allahabad, India in 2009. His main area of

interests in research is intrusion detection and network security.

