
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

25

Security Requirements Engineering – A Strategic
Approach

Chandrabose A
Research Scholar

Madurai Kamaraj University
Madurai, India

Dr Alagarsamy K
Associate Professor

Madurai Kamaraj University
Madurai, India

ABSTRACT
Although security requirements engineering has recently

attracted increasing attention, it has lacked a context in which

to operate. A number of papers have described how security

requirements may be violated, but apart from a few hints in

the general literature, none have described satisfactorily what
security requirements are.

This paper proposes a strategy which unifies the concepts of

the two disciplines of requirements engineering and security

engineering. From requirements engineering it takes the

concept of functional goals, which are operationalized into

functional requirements, with appropriate constraints. From

security engineering it takes the concept of assets, together

with threats of harm to those assets. Security goals aim to

protect from those threats, and are operationalized into

security requirements, which take the form of constraints on
the functional requirements.

In addition we explore the consequences of the fact that

security is concerned with the protection of assets, while

computers only provide interfaces. We show how to specify

the relationship between security requirements and the

specification of software behavior, using Jackson's Problem
Frames approach.

Keywords
Security Requirements, Problem frames, Requirements

Engineering, Non-functional Requirements

1 INTRODUCTION

1.1 Motivation
Although security requirements engineering has recently

attracted increasing attention, it has lacked a context in which

to operate. This lack was pointed out in [1], where he presents

three generations of security design methods: checklists;

mechanistic engineering methods; and integrated design.

Unfortunately he was unable to point to any examples of

integrated design methods that were used in practice. His

comments apply to design, but it is also true today that there is

no satisfactory integration of security requirements

engineering into requirements engineering as a whole. In this

section we review existing literature, in order to show the

truth of this statement, and then motivate the remainder of the

paper by showing why it matters.

1.2 Previous Work on Security

Requirements
Extensive work has been carried out on security requirements

during the last few years. [2] point out the importance of

considering security requirements in the development life

cycle, but does not show how to integrate them with other

requirements. [3] shows how the SCR method can be used to

specify and analyze security properties, without giving the
criteria for distinguishing them from other system properties.

A number of papers have focused on security requirements by

describing how they may be violated. For example, [4],

followed independently by [5] and elaborated by [6], describe

abuse and misuse cases, extending the use case paradigm to

undesired behavior. [7] describe a method of analyzing

possible illicit use of a system, but omit the important initial

step of identifying the security requirements of the system
before attempting to identify their violations.

[8] use the concept of security goals, and describe obstacles in

the KAOS method, which prevent security goals from being

met, but they do not then take the further step of defining

security requirements at the same level as operationalized

KAOS functions. [9] use the GBRAM method to

operationalize security goals for the generation of security

policies and requirements, but also do not define security
requirements.

None of the above defines what security requirements are. On

the other hand, when discussing non-functional requirements

(NFRs), [10] defines NFRs as "restrictions or constraints" [on

system services] and similar definitions can be found in other

text books. Security requirements are an instance of NFR, and

our view is identical to that of Kotonya; they are requirements
for constraints on system functions.

[11] appears to take a similar view, stating "security

requirements mostly concern what must not happen".

1.3 The Importance of Security

Requirements
It is important to know what security requirements are,

because the issue of their definition in actual applications is

not trivial. Consider the description of a clinical information

system in [12]. The report presents a view of the security

goals of a Clinical Information System from the point of view

of the doctors. It makes explicit assumptions that the doctors

should have control of the system, while the administrators

should be subordinate. It is well known that, in many health

services, there is a power struggle between doctors and

administrators. In a hypothetical system in which that power

struggle has not been resolved, we can consider two

hypothetical sets of candidate security requirements. In set 1,

proposed by the doctors, some actions are considered

legitimate for doctors, but prohibited for administrators. In set

2, proposed by the administrators, the situation is reversed;

some actions that would have been legitimate by the standards

of report 1 are security violations, and vice versa. It cannot be

left to the implementers to resolve conflicts between points of

view; a requirements document must state unambiguously

what is to be allowed or prohibited to whom; i.e. what are the

constraints that are to be imposed on the use of functions of

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

26

the system. Only then can we analyze the requirements for
misuses or abuses.

1.4 Outline of Approach
We propose a strategy which unifies the concepts of the two

disciplines of requirements engineering and security

engineering. From requirements engineering it takes the

concept of functional goals, which are operationalized into

functional requirements, with appropriate constraints. From

security engineering it takes the concept of assets, together

with threats of harm to those assets. Security goals aim to

protect assets from those threats, and are operationalized into

security requirements, which take the form of (a subset of) the

constraints on the functional requirements.

2. THE STRATEGY
We illustrate our strategy in figure 1, which is a UML class

diagram showing its structure. The strategy is a meta-model,

in the spirit of the KAOS conceptual model [13].

2.1 Requirements Engineering Concepts
On the left-hand side of figure 1 we represent, in simplified

terms, some generally accepted concepts of requirements

engineering. A business has goals, some of which can

naturally be described as functional goals, i.e. to carry out

some business task. There are also nonfunctional goals

(NFGs) as described in, e.g. [10]. Examples are reliability,

usability, safety and, of course, security. We mention non-

security NFGs for completeness, but do not attempt to treat

them in this paper.

The right- hand side of the diagram is best described in terms

of a security risk analysis and management process. See [14]

for more detail on security risk analysis and management

processes.

In this section we outline existing requirements engineering

concepts, which we find useful in our discussion. We have felt

free to approximate where precision is not critical for our

argument; for example, we use the terms function, operation
and system service interchangeably.

2.1.1 Goals and Requirements
Any organization has a number of goals, which drive and

control the business, and are stated at a high level. Some of

these, e.g. the articles of association of a limited company,

define the general activities of the organization, and there are

usually more detailed goals stated in policy documents, which

describe these activities more precisely. We call these

functional goals.

Functional goals are refined, using an approach such as

KAOS, until they are made operational, as functions to be

performed by agents. We call these functional requirements.

These functional requirements may have constraints on them,

where a constraint is a limitation of the freedom of

performance of a function. In addition to the examples of

constraints that support security, which we will give below,

other examples of constraint on a function are: a requirement

to complete a function within a specified time, in support of a

performance requirement; and a requirement to present a
function through a GUI, in support of a usability requirement.

2.1.2 Twin Peaks
The concept of "twin peaks", described in [15], emphasizes

that requirement and design cannot be separated. Analysis of a

requirements specification will lead to a design proposal, and

analysis of the design will show the need for further

requirements. Thus, as the development process progresses,

what started as a small amount of detail within the

requirements and design specifications, will broaden out as

detail is added.

2.1.3 A Multi-domain Approach
There is ample evidence that security has to be considered in

every relevant domain. It is not by chance that Kevin Mitnick,

the arch-hacker of recent times, whose exploitation of IP

spoofing and other weaknesses in the TCP/IP protocols has

given rise to a whole new generation of technical attacks, has
written a book on Social Engineering [16].

His attacks illustrate the exploitation of vulnerabilities arising

from a combination of the properties of human (procedural),

physical and software domains.

Michael Jackson's work on Problem Frames [17] has enabled

us to articulate a multi-domain approach. Requirements are

about what happens in the world, while software

specifications only deal with interfaces. As we emphasize

below, security is about protecting real-world assets, while

many security techniques are expressed entirely in terms of

the behavior of software. So problem frames are an essential
element in our exposition of security requirements.

In one respect we differ from Jackson, not because we believe

that his approach to his chosen problem area is wrong, but

because our concerns are different. He explicitly regards the

Machine as the optative3 target of specification, and all other

domains as indicative. As we shall show in our discussion of

our simple example, we do not take this approach. All kinds

of security constraint – physical, procedural and software-

based – need to be considered, and probably used in
combination.

A consequence of this is that we use Jackon's biddable

domains (usually, people) in their true dictionary meaning:

"docile; obedient". We accept that they lack "positive

predictable causality … the most that can be done is to issue

instructions to be followed", but in the security world this is

true of computers as much as it is of people. Both computers

and people can be programmed or "trained to follow

stipulated procedures and can be expected to do so". Both

computers and people may fail to follow the procedures and

we must allow for this in our security design. This principle is

already well established in system safety engineering, see e.g.

[18] where a combination of physical, procedural and

software safety measures is used, taking into account the
likelihood of failure of any of them.

2.1.4 Multiple Domains and Security Principles
There are two principles (see, e.g. [19]) that should be obeyed

when designing for secure systems:

 Defense in Depth: it should always be assumed that

a constraint is fallible, so if one fails, another should

still prevent a successful attack on an asset.

 Diversity of Defense: Defense in Depth is more

likely to be successful if the defences that are used
are diverse in nature.

It is therefore desirable, whenever possible, to supplement

security measures of one kind with those of another; a

combination of physical, procedural and software security is

likely to be most effective. These principles reinforce the need
to take a multi-domain approach.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

27

3. SECURITY RISK ANALYSIS AND

MANAGEMENT
Security risk analysis and management are well-established

techniques, which were first developed in the 1960s, and have

since been refined and developed. Security risk analysis is

concerned with identifying and evaluating the risks to a

system, and security risk management then makes decisions

on appropriate security measures. It is illustrated in Figure 2.

The meanings of terms in this area are not universally agreed.

We will use the following

 Threat: Harm that can happen to an asset

 Impact: A measure of the seriousness of a threat

 Attack : A threatening event

 Attacker: The agent causing an attack (not

necessarily human)

 Vulnerability: a weakness in the system that makes

an attack more likely to succeed

3.1 Asset Identification
Security is about protecting assets from threats. This is an

important point, which has been taken on board more in the

area of safety than security. It has been observed that, in

safety critical systems, the computer never harms anyone; it is

the system as a whole, including an embedded computer,

whose malfunction causes harm. It is significant that Nancy

Leveson called her book [18] "Safeware", not "Safe

Software", even though a large part of it is concerned with
how computers can contribute to, or prevent, accidents.

Similarly, in security, the computer in the abstract can never

cause any harm. The assets that are affected by a computer

only have value in a real world context; a bit stream that is

leaked from a computer only does harm when it is information

in the hands of a human competitor or enemy, or if it causes

an ATM to put my currency notes into the hand of a thief. So,

in the same sense that there is no unsafe software, there is no

insecure software; there is only software which, together with

the environment in which it is embedded, protects assets or
exposes them to attacks.

The first step of a security risk analysis process, after deciding

on its scope, is the identification of all relevant assets, with

the aim of evaluating them. There are many types of asset
controlled by a system, including:

 Information

 Money

 Intangibles, such as an organization’s confidence

and public reputation.

The intangibles may be at least as important as the direct

assets; organizations have been destroyed by the loss of public
confidence that they have suffered from security incidents.

After performing asset identification, we have the Assets that

are at the top of the right-hand column of Figure 1. Our aim in

this process is to value, as well as to identify, assets, but we

cannot perform the valuation until we have identified the
relevant threats.

Figure 2 – Security Risk Analysis and Management

 Figure 1 – The Strategy

Assets Threats Vulnerabilities

Risks

Security Measures

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

28

3.2 Threat Identification & Asset Valuation
In security risk analysis, asset valuation is not a simple matter

of determining its market value. It is valued in negative terms,

by the amount of harm that would be caused if a particular

threat comes to pass. For each asset type, it is necessary to

identify the threats that apply. Thus for stored information

there are the following possibilities:

 Unauthorized exposure

 Unauthorized alteration

 Loss of availability.

How much impact (harm) will the business suffer if each of

these threats comes to pass? The size of the impact will

depend upon the nature of the business and the particular item

of information; the balance between exposure of information

and loss of availability of information will differ widely

between a commercial business system and a research

organization, for example.

For other asset types the only threat is loss, e.g. money or

reputation. It is clear that for many asset types, threat

valuation is a very approximate exercise and, although ideally

we wish to value in precise money terms, in practice it is

necessary to categorise, e.g. does this threat have a Low,

Medium or High impact on the organisation?

After performing threat identification and asset valuation, we

have the Threats, and the quantified Harm that they can cause

to Assets, as shown in Figure 1.

3.3 Priorities Vs. asset values
There is a need to reconcile the risk analysis approach of asset

valuation with requirements priorities. The requirements will

usually be classified by Priority, into classes such as Essential,

Useful and Nice-to-Have. By contrast, asset values (with

respect to security threats) have a different scale. The two

scales may need to be reconciled, but this creates no difficulty

in principle.

3.4 Vulnerability Analysis, Risk Assessment

and Security Measures
The remaining steps of the risk analysis and management

process are mainly, but not entirely, concerned with the

design and implementation stages of the life cycle. We
summarize them here.

3.4.1 Vulnerability Analysis
In this step we analyze a baseline system in order to identify

its vulnerabilities. For an existing system the baseline will be

that system, with its known security measures and

weaknesses. For development of a new system the baseline

will take into account the security facilities of the envisaged

infrastructure, and standard good practice. For each threat, the

baseline is analyzed in order to identify the vulnerabilities, i.e.

the means of exploiting a threat successfully. We assess levels

of likelihood of attempting, and of succeeding in an attack,

and combine them into an assessment of the importance of the

vulnerability.

3.4.2 Risk Assessment
Risk assessment combines the results of vulnerability analysis

with the impact valuation of threats to assets, and reaches an
overall conclusion about the level of risk to an asset.

3.4.3 Security Measures
There are several possible responses to risk

 Avoid it completely by withdrawing from an

activity

 Accept it and do nothing, if the risk level is trivial

 Reduce it with security measures.

There are a number of possible security measures that reduce

vulnerability

 Reduce likelihood of attempt, e.g. publicize security

measures in order to deter attackers

 Reduce likelihood of success by preventive

measures, e.g. access control, encryption, firewalls

 Reduce impact, e.g. use fire extinguisher / firewall

 Recovery measures, e.g. restoration from backup

 Risk Management identifies the possible security

measures, and decides which to choose, based on

two main principles:

 Ensure complete coverage

 The expenditure on security measures, and their

benefits, should be commensurate with the risks;

low risks do not justify high expenditure.

3.4.4 Comment on the Security Risk Analysis and

Management Process
The process that is outlined above has served several

generations of security professionals well, but has been

overtaken by advances in software engineering. In particular,

the stages of Vulnerability Analysis, Risk Assessment and

Security Measures can be distributed across several stages of

the development life cycle, as discussed below. However, the

Asset and Threat stages remain valid and useful.

4. SECURITY GOALS
The traditional security risk analysis and management process

took us satisfactorily as far as the identification of assets and

their valuation against threats but, surprisingly, it does not

include the concept of security goals. The next step in our

strategy is the identification of security goals, in order to

define, at a high level, what we are aiming at to achieve

security.

This is a simple step; each threat needs to be inverted to

become a goal, by inserting "protection from":

 The threat of unauthorized exposure is converted to

the goal of protection from unauthorized exposure,

commonly known as Confidentiality

 The threat of unauthorized alteration is converted to

the goal of protection from unauthorized alteration,

commonly known as Integrity

 The threat of loss of availability is converted to the

goal of Availability.

This is a simple step, but it is important because it converts

our security concerns into a form that is compatible with the

other requirements of an organization, which is an essential

step if we are to integrate security requirements into the

mainstream process.

We now have the third box in the right hand column of

Figure.1.

4.1 Other Security Goals
There are of course other security goals, such as aspects of

authentication, which derive directly from other threat types,

but are not discussed here because they are not needed for our

main argument. More important, in our meta-model we are

representing security goals as the inverse of threats. We are

leaving it as an open question at present whether there are

other security goals, which are not the inverse of threats. For

example, is Anonymity a separate goal, or is it better regarded

as a means of achieving a goal such as Confidentiality? Work

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

29

on understanding the goals of Anonymity will be required to
answer that question.

4.2 The Source of Security Goals
Where do security goals come from? The obvious source is as

described above, from threats to an organization’s assets, e.g.

a bank's goal not to lose its own money.

However, they may arise indirectly from other goals. An

example of this is a bank's goal to maintain a good reputation.

A necessary condition is that it should be able to demonstrate

its commitment to protect its customers' money, in addition to

its own. Therefore there is a derived goal, which depends

upon the bank's Reputation goal, of protecting customers'

money. So, eliciting security goals cannot be done from a

narrow security perspective; all of the organization’s main

goals have to be taken into account.

4.3 Characteristics of Security Goals
An organization’s security goals have some characteristics

which make them harder to manage than functional goals:

 They cannot be immediately discharged by the

specification of requirements, but have to be re-

interpreted at each iteration of the design.

 They may interact with each other.

4.3.1 Security Goals are not discharged by

Security Requirements
At every iteration between requirements and design, whenever

a new functional requirement is introduced it must be

evaluated against the security goals and appropriate security

constraints introduced.

For example, although some constraint may be necessary to

achieve the Confidentiality goal, it is not by itself sufficient

for the purpose. We will assume that there is also an

Availability goal to be achieved, and that one of the means of

achieving Availability is to perform regular data backups. A

backup functional requirement will be introduced at a later

iteration of our requirement. This implies in practice that a

copy of the information exists that can be read using a

function that has not been defined in our requirements.

Unconstrained use of this function can violate the

Confidentiality goal, and therefore there will need to be a

security requirement that constrains it. At still later a level,

engineer's access to the Machine for maintenance purposes

can also provide access to the information, using yet another
function, which generates yet further security requirements.

The original security goal has not changed, but at each

iteration of the requirements, as additional functions are

introduced, additional security requirements to constrain the

use of those functions are added.

4.3.2 Security Goals Interact
Security goals interact. For example, it might be decided to

introduce an encryption function in order to achieve

Confidentiality. This is a new function for the system, and its

use must be evaluated against all the security goals. One of

those goals is Availability, and analysis shows that

Availability is threatened by the loss of a secret key.

Therefore further measures need to be taken to ensure that the

Availability goal is still met, either by ensuring that the secret

key is always available or by reconsidering the design
decision.

5. SECURITY REQUIREMENTS
We define security requirements to be the constraints, on

functional requirements, that are derived from security goals.
A simple example is:

The system shall not display salary information except to

members of Human Resources Dept.

There may also be temporal constraints:

The system shall not display salary information outside

normal office hours; and complex constraints on traces:

The system shall not display information about an

organization to any person who has previously accessed

information about a competitor organization (the Chinese
Wall Security Policy, [20]).

Availability goals will need constraints on response time:

The system shall display salary information within 5 seconds
for 99% of requests.

This paper does not claim to provide a complete taxonomy of

constraints nor, since this is a strategy rather than a process or
method, does it attempt to mandate a specification language.

5.1 Why Define Security Requirements as

Constraints?
Note that we do not claim to be correct in defining security

requirements as constraints on functional requirements; we

are proposing a software engineering approach, not carrying

out scientific research. Our reasoning for proposing this as a

useful definition is as follows:

 Requirements specifications, in general, describe

the functions (or operations or services) to be

provided by a system.

 It is clearly desirable for the specification to

describe security requirements in a way that enables

them immediately to be related to the functions.

 Constraints upon functions are a natural way to do

this.

Other candidate forms for security requirements are:

 Security goals. Security goals are necessary as a

starting point, but they are more abstract than

functional requirements and it would be necessary

for the designer to carry out further work, possibly

dependent upon requirements domain knowledge

that he does not possess, in order to decide how the

security goals should constrain the functions.

 Security functions. A security function such as

encryption is part of the solution, and the

specification of security requirements in terms of

security functions may lead to a non-optimal design.

It appears to us that, in order to ensure that requirements

engineers and system designers each work within their

appropriate limits, the appropriate boundary between security

requirements engineering and security design is provided by

our proposal.

5.2 The Scope of Security Requirements
The scope of security constraints on functional requirements

must be global. They are not to be interpreted as constraining

any one statement of functional requirement, but of all

instances of that function. To illustrate this using a simple

example from the case study, assume that there are two

functional requirements, derived from two separate business

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

30

goals: for members of HR Dept to Display salary information;

and for Auditors to Display salary information. Since they are

derived from separate goals, the two functional requirements

must be kept separate, to enable traceability. However, an

additional prohibition, that staff who are suspended are

prohibited from Displaying salary information, must clearly

apply to both requirements, and to any other requirement for

this function.

5.3 How Are Security Requirements

Elicited?
In order to derive security requirements, each relevant

security goal needs to be examined for possible relevance, and

then operationalized constraints must be derived from it. We

could do this informally, but goal refinement methods such as

KAOS [13] provide a more methodical approach.

5.4 Are there any other Security

Requirements?
It is often stated that security is only as strong as its

weaknesses, and it is therefore important for it to be complete.

We must therefore ask whether, by specifying the constraints

on system functions, we have produced a complete set of
security requirements?

If we assume that we have a complete statement of the

organization’s security goals, and have taken them all into

account in deriving the constraints, then the answer is Yes. It

would be tempting to include another requirement for an

application: "and nothing else must happen" so as to ensure

that the designers do not assume that they need do nothing
else to ensure a secure system.

However, we have no means of expressing what we mean by

"nothing else", so we are expressing a general goal, rather

than providing a specification, and there should be no

statement to this effect as part of the specification. However,

we should recognize that the security goals have not been

discharged by the specification of constraints on system

functions; that is a necessary, but not sufficient, condition for
the achievement of the security goals.

This is a proper separation of concerns. To take an example

from the case study, the organization has a security goal of

Confidentiality of Personnel Information. If it is to achieve

this goal, then it will have to state security requirements on a

number of activities and domains, including securing the

engineer’s hardware interface and communications

infrastructure. By proposing a new application we have

introduced some additional functions by which the security

goal could be breached and the security requirements for the

new system is properly and completely expressed as

appropriate constraints on the functions. When the system

requirement results in a design, then the implementation of

that design may result in additional functions, adding ways in

which security goals could be violated, e.g. through the

engineer’s hardware interface or through a hacker intercepting
communications.

In order to achieve the organization’s security goals,

additional operational security requirements will need to be

derived, from the security goal, for the engineer’s system and

the communications infrastructure. So, our conclusion is that,

if the analysis has been done thoroughly, the security

constraints do constitute the complete set of security

requirements for the application as far as it is understood at

that point. However, the organization’s security goals are

never discharged until there is an implemented system, and

the security goals must be revisited whenever additional
functionality is proposed during the course of development.

6. ANALYZING SECURITY

REQUIREMENTS

6.1 Internal Analysis of Requirements

(Verification)
Security requirements are simply one kind of constraint, and

are therefore subject to the same kind of internal analysis as

any other kind of constraint. Taken as a whole are the

functional requirements and their associated constraints

complete and mutually consistent? For example, security
constraints can conflict with safety constraints.

This verification activity is not special to security

requirements, and we do not discuss it further.

6.2 External Analysis of Security

Requirements (Validation)
Even if internal analysis of the requirements has verified that

they are consistent, it is still necessary to validate them

against the organization’s security goals. In particular, will the
security constraints actually achieve the security goals?

We give a very simple example of the kind of analysis that

could be done at this stage. There is a security requirement

that People who are not members of HR Dept are prohibited

from displaying salary information. Analysis (in this case

informal) shows that this constraint does not prohibit a

member of HR Dept who is currently suspended, possibly

because of allegations of dishonesty, from displaying salary

information. One could argue that this contradicts the security

goal of Confidentiality. An additional security constraint, that

People who are suspended are prohibited from displaying
salary information, could therefore be added.

7. SECURITY REQUIREMENTS AND

SECURITY PROPERTIES
Security "properties" are often referred to, especially in formal

specifications, and we need to consider how they fit into this

strategy. Most security properties are expressed in terms of

constraints on traces of the behavior of a system, and this fits

in very well with our own view of security requirements as

constraints on the operations of a system. It emphasizes that

realistic security requirements are likely to be far more

complex than the simple constraints that we have used in this

paper.

Some security properties may, of course be expressed at a

lower level than system requirements, and it will only be

possible to discuss them at that lower level.

There are security properties, such as "no covert channels",

which do not conform to the constraint model. They are like

the "and nothing else must happen" requirement discussed

above, and we take the same view, that they are not a concern

for system security requirements, but must be addressed at a
design or implementation level.

8. CONSTRAINTS AND SECURITY

REQUIREMENTS
A set of requirements can contain many constraints on

functions, derived from a variety of goals, e.g. constraints

arising from all the other NFGs that are relevant to a system,

such as performance and reliability. If we examine a

constraint, such as the following, how do we know that it is a
security requirement?

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

31

The machine shall not display Salary Information except to

members of HR Dept. The answer is, we cannot identify this

as a security requirement from its contents alone. Why not?

Consider a hypothetical Payroll Information Display System

in an environment in which the honesty and discretion of all

users has never been in any possible doubt, so that the

organization has no need of any security goals at all.

However, it has a goal of

Comprehensibility, and the Payroll Information is so difficult

to understand that it is considered essential for all information

to be interpreted by members of HR Dept, rather than being

directly available to all users. Then, although there is no

Confidentiality goal, the constraint has been derived in order

to satisfy the Comprehensibility goal, and it would be

reasonable to call it a comprehensibility requirement, not a

security requirement. From this we conclude that any

particular constraint is identified as a security requirement by

the source goal from which it is derived, and not from its
contents.

9. SOFTWARE SECURITY

SPECIFICATIONS
It will be apparent from our argument so far that we do not

believe that there can be a software (or machine) security

specification independent of the software specification as a

whole. We take the view that security requirements are simply

one of many constraints on the functions of a system. The

functional aspects of a system requirements specification

consist of definitions of required behavior and constraints on

that behavior (plus traceability information). It is the job of a

designer to determine the optative properties of a software

machine and possibly of other domains, given his assumptions

about the indicative properties of relevant domains, in order to

satisfy all the requirements. Some of the properties of the

software will be specified to meet security requirements, but

that will not necessarily be apparent from the specification

itself. However, we can discover that a particular property

derives from a security requirement, by using traceability
information which provides the rationale for the design.

9.1 Security Functions
A security strategy discussion would not be complete without

a mention of security functions. Where do functions such as

access control, authentication, encryption, etc, fit in? Our

answer is that they are functions (full stop). We use the same

argument as for constraints discussed above. If the designer

includes a function in order to satisfy a security requirement

(i.e. derived from a security goal), then we could reasonably

describe it as a security function, but if that same function is

used to satisfy some other kind of goal, that is a different
matter.

Pursuing the example discussed above, if we have a

Comprehensibility requirement that only members of HR

Dept are permitted to read Payroll Information, and we decide

to implement that using authentication and access control

functions, then these functions should be described as

Comprehensibility functions. On the other hand, if they are

used in their more common role of supporting security
requirements, then we will call them security functions.

10. CONCLUSIONS AND FUTURE

WORK
This paper has set out a strategy for dealing with security

requirements, which has several features:

 Security requirements are derived from security

goals, and take the form of constraints on the
functions of a system.

 Security requirements are therefore automatically

integrated with the system’s functional requirements

and constraints derived from other sources. For

example, if Safety requirements are also defined in

terms of constraints on operations, security and

safety constraints are expressed in identical terms

and the analysis of their interaction is directly
possible.

 It is essential to define security requirements in

terms of the real- world assets of a system. Their

realization in software (and by physical and

procedural means also) must then be shown to
satisfy these requirements.

We claim that this strategic approach will help requirements

and security engineers to understand the place of the various

synthetic and analytical activities that have previously been

carried out in isolation. The strategy has raised a number of

issues, mentioned in the discussion, but we believe that it

provides a way forward to the effective co-operation of the
two disciplines of requirements and security.

As part of our future work, we plan to implement the strategy

in a case study and validate the claims made as a part of the
discussion.

11. REFERENCES
[1] Baskerville, R. (1993). "Information Systems Security

Design Methods: Implications for Information Systems

Development." ACM Computing Surveys 25(4): 375-

414.

[2] Lee, Y., J. Lee, et al. (2002). "Integrating Software

Lifecycle Process Standards with Seurity Engineering."

Computers & Security 21(4): 345-355.

[3] Heitmeyer, C. (2001). Applying `Practical' Formal

Methods to the Specification and Analysis of Security

Properties. Information Assurance in Computer

Networks (MMM-ACNS 2001), St. Petersburg, Russia,

Springer-Verlag.

[4] McDermott, J. and C. Fox (1999). Using Abuse Case

Models for Security Requirements Analysis. Annual

Computer Security Applications Conference, Phoenix,

Arizona.

[5] Sindre, G. and A. L. Opdahl (2000). Eliciting Security

Requirements by Misuse Cases. 37th International

Conference on Technology of Object-Oriented

Languages and Systems (TOOLS-PACIFIC 2000), IEEE

Computer Society Press.

[6] Alexander, I. (2002). "Misuse Cases in Systems

Engineering." Computing and Control Engineering

Journal 13(6): 289-297.

[7] Liu, L., E. Yu, et al. (2003). Security and Privacy

Requirements Analysis within a Social Setting. RE'03 -

11th IEEE International Requirements Engineering

Conference, Monterey Bay, CA, USA.

[8] van Lamsweerde, A. and E. Letier (2000). "Handling

Obstacles in Goal-Oriented Requirements Engineering."

IEEE Transactions on Software Engineering 26(10): 978-

1005.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.3, January 2011

32

[9] Antón, A. I. and J. B. Earp (2001). Strategies for

Developing Policies and Requirements for Secure E-

Commerce Systems. Recent Advances in E-Commerce

Security and Privacy. A. K. Ghosh, Kluwer Academic

Publishers: 29-46.

[10] Kotonya, G. and I. Sommerville (1998). Requirements

Engineering - Processes and Techniques, John Wiley.

ISBN 0 471 97208 8.

[11] Rushby, J. (2001). Security Requirements Specifications:

How and What? Symposium on Requirements

Engineering for Information Security (SREIS),

Indianapolis.

[12] Anderson, R. (1996). Security in Clinical Information

Systems. IEEE Symposium on Security and Privacy,

Oakland, CA.

[13] Dardenne, A., A. van Lamsweerde, et al. (1993). "Goal-

directed Requirements Acquisition." Science of

Computer Programming 20: 3-50.

[14] Peltier, T. (2001). Information Security Risk Analysis,

Auerbach. ISBN 0-8493-0880-1.

[15] Nuseibeh, B. A. (2001). "Weaving Together

Requirements and Architectures." IEEE Computer 34(3):

115-117.

[16] Mitnick, K. (2002). The Art of Deception: Controlling

the Human Element of Security, John Wiley & Sons Inc.

ISBN 0471237124.

[17] Jackson, M. (2000). Problem Frames: Analysing and

Structuring Software DevelopmentProblems, Addison

Wesley. ISBN 020159627X.

[18] Leveson, N. G. (1995). Safeware: System Safety and

Computers, Addison Wesley. ISBN 02011 19722.

[19] Zwicky, E. D., S. Cooper, et al. (2000). Building Internet

Firewalls, O'Reilly UK. ISBN 1565928717.

[20] Brewer, D. F. C. and M. J. Nash (1989). The Chinese

Wall Security Policy. IEEE Symposium on Security and

Privacy, Oakland, CA, IEEE Computer Society Press.

