
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

32

FIVE: A Real-Time Commit Protocol

Rabin Kumar Singh

Department of Computer & Engineering

M.M.M.Engg.College

Gorakhpur,India

Pradeep Kr. Baitha

Department of Computer & Engineering

M.M.M.Engg.College

Gorakhpur,India

Vishal Pathak

Department of Computer & Engineering
M.M.M.Engg.College

Gorakhpur,India

Dr. Udai Shanker
Department of Computer & Engineering

M.M.M.Engg.College
Gorakhpur,India

ABSTRACT

In recent years, numerous commit protocols have been proposed

for the lending of prepared data to the borrower in its commit

phase to overcome the problem of data inaccessibility, but few of

these considered the fruitful borrowing of this data. In this paper

we have proposed a new commit protocol for distributed real

time database systems (DRTDBS) by investigating lender-

borrower relation in detail and also considered such systems

which have combination of many non-healthy borrowers and

super-healthy borrowers. Fruitful lending of Incredible Value

added data without Extending abort chain (FIVE), which

considered all types of borrowers and lend the data in a fruitful

way and solve the problem of higher kill percentage of

transactions and we categorized the borrower cohorts as commit

and abort dependent. Further, the commit dependent borrowers

can lend data to executing cohorts with still limiting the

transaction abort chain to one only and reducing the data

inaccessibility. This minimizes the fruitless borrowing by the

cohort. The performance of FIVE is compared with ACTIVE,

PROMPT, 2SC and SWIFT protocols for both main memory

resident and disk resident databases without communication

delay for the soft real time distributed transactions.

Keywords

Distributed Real Time Database Systems (DRTDBS), Commit

Protocol, Conflict Resolution, Dependency, Lender, Borrower,

Modified-Borrow Factor (M-BF)

1. INTRODUCTION
Database systems are currently being used as backbone to

thousands of applications, which have very high demands for

availability and fast real-time responses. Today’s Real-time

database systems(RTDBS) operating on distributed data have to

contend with the well-known complexities of supporting

transaction ACID semantics in the distributed environment and

also data conflicts are one of the most important factors amongst

the transactions. Two kinds of conflicts between transactions

arise. One occurs between executing transactions, and can be

resolved by a concurrency control protocol to ensure distributed

transaction serializability; the other occurs between executing-

committing transactions, which can be resolved by a commit

protocol to ensure distributed transaction atomicity. Till now

limited work have been noticed in executing-committing

conflicts cases.

Database system plays a measure role in the present scenario, for

applications such as Chemical Plant Control, Multi Point Fuel

Injection System(MPFI), Video Conferencing, Missile Guidance

System etc., data is needed in real-time, and must be extremely

reliable and available in time as any unavailability or extra delay

could result in heavy loss. Many applications listed above using

DRTDBS require distributed transaction to be executed at more

than one site. To maintain consistency, a commit protocol

ensures that either all the effects of the transaction persist or

none of them. Failure of site or communication link and loss of

messages do not hamper the transaction processing. Commit

protocols must ensure that little overheads are laid upon

transactions during processing. So to solve this problem we need

to develop a better commit protocol for DRTDBS.

Numerous protocols have been proposed to solve these problems

of data conflictions. The two phase commit protocol (2PC)

referred to as the Presumed Nothing 2PC protocol (PrN) is the

most commonly used protocol in the study of DDBS. It ensures

that sufficient information is force-written on the stable storage

to reach a consistent global decision about the transaction. A

number of 2PC variants commit protocols have been proposed

and can be classified into main following four groups:

 Presumed Abort/Presumed Commit

 One Phase

 Group Commit

 Pre Commit/Optimistic

Soparkar et al. have proposed a protocol that allows individual

site to unilaterally commit. Gupta et al. proposed optimistic

commit protocol and its variants. Presumed commit (PC) and

presumed abort (PA) are based on 2PC. Enhancement has been

made in PROMPT commit protocol, which allows executing

transactions to borrow data in a controlled manner only from the

healthy transactions in their commit phase. However, it does not

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

33

consider the type of dependencies between two transactions. The

impact of buffer space and admission control is also not studied.

In case of sequential transaction execution model, the borrower is

blocked for sending the WORKDONE message and the next

cohort cannot be activated at other site for its execution. It will

be held up till the lender completes. If its sibling is activated at

another site anyway, the cohort at this new site will not get the

result of previous site because previous cohort has been blocked

from sending the WORKDONE message due to being borrower.

In shadow PROMPT, a cohort forks off a replica of the

transaction, called a shadow, without considering the type of

dependency whenever it borrows a data page.

Deadline-Driven Conflict Resolution (DDCR) protocol which

integrates concurrency control and transaction commitment

protocol for firm real-time transactions. DDCR resolves different

transaction conflicts by maintaining three copies of each

modified data item (before, after and further) according to the

dependency relationship between the lock requester and the lock

holder. This not only creates additional workload on the systems

but also has priority inversion problem. The serializability of the

schedule is ensured by checking the before set and the after set

when a transaction wants to enter the decision phase. The

protocol aims to reduce the impact of a committing transaction on

the executing transaction which depends on it. The conflict

resolution in DDCR is divided into two parts:

(a) resolving conflicts at the conflict time

(b) reversing the commit dependency

When a transaction, which depends on a committing transaction,

wants to enter in the decision phase and its deadline is

approaching.

To overcome the problem of DDCR, Pang C.-L. and Lam K. Y.

proposed an enhancement in DDCR called the DDCR with

similarity (DDCR-S) to resolve the executing-committing

conflicts in DRTDBS with mixed requirements of criticality and

consistency in transactions. In DDCR-S, conflicts involving

transactions with looser consistency requirement and the notion

of similarity are adopted so that a higher degree of concurrency

can be achieved and at the same time the consistency

requirements of the transactions can still be met. The simulation

results show that the use of DDCR-S can significantly improve

the overall system performance as compared with the original

DDCR approach. Y.Liu et al. proposed double space commit

(2SC) protocol which based On PROMPT and DDCR. They

analyzed and categorized all kind of dependencies that may occur

due to data access conflicts between the transactions into two

types commit dependency end abort dependency. The 2SC

protocol allows a non-healthy transaction to lend its held data to

the transactions in its commit dependency set.

Udai Shanker et al. proposed SWIFT protocol. In SWIFT, the

execution phase of a cohort is divided into two parts, locking

phase and processing phase and in place of WORKDONE

message, WORKSTARTED message is sent just before the start

of processing phase of the cohort. Further, the borrower is

allowed to send WORKSTARTED message, if it is only commit

dependent on other cohorts instead of being blocked as opposed

to PROMPT. This reduces the time needed for commit

processing and is free from cascaded aborts. However, SWIFT

commit protocol is beneficial only if the database is main

memory resident. Based on the SWIFT protocol, Dependency

Sensitive Shadow SWIFT (DSS-SWIFT) protocol was proposed,

where the cohort forks off a replica of itself called a shadow,

whenever it borrows dirty value of a data item, and if the created

dependency is abort type as compared to creating shadow in all

cases of dependency in Shadow PROMPT. Also the health factor

of cohort is used for permitting to use dirty value of lender rather

than health factor of transaction as whole.

U. Shanker et al. proposed ACTIVE to study the both disk

resident as well as data in memory and also lend the data based

on Borrow factor to solve the problem of data inaccessibility.

 In this paper we have proposed a new protocol FIVE-A Real

Time Commit Protocol, which allows lender to lend data

according the scenario at the time of lending data, which reduced

the kill percentage of transactions and also beneficial both for

main memory and disk resident databases.

2. BACKGROUND AND RELATED WORK

As deadline of transaction a play a significant role in the real-

time transactions. For the study of these type of transaction,

distributed real-time database system (DRTDBS) model used.

2.1 DRTDBS Model:

This model includes the description of its various components

such as network model, system model, database model, cohort

execution model; locking mechanism .The common model for

DRTDBS is given below in Figure-1. At each site, two types of

transactions are generated:

 global transactions

 local transactions

 Each global transaction consists of m cohorts, where m is less

than or equal to the number of database sites Nsite. We use the

same model for local and global transactions. Each local

transaction has a coordinator and a single cohort both executing

at the same site. Each transaction consists of Noper number of

database operations. Each operation requires locking of data

items and then processing.

2.1.1 Network Model

 All sites communicate via messages exchange over the

communication network because it has no global shared memory

in the system. Thus, a network manager models the behavior of

the communications network.

2.1.2 Cohort Execution Model

Distributed execution model can be categorized into two types,

as:

 sequential

 parallel

Sequential execution model consist at most one cohort of a

transaction at each execution site, and only one cohort can be

activated at a time. After the successful completion of one

operation, the next operation in the sequence is executed by the

appropriate cohort and at the end of the execution of the last

operation, the transaction can be committed. But in case of

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

34

parallel execution model, the coordinator of the transaction

spawns cohorts all together by sending a message to remote sites

with a request to activate the cohort, lists all operations to be

executed at that site and then all cohorts may start execution at

the same time in parallel. The assumption here is that a cohort

does not have to read from its sibling and operations performed

by one cohort during its execution are independent of the results

of the operations performed by the other cohorts at some other

sites. It shows that, the sibling cohorts do not have to require any

information from each other to share. Here we have considered

cohorts executing in parallel way.

2.1.3 System Model

Each site consists of a transaction generator, a transaction

manager, a concurrency controller, a CPU, a ready queue, a local

database, a communication interface, a sink and a wait queue.

The transaction generator is responsible for creating the

transactions independent to the other sites using Poisson

distribution with the given inter- arrival time. The transaction

manager generates cohorts on remote site on behalf of the

coordinator. Before a cohort performs any operation on a data

item, it has to go through the concurrency controller to obtain a

lock on that data item. If the request is denied, the cohort is

placed in the wait queue. The waiting cohort is awakened when

the requested lock is released and all other locks are available.

After getting all locks, the cohort accesses the memory and

performs computation on the data items. Finally, the cohort

commits/aborts and releases all the locks that it is holding. The

sink component of the model is responsible for gathering the

statistics for the committed or terminated transactions.

2.1.4 Database Model

This model is the collection of data items that are uniformly

distributed over all the sites. Transactions make requests for the

data items and concurrency control is implemented at the data

item level. No replication of data items at various sites is

considered here.

2.1.5 Locking Mechanism

A lock is a variable associated with a data item that describes the

status of the item with respect to possible operations that can be

applied to it. Locks are means for synchronizing the access of

concurrent transactions to the database items. When all locking

operations precede the first unlock operation in the transaction,

this locking technique said to be two-phase locking. There is a

number of variations of the two phase locking (2PL) such as

static two phase locking (S2PL) and dynamic two phase locking

(D2PL). The static 2PL (S2PL) requires a transaction to lock all

needed data items before the transaction begins execution, by

pre-declaring it’s read-set and write-set. If any of the pre-

declared data item cannot be locked, the transaction does not

lock any items; instead, it waits until all data items are available

for locking, after the execution will start.

2.1.6 Model assumptions

For the study of real-time transactions, in this paper following

assumptions used:

 A distributed real-time transaction is said to commit, if

the coordinator has reached to commit decision before

the expiry of the deadline at its site. This definition

applies irrespective of whether cohorts have also

received and recorded the commit decision by the

deadlines.

 Arrival of the transactions at one site is independent of

the arrivals at other sites and uses Poisson distribution.

 For locking the data items S2PL-HP is used.

 Processing of a transaction requires the use of CPU and

data items located at local or remote site.

 The updating of data items is made in transaction own

memory rather than in place updating.

 A lending transaction cannot lend the same data item in

read/update mode to more than one cohort to avoid

cascaded abort.

 The communication delay considered is either 0ms or

100ms to study the impact of the network delay on the

system.

 Each cohort makes read and update accesses.

 Studies have been made only for both main memory

and disk resident database.

 The cohorts are executed in parallel mode.

 Each transaction pre-declares its read-set (set of data

items that the transaction will only read) and update-

set (set of data items that the transaction will update).

3. 2SC COMMIT PROTOCOL

2SC allows two transactions to share the data by allowing a

transaction (borrower) to borrow the data from a transaction in

its commit phase (lender). Two types of dependencies created

when data items shared in conflicting mode:

 Commit dependency

 Abort dependency

Commit dependency (CD: If a transaction T2 updates a data

items read by another transaction T1, a commit dependency is

created from T2 to T1. Here, T2 is called as commit dependent

borrower and is not allowed to commit until T1 commits.

Abort dependency (AD): If T2 reads/updates data item that

is not updated by T1, an abort dependency is created from T2 to

T1 and T2 is called as abort dependent borrower. T2 aborts, if

T1 aborts and T2 is not allowed to commit before T1.

Here each transaction/cohort Ti, that lends its data while in

prepared state to an executing transaction/cohort Tj creates two

sets:

 Abort Dependency Set ADS

 Commit Dependency Set CDS

Commit Dependency Set CDS (Ti): set of commit

dependent borrower Tj that are borrowed dirty data from lender

Ti.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

35

Abort Dependency Set ADS (Ti): the set of abort

dependent borrower Tj that are borrowed dirty data from lender

Ti. These dependencies are required to maintain the ACID

properties of the transaction.

When T2 had accessed the locked data, three situations may

arise:

 Read–WRITE Conflict: If T2 requests a write-lock

while T1 is holding a read-lock a commit dependency

is defined from T2 to T1. First, the transaction id of

T2 is added to the CDS (T1). Then T2 acquires write

lock.

 Write-Write Conflict: If both locks are update locks, a

commit dependency is defined from T2 to T1. After the

transaction id of T2, is added to the CDS (T1), T2

acquires the write-lock.

 Write –Read Conflict. If T2 requests a read lock while

T1 is holding a update-lock, an abort dependency is

defined from T2 to T1. If HF(T1) Min-HF, the

transaction id of T2, is added to the ADS (T1) then T2

acquires the write-lock; Otherwise, If HF(T1) < Min-

HF, T2 is blocked.

Also when T2 had accessed the locked data, three situations may

arise:

Situation 1: T1 receives decision before T2 has completed its

local processing-

If the global decision is to commit, T1 commits. All transactions

in ADS (T1) and CDS (T1) will execute as usual and the set of

ADS (T1) and CDS (T1) will be deleted.

When decision is global to commit, T1 commits.

 All the cohorts in ADS (T1) and CDS (T1) will execute

as usual and the sets ADS (T1) and CDS (T1) are

deleted.

 In case the global decision is to abort, T1 will aborts.

The cohorts in the dependency sets of T1 will execute

as follows:

a. All cohorts in ADS (T1) will be aborted.

b. All cohorts in CDS (T1) will execute as usual.

c. Sets ADS (T1) and CDS (T1) are deleted.

Situation 2: T2 is going to start its processing phase before T1

receives global decision:

Here T2 is not allowed to send a WORKDONE message to its

lender and allowed to send a WORKSTARTED message to its

coordinator, if it is commit dependent only. It has to wait until:

 Either T1 receives its global decisions, or abort.

 Its own deadline expires, whichever occurs earlier.

In first case, the system will execute as in the Scenario 1. In

second case, T2 will be killed and will be removed from the

dependency set of T1. If, there is another cohort T3 has borrowed

dirty data from commit dependent borrower T2, T3 can not

commit until T2 terminates (i.e. Commits or aborts).

Situation 3: T2 aborts before T1 receives decision:

In this situation, T2’s updates are undone and T2 will be

removed from the dependency set of T1.

Each lender is associated with a health factor defined as follows:

 HF (health-factor) = Time-Left/Min-Time

 Where Time-Left is the time left to meet the transaction’s

deadline, and Min-Time is the minimum time required to

complete the commit processing. The health factor is computed

at the time when the coordinator is ready to send the YESVOTE

messages. Min-HF is the threshold that allows the data held by

committing transaction to be accessed. The variable Min-HF is

the key factor to influence the performance of the protocol. In our

experiments, we have taken Min-HF as 1.2, the value of Min-HF

used in PROMPT.

4. BORROWING CONCEPT AND

BORRROW FACTOR

To solve the problem of data inaccessibility some protocols

allows the committing transactions to lend data to the

transactions requesting data items held by that transactions. That

is prepared cohorts lend their uncommitted data to concurrently

executing transactions. This creates interaction between Lender

and Borrower and to avoid cascading abort because this lending

chain is limited to one. Also to find the borrower concept of

borrower factor is used. Therefore, for fruitful borrowing, an

incoming executing cohort having borrowing factor (BF) greater

than a threshold value must be permitted to borrow the dirty data

items from lender. Consider that transaction/cohort Ti that lends

its data items while in prepared state to an executing

transaction/cohort Tj, Here, Ti’s voting phase is over and has

entered in decision phase. The commit time (Ci) of Ti is the

mean time required for the decision phase. It includes the time

for sending the final commit message to the participating cohorts,

the time for writing the final decision into stable storage, the

time for permanently updating the data items for write operations

and the time needed for releasing the locks.

To control the deadline of a transaction we need estimated

runtime of a transaction and the parameter slack factor, which is

the mean of an exponential distribution of slack time. We

allocate deadlines to arriving transactions using the method given

below. The deadlines of global and local are calculated based on

their expected execution times. The deadline (Dj) of transaction

(Tj) is defined as:

 Dj = Aj + SF∗Rj

Where Aj is the arrival time of transaction (Tj) at a site; SF is

the slack factor and Rj is the minimum transaction response

time. As cohorts are executing in parallel, the Rj can be

calculated as:

 Rj = Rp + Rc

Where Rp used for total processing time during execution phase

and commitment phase, and Rc for the communication delay

during execution phase and commitment phase and computed as:

For global transactions-

Rp = max((2Tlock + Tprocess)Noper local,(2Tlock +

Tprocess)Noper remote)

Rc = NcommTcom

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

36

For local transactions-

 Rp = (2Tlock + Tprocess)Noper local

 Rc = 0

Where, Tlock is the time required to lock/unlock a data item;

Tprocess is the time to process a data item (assuming read

operation takes same amount of time as write operation); Ncomm

is number of messages; Tcom is communication delay i.e. the

constant time estimated for a message going from one site to

another; Noper local is the number of local operations; Noper

remote is maximum number of remote operations taken over by

all cohorts. If T2 is abort dependent on T1. The BF can be the

ratio of (SF*Rj-Tcom)/Ci;

BF=(SF*Rj-Tcom)/Ci>1

U.Shanker et al. used 1(one) as the thresholds value for BF in

ACTIVE-a real-time commit protocol. In this paper we have also

taken the same value for the study.

5. FIVE COMMIT PROTOCOL

In this paper we have proposed a new commit protocol to reduce

the kill percentage of transactions by fruitful borrowing of

prepared data of lender to a executing cohort in its commit phase.

Here we have considered the case of parallel transactions in

distributed real time database system. In this paper real time

transactions have divided (assumptions) into three sections based

on borrowing factor as shown in Figure-2:

 Non-healthy transactions: these transactions have

borrowing factor (BF) less than one(i.e threshold value

of BF).

 Healthy transactions: these transactions have BF

between one and less than the Min-Time (MT).

 Super-healthy transactions: these transactions

have BF greater than Min-Time

Non-healthy BF=1 Healthy MT Super-healthy

 Figure-2

To lend the data as per the condition at the time of lending, FIVE

considering the following cases:

Case 1: When Non-healthy transactions more than the both

Healthy and Super-healthy transactions:

In this case data borrowing carried out by using the modified-

Borrow factor (M-BF) as-

 M-BFBF/Time-Left*

Where Time-Left* is that time lift to meet the deadline for

borrower. Higher the value of M-BF higher the priority of

transaction Ti that is P[Ti] , higher the to borrow the prepared

data as:

 P[Ti]M-BF[Ti]

 Higher the value of M-BF, higher the priority to borrow the dirty

value from the lender in its commit phase.

Case 2: When Healthy transactions more than the both Non-

healthy transactions and Super-healthy transactions:

Borrowing carried out by using the borrow factor as -

 P[Ti]BF[Ti]

Where P[Ti] is the priority of transaction Ti and BF[[Ti] is the

borrow factor of transaction Ti, higher the value of BF, higher

the priority to borrow the dirty value.

Case 3: When Super-healthy transactions more than the both

Non-healthy and Healthy transactions:

In this case lender has been updated its data to the stable storage.

Due to this their possibility of aborting the executing cohorts,

this will affect the system performance by increasing the kill

percentage of transactions. To solve this problem, need to fork a

replica of prepared data and carried out the execution of

transaction by using the replica of prepared data as well as by

using prepared data. In case of lender abort then execution will

carried out by using the replica and borrow the data by using BF.

Where borrow factor is same as calculated in section 4 above.

Time-left give the execution time of borrower. Priority of these

transactions computed similar to case 2, but lending is carried

out by using replica of dirty value:

P[Ti]BF[Ti]

Where P[Ti] is the priority of transaction Ti and BF[[Ti] is the

borrow factor of transaction Ti. Higher the BF higher the priority

to borrow the dirty value.

Heuristics for lending the prepared data:

Consider two borrowers T1 and T2, we calculate Modified-

Borrow Factor for both and compare them.

 (a) If(BF<1)

 {

 If (M-BF(T1) > (M-BF(T2))

 {

 then T1 is allowed to borrow

 }

 Else

 { T2 allowed to borrow the prepared data.

 }

}

(b) If((BF>1)AND(BF>Min-Time))

{

 { If ((BF (T1) >BF(T2))

{

 then T1 is allowed to borrow

}

 else

{

T2 allowed to borrow the prepared data.

}

 (c) If (BF>Min-Time)

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

37

{

Lend the data by using replica of prepared data.

 If ((BF (T2)< (BF (T1))

 {

 then T1 is allowed to borrow .

 }

 else

 {

 T2 allowed to lend the data.

 }

 }

5. MAIN CONTRIBUTIONS

 FIVE overcomes the problem of data inaccessibly with

reducing the kill percentage of transactions.

 Increase the system performance by effective borrowing

the prepared data.

 Modified health factor used to find the BF when the BF

is less than the one.

 This paper also solves the problem of Super-healthy

transactions by lending the data by using replica of

prepared data.

 These protocols also control the abort chain of executing

transactions.

6. RESULT AND ANALYSIS

In this paper we have done the experiment both for disk resident

as well as for main-memory resident data by considering the

communication delay 0ms. FIVE is compared with ACTIVE,

PROMPT, 2SC and SWIFT. Figure-3 and Figure-4 shows the

Miss percent behavior under normal and heavy load. Figure-3

deals with Main-Memory based database system and Figure-4

deals with the disk resident database system. In these graphs we

have observed that there are some differences between the

performances of various commit protocols at the time lending of

data.

This is due to careful lending of data to a borrower. We have

assumed that commit dependent borrowers also lent data to

executing cohort reducing the data inaccessibility also the

transaction abort chain restricts to one only. Incoming executing

cohorts allow to borrow the data according to the situation at the

time of borrowing of prepared data. Thus, the work done by the

borrowing cohort is never wasted because of better borrowing

choice. Hence it will minimize the fruitless borrowing by the

cohort. Therefore we can say that the number of transaction

being committed is more than number of aborted transactions in

real life situations. In this way, we can increase some more

parallelism in the distributed system. The FIVE commit protocol

provides a performance that is significantly better than other

commit protocols.

7. CONCLUSION

In this paper we have proposed a new commit protocol FIVE.

This protocol basically solves the problem of kill transactions by

calculating the BF at the time of lending data items. This reduces

the fruitless borrowing. To ensure non-violation of ACID

properties, checking of the removal of cohort’s dependency is

required before sending the Yes-Vote message. This protocol

also overcomes the problem of ACTIVE which considered only

that borrower which have borrow factor greater than a threshold

value (i.e. 1). In this paper transactions categorized into three

sections according to the borrowing factor and lend the data to

those transactions which are more than from other two cases. By

this way system performance can be increases. The performance

of FIVE is compared with other protocols for both main memory

resident and disk resident databases without communication

delay.

REFERENCES

[1] U. Shanker et al.”ACTIVE-a real time commit protocol”

Wireless Sensor Network, 2010, 2, 254-263..

[2] C.-L. Pang and K. Y. Lam, “On using similarity for

resolving conflicts at commit in mixed distributed real-time

databases,” Proceedings of the 5th International Conference

on Real-Time Computing Systems and Applications, 1998.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.5, January 2011

38

[3] G. K. Attaluri and K. Salem, “The presumed-either two

phase commit protocol,” IEEE Transactions on Knowledge

and Data Engineering, Vol. 14, No. 5, pp. 1190– 1196,

2002.

[4] J. Gray and A. Reuter, “Transaction processing: Concepts

and technique,” Morgan Kaufman, San Mateo, California,

1993.

[5] J. Gray, “Notes on database operating systems,” Operating

Systems: An Advanced Course, Lecture Notes in Computer

Science, Springer Verlag, Vol. 60, pp. 397– 405, 1978.

[6] P. Misikangas, “2PL and its variants,” Seminar on Real-

Time Systems, Department of Computer Science, University

of Helsinki, 1997.

[7] N. Soparkar, E. Levy, H. F. Korth, and A. Silberschatz,

“Adaptive commitment for real-time distributed

transaction,” Technical Report TR-92–15, Department of

Computer Science, University of Texax, Austinm, 1992.

[8] R. Gupta, J. R. Haritsa, and K. Ramamritham, “More

optimism about real-time distributed commit

processing,”.Technical Report TR–97-Database System Lab,

SuperU. Shanker ET AL. Copyright © 2010 SciRes. WSN

[9] J. R. Haritsa, K. Ramamritham, and R. Gupta, “The

PROMPT real time commit protocol,” IEEE Transaction on

Parallel and Distributed Systems, Vol. 11, No. 2, pp. 160–

181, 2000.

[10] U. Shanker, M. Misra, and A. K. Sarje, “Distributed real

time database systems: Background and literature review,”

International Journal of Distributed and Parallel Databases,

Springer Verlag, Vol. 23, No. 2, pp. 127–149, 2008.

[11] U. Shanker, M. Misra and A. K. Sarje, “SWIFT - a new real

time commit protocol,” International Journal of Distributed

and Parallel Databases, Springer Verlag, Vol. 20, No. 1, pp.

29–56, 2006.

[12] U. Shanker, M. Misra, A. K. Sarje and R. Shisondia,

“Dependency sensitive shadow SWIFT,” Proceedings of the

10th International Database Applications and Engineering

Symposium, Delhi, India, pp. 373–276, 2006 .

[13] B. Qin and Y. Liu, “High performance distributed real time

commit protocol,” Journal of Systems and Software,

Elsevier Science Inc., pp. 1–8, 2003.

[14] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction

management in the R* distributed database management

system,” ACM transaction on Database Systems, Vol. 11,

No. 4, 1986.

