
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

37

 Breaking the Boundaries for Software Component
Reuse Technology

B.Jalender
 Asst.Professor
IT Department

VNRVJIET, Hyderabad

Andhra Pradesh, INDIA.

 Dr A.Govardhan
Principal & Professor

JNTUH college of Engineering
JAGTIAL, Karimnagar

Andhra Pradesh, INDIA.

Dr P.Premchand
Professor

CSE Department
UCEOU, Osmania University

Hyderabad, INDIA.

ABSTRACT

Reusable software components are designed to apply the power
and benefit of reusable, interchangeable parts from other

industries to the field of software construction .Benefits of
component reuse such as sharing common code, and
components one place and making easier and quicker. The most
substantial benefits derive from a product line approach, where a
common set of reusable software assets act as a base for
subsequent similar products in a given functional domain.
Component is fundamental unit of large scale software
construction. Every component has an interface and an

Implementation. The interface of a component is anything that is
visible externally to the component. Everything else belongs to
its implementation. This paper addresses the primary boundaries
for software component reuse technology.

Keywords

Software Reuse, component, boundaries, interface, product.

1. INTRODUCTION

1.1 Software Reuse
Software reuse is the process of creating software systems from
existing software rather than building them from scratch [1].
Software reuse is still an emerging discipline. It appears in many
different forms from horizontal reuse and vertical reuse to

systematic reuse, and from white-box reuse to black-box reuse.
Many different products for reuse range from ideas and
algorithms to any documents that are created during the software
life cycle [2].Source code is most commonly reused in software
systems; thus many people misunderstands software reuse as the
reuse of source code alone. Recently source code and design
reuse have become popular with (object-oriented) class libraries,
application frameworks, and design patterns. Software

components provide a vehicle for planned and systematic reuse
[2].

1.2 Need to Reuse Software
A good software reuse process facilitates the increase of
productivity, quality, and reliability, and the decrease of costs

and implementation time. An initial investment is required to
start a software reuse process, but that investment pays for itself
in a few reuses[2]. In short, the development of a reuse process
and repository produces a base of knowledge that improves in
quality after every reuse, minimizing the amount of
development work required for future projects and ultimately

reducing the risk of new projects that are based on repository
knowledge [3].

Reuse of Software components concept has been taken from
manufacturing industry and civil engineering field.
Manufacturing of vehicles from parts and construction of
buildings from bricks are the examples [4]. Spare parts of a

product should be available in markets to make it successful.
The best example in this case is the manufacturers of Honda,
Toyota and Suzuki cars would have not been so successful if
these companies have not provided spare parts of their cars?
Software companies have used the same concept to develop
software in parts [4]. These companies have provided plug and
play parts with their softwares to market themselves successful.
Software parts are shipped with the libraries available with SW.
These SW parts are called components. Different people have

defined component in different ways. A binary code that can be
reused is called a component. A component is an independent
part of the system having complete functionalities [4]. In short,
software engineering is maturing as an engineering discipline.

Four levels of reuse are proposed:

1. code level components (modules, procedures, subroutines,
libraries, etc.)

2. Entire applications

3. Analysis level products

4. Design level products

Code level component reuse occurs most frequently. Standard
libraries and popular language extensions are the most obvious
examples [5]. However, the level of abstraction is low for these
components and that places a limit on the amount of reuse that
can be expected. Reusing entire applications, with little to no
modification, is great when it can happen, but is just not feasible

for many real world problem domains (e.g., real-time software
environments) [6].

Perhaps the less represented areas are design products, which
allow reuse of similar system implementation strategies, and
analysis products, which allow reuse of knowledge about real
world domains. Because analysis products allow description and
manipulation of real world domains, there are probably the most
powerful of reusable products [6].

From the last two decades there have been waves of methods
introduced to break both developments cycle time and
development labor/cost. Just a few of those include:

 Structured Programming

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

38

 Object-oriented programming

 Top-down design methodologies

 Requirements Management

 Improved project management methods

 Unified Modeling Language (UML)

1.3 Types of Software Reuse
1.3.1 Systematic software reuse
Independent of what a component is, Systematic Software Reuse

influences almost whole software engineering process. For
providing guidance in the creation of high quality software
systems at low-cost the software process models were
developed. The original models were based on the
(mis)conception that systems are built from scratch according to
stable requirements.Software process models have been adapted
since based on experience and several changes and
improvements have been suggested since the classic waterfall

model. With increasing reuse of software, new models for
software engineering are emerging. New models are based on
systematic reuse of well-defined components that have been
developed in various projects [4].These trends are particularly
evident in markets, such as electronic commerce and data
networking, where reducing development cycle time is crucial to
business success.

1.3.2 Horizontal reuse
Horizontal reuse refers to software components used across a
wide variety of applications. In terms of code assets, this
includes the typically envisioned library of components, such as
a linked list class, string manipulation routines, or graphical user

interface (GUI) functions. Horizontal reuse can also refer to the
use of a commercial off-the-shelf (COTS) or third-party
application within a larger system, such as an email package or a
word processing program. A variety of software libraries and
repositories containing this type of code and documentation
exist today at various locations on the Internet [7].

1.3.3 Vertical reuse
Vertical reuse, significantly untapped by the software
community at large, but potentially very useful, has far reaching
implications for current and future software development efforts.
The basic idea is the reuse of system functional areas, or
domains that can be used by a family of systems with similar

functionality [7]. The study and application of this idea has
spawned another engineering discipline, called domain
engineering. Domain engineering is "a comprehensive, iterative,
life-cycle process that an organization uses to pursue strategic
business objectives. It increases the productivity of application
engineering projects through the standardization of a product
family and an associated production process “[7]. Which brings
us to application engineering, the domain engineering

counterpart: "Application engineering is the means by which a
project creates a product to meet a customer's requirements. The
form and structure of the application engineering activity are
crafted by domain engineering so that each project working in a
business area can leverage common knowledge and assets to
deliver a high-quality product, tailored to the needs of its
customer, with reduced cost and risk" [7]. Domain engineering
focuses on the creation and maintenance of reuse repositories of

functional areas, while application engineering makes use of
those repositories to implement new products.

1.3.4 Horizontal and Vertical Software Assets:
Many systematic software reuse initiatives in organizations fail
to take off or have a slow death. There are many factors for this
but one key reason is the pursuit of generic technical assets. That
is what I refer to as horizontal reuse. Why? Because the focus
and intent is to find software assets that are reusable across most

or all your applications. This is not only limits the potential for
systematic reuse but also makes your reuse initiative extremely
risky. Finding assets that are universally reusable is not only
difficult but also will make your design overly complex. Overly
generic components might also end up creating assets that are:

 hard to test and debug

 difficult to comprehend and maintain

 complex to integrate and configure

2. SOFTWARE COMPONENT
2.1. Describing a Software Component
Component is fundamental unit of large scale software
construction. Every component has an interface and an

Implementation [8].The following are the unique aspects of a
Software Component that must not only be thoroughly
described, but also searchable:

• Development

• Scalability

• Testing specification, and performance data

• Known deficiencies

• Version data

• Supportability data

• Evaluations

• Functional specification

• Interface specifications

• Use cases, use scenarios

• OS/Platform compatibility

2.2. Not all software is a component … nor can all

software use components
There is a spectrum of software that is already developed, or
currently in development that range from “Monolithic” in nature
to Plug‟n‟play [9].

The general assumption is that Monolithic software cannot be
adapted to CBD. This is not entirely true as there is a whole

movement in software development called “providing a
wrapper” around legacy software and then using the component
interface to adapt to the framework. Within the spectrum shown
above, there is reason to believe that the middle range, which
implemented some form of standards-based development, is
more likely to have higher value for component mining and
retrofit to CBD technology. Clearly, though, the “modern”

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

39

technologies like Java have clear advantages in the CBD
proposition [10].

2.2.1 The technologies are most suitable for CBD

are:

 COM / DCOM

 Java

 EJB

 CORBA

 Active-X

Developing software with reuse requires planning for reuse,
developing for reuse and with reuse, and providing
documentation for reuse. The priority of documentation in
software projects has traditionally been low [11]. However,
proper documentation is a necessity for the systematic reuse of
components. If we continue to neglect documentation we will

not be able to increase productivity through the reuse of
components [12]. Detailed information about components is
indispensable. Although the track record for systematic software
reuse has been rather spotty historically; several key trends bode
well for software reuse in the future:

• Component and framework-based middleware technologies,
such as CORBA, J2EE, and .NET, have become main stream.

• An increasing number of developers of projects over the past

decade have successfully adopted OO design techniques, such as
UML and patterns, and OO programming languages, such as
C++, Java, and C#.

2.3 Reusable Software Component

A component is an independent piece of software that interacts
with other components in a well-defined manner to accomplish a
specific task. Components can be used to build both enterprise
critical software and shrink-wrap software [13].

Reusable software refers to software components that can be
incorporated into a variety of programs without modification
(except possibly parameterization). Reusable software
components are designed to apply the power and benefit of

reusable, interchangeable parts from other industries to the field
of software construction. Other industries have long profited
from reusable components [14]. Reusable electronic components
are found on circuit boards. A typical part in your car can be
replaced by a component made from one of many different
competing manufacturers.

A simple example of a reusable software part is Reusable
software components can be simple like familiar push buttons,
text fields list boxes, scrollbars, dialogs . Software reuse is the

use of engineering knowledge or artifacts from existing software
components to build a new system. There are many work
products that can be reused, for example source code, designs,
specifications, architectures and documentation. [3][15]

3. THE BARRIERS FOR COMPONENT

BASED DEVELOPMENT
1. Lack of Components - certain discrete areas may enjoy a
high level of available components, but these are often the focus

of large, well funded projects in specialized areas. A good
example is the Common Ada Missile Packages (CAMP)
program sponsored by the Department of Defense [16].

2. Poor Cataloging, Distribution and Access Methods - reuse
repositories appear to have holdings in the range of under
thousand. Even if standard classification schemes could be
agreed upon, the burden of component discovery is largely the
responsibility of the user. In this manner, the cataloging and

distribution of reusable software lags behind other areas of
information transfer. For example, there is a well known
resource for obtaining technical aerospace literature [17], but no
such resource for obtaining software.

3. Data Rights and Copyright - Intellectual property is a
difficult concept in the computer and information community.
Who own works derived from reused components? How does
one protect intellectual property when others reuse it? Copyright
and patent law is a complex and dynamic area. The newspaper is

the best source for current developments, but a good discussion
of the background can be found in [18].

4. Liability - Somewhat related to Data Rights and Copyrights,
reuse is slowed by producers not wishing to be liable for their
components‟ performance in some other system, and by the
consumers of reusable components not wishing to risk their
system on potentially unknown software.

5. Component Qualification - A “rating” system for code reuse
would make people more comfortable reusing software.
However, this would be a large task and only defers the
suspicion and questions to another level: who assigned this

rating? Who authorized this rating system? Such systems are
generally only encountered within the limited scope of an
individual company [14] [19].

6. Incentive and Management Support - Adopting a strong
reuse program will certainly help organizations long term
competitiveness; the initial investment required can hurt its short
term competitiveness. In an attempt to find a “shortcut”, there is
a temptation to make reuse a process to be applied after
development is completed instead of infused throughout the
entire development lifecycle [6] [13].

7. Education and “Ego” - Software reuse is not taught in

academic training. In fact, Computer Science departments make
it quite clear to students that “reuse” and “cheating” are the
same thing. Yet, upon arrival at the job, the same people are
expected to undergo a radical transformation and understand
how to program in teams. This initial educational bias often
manifests itself later in programmers‟ careers as the suspicion of
“if I reuse it, others will think I‟m not smart enough to write it
myself.”[6].

3.1 How to break the Barriers for component

based development??

The following are the unique approaches for breaking the
barriers for Software Component Reuse Technology.

(1) Technology to overcome other potential barriers to
component-based software

 commercial security

 location and use of relevant components

 component usability

 assurance of component reliability

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

40

(2) Initial benefits of reduced costs, increased reliability
and interoperation, or promises of horizontal markets
may be inadequate to overcome 'first user' risk.

(3) The greatest benefits require a sustained marketplace
in specialized components supporting a change to
predictable costs and schedules from component
assembly.

(4) Value in legacy software systems will not be easily
abandoned.

(5) Pricing and revenue collection schemes may be
inadequate.

Component-based software is a new software technique that
decreases the production costs of developing new software
products and other products that use software as an input [20].

4. RELATIVE ECONOMIC ADVANTAGE

OF CBD

Let‟s start by outlining the potential benefits and risks of
Component Based Development from the business perspective.

4.1 Potential business benefits of CBD

 Shorter development cycles

 More maintainable product

 Smaller development staff

 Reduced development costs per project

 Reduced lifecycle costs

 More-easily assessable trade-off evaluations

 More flexibility overall

4.2 Potential business risks of CBD

 Risks of wrong component selection

 Worry about ongoing support

 loss of development control

 Tradeoffs required adapting certain components

 Worries about component quality

 Uncertain internal costing to compare costs

 Availability of quality, high-value components

With those benefits and risks stated, there are still several other
challenges to creating the compelling business proposition for
CBD which fall into two groups: Economic measure and risk
assessment. These are distinctly different facets of risk and must
be assessed separately. In the interest of fairness, it is worth

noting that there are some associated business costs related to
CBD that cannot be termed as risks persespective [6][21]. Those
include the time and expense to acquire new organizational
skills including training and instilling practice related to
software component architectures, component integration skills,
and tolerance oriented software design to improve the reusability
of software components[9][21].

5. CONCLUSION AND FUTURE WORK

There is little doubt that CBD has a long way to go to move
from early adopter to the mainstream. It may be the most unique

challenge ever faced by the software industry because of its need
to traverse literally every form of software technology in order
to be successful. There has never been an attempt to achieve
such a wide scope of change in the software industry, let alone
to do it world-wide. We believe that CBD will ultimately
succeed because it is so desperately needed. However, there
must be some very strong pushes from some very important
corners of the industry. That push will be needed for CBD to

succeed in a way that contributes to the better common purpose
of improving the software development business proposition
overall. Perhaps CBD‟s ultimate legacy will be that it managed
to transcend the technology camps and entrenched interests
within our industry a tall order even for such a very compelling
technology.

6. REFERENCES

[1] B.Jalender, Dr A.Govardhan, Dr P.Premchand “A Pragmatic

Approach To Software Reuse”, Journal of Theoretical and
Applied Information Technology (JATIT) Vol 14 No 2
pp.87-96. JUNE 2010.

[2] Sametinger, “Software Engineering with Reusable
Components”, Springer-Verlag, ISBN 3-540-62695-6,
1997

[3] B.Jalender, N.Gowtham, K.Praveenkumar, K.Murahari,
K.sampath ”Technical Impediments to Software Reuse”
International Journal of Engineering Science and

Technology (IJEST) , Vol. 2(11),p. 6136-6139.Nov 2010.

 [4] M. R. J. Qureshi, S. A. Hussain, A reusable software
component-based development process model, Advances in
Engineering Software, v.39 n.2, p.88-94, February, 2008

[5] P.Shireesha, S.S.V.N.Sharma,”Building Reusable Software
Component For Optimization Check in ABAP Coding”
International Journal of Software Engineering &
Applications (IJSEA) Vol.1, No.3, July 2010

[6] „Barriers to Software Reuse and the Projected Impact of
World Wide Web on Software Reuse‟ (1996), Michael L.
Nelson.

[7] Department of the Navy. DON “Software Reuse Guide,
NAVSO P-5234-2, 1995.

[8] B.Jalender, Reddy, P.N. “Design of Reusable Components
using Drag and Drop Mechanism” IEEE Transactions on
Information Reuse and Integration. IEEE International

Conference IRI Sept. 2006 Pages: 345 – 350.

[9] “Breaking Down the Barriers to Software Component
Technology” by Chris Lamela IntellectMarket, Inc

[10] D'Alessandro, M. Iachini, P.L. Martelli, “A The generic
reusable component: an approach to reuse hierarchicalOO
designs” appears in: software reusability,1993

[11] Hafedh Mili, Fatma Mili, and Ali Mili “Reusing Software:
Issues and Research Directions” IEEE Transactions on

software engineering, VOL 21, NO. 6, JUNE 1995

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

41

[12] Charles W. Krueger Software Reuse “ACM Computing
Surveys (CSUR) Volume 24, Issue 2 (June 1992) Pages:
131 - 183.

[13] M. Pat Schuler, “Increasing productivity through Total
Reuse Management (TRM),” Proceedings of

Technology2001: The Second National Technology
Transfer Conference and Exposition, Volume 2,
Washington DC, December 1991, pp. 294-300.

[14] Brian W. Holmgren, “Software reusability: A study of why
software reuse has not developed into a viable practice in
the Department of Defense,” Masters Thesis, Air Force
Institute of Technology, AFIT/GSM/LSY/90S-16,
September 1990.

 [15].M. Aoyoma, “New Age of Software Development: How
Component-Based Software Engineering Changes the Way
of Software Development?,” in Proceedings of the 1998
International Workshop on CBSE,.

[16] Constance Palmer, “A CAMP update,” AIAA-89-3144,
Proceedings of Computers in Aerospace 7, MontereyCA,
Oct. 3-5, 1989.

[17] Michael L. Nelson, Gretchen L. Gottlich, David J. Bianco,
Sharon S. Paulson, Robert L. Binkley, Yvonne D.Kellogg,
Chris J. Beaumont, Robert B. Schmunk, Michael J. Kurtz,
Alberto Accomazzi, and Omar Syed, “The NASA
Technical Report Server”, Internet Research: Electronic

Network Applications and Policy, vol. 5, no. 2, September
1995 , pp. 25-36.

[18] Pamela Samuelson, “Is copyright law steering the right
course?,” IEEE Software, September 1988, pp. 78-86.

[19] Cai, M.R. Lyu, K. Wong, “Component-Based Software
Engineering: Technologies, Development Frameworks,
and Quality Assurance Schemes,” in Proceedings of the 7th
APSEC, 2000

[20] Jihyun Lee, Jinsam Kim, and Gyu-Sang Shin “Facilitating
Reuse of Software Components using Repository
Technology” Proceedings of the Tenth Asia-Pacific
Software Engineering Conference (APSEC‟03).

[21] B.Jalender, Dr A.Govardhan, Dr P.Premchand” Drag and
Drop: Influences on the Design of Reusable Software
Components” International Journal on Computer Science
and Engineering Vol. 02, No. 07, pp. 2386-2393 July 2010.

 .

