
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

27

A Formal Framework for Business Process Modeling

 Roger Atsa Etoundi Marcel Fouda Ndjodo Ghislain Abessolo Alo’o
 Department of Computer Science Department of Computer Science Department of Computer Science

 Faculty of Science Faculty of Science Faculty of Science

 University of Yaounde I University of Yaounde I University of Yaounde I

ABSTRACT
In this paper, we define a new business process modeling
approach based on the abstraction of the execution

environment which is presented as a set of observers. The
triggering condition of a task is linked to the state of the
environment rather than a predefined order between tasks as
suggested by other modeling approaches. Relying on the
environment and the tasks, a formal framework of a business
process is given. The modeling proposal presented in this
paper is used to address three non dominant perspectives:
context, semantics and goal; along with the usual controlflow

perspective.

The model defined in this paper does not deal with specific
business processes and lack some analysis. This work can be
extended by defining some case studies, carrying some
analysis and developing a supporting tool. It will certainly
allow enterprises to efficiently scope with the quality of
service delivered to the customers and hence to deal with the
competitive pressure of the network economy.

Keywords
Business Process Design, Environment State, Process
Semantics, Execution Environment. Quality of service.

1. INTRODUCTION
Many techniques have been used to model business processes
and workflows, from the very intuitive graph theory [22], to
more sophisticated mathematical models such as Petri Nets [1]
and, more recently Pi−Calculus [20].

Regardless of the modeling capacities of the available
modeling frameworks, in practice, the control-flow
perspective seems to have become the dominant perspective

[2]. While we admit that encapsulating all the perspectives in
one model is not realistic, it has been proven that it is possible
to build a model that natively considers more than one
perspective without extra-complexity, as shown in [21] for the
data perspective, or in [11] for the quality of service
perspective . This paper presents a modeling framework that is
used to address three non dominant perspectives: context,
semantics and goal; along with the usual control flow

perspective. In this model, business process environments, i.e.
the execution contexts of business processes - defined here as
a set of boolean observers are modified by the tasks which
have the capacity of changing the values of observers, thus
modifying the states of the environments. The concept of
environment used here is similar to the Leslie Lamport’s
environments [15]. The execution conditions of a task are
linked to the environment rather than a predefined order

between tasks. Relying on the environment and the tasks, a
formal definition of a business process is given.

The core model supporting this approach is described in [5, 6],
and it is supported by a number of papers [7, 8, 9] that
illustrate its multi-perspective nature, giving room for further
investigations.

The rest of the paper is structured as follows: section 2
presents some related works; the model is given in section 3
which is the main part of the work; section 4 illustrates the
multiperspective nature of the model; and section 5 concludes
the paper.

2. RELATED WORKS
This section roughly summarizes how some main modeling
approaches deal with the multiperspective nature of business
processes.

Graph theory has been widely used to model business
processes. But, as it is expressed in [22] the initial weaknesses

of this approach, such as the difficulties of reasoning about

workflow properties, and the impossibility to express global
dependencies has opened ways to enrich the initial model by

adding constraints such as path constraint [22] and temporal
constraints [10]. Despite all these improvements, it is hard to
model other perspectives than the control-flow. This is
probably one of the reasons which explain why this approach
has not emerged as one of the most important for business
process modeling.

The Workflow-nets approach[1], based on Petri Nets, models
tasks by transitions, conditions by places, and cases by tokens.

This approach mixes a formal semantics to the graphical and
intuitive nature of Petri Nets [4]. Despite a number of
extensions available for Petri nets such as coloured Petri nets,
timed Petri nets and hierarchical Petri nets that suggest the
handling of many perspectives, the full power of Workflow-
nets (in terms of the abundance of analysis techniques and
software tools made available for it by a very prolific research
community) needs the abstraction from perspectives other

than control-flow and data to be expressed [14].

However, in [21], workflow-nets are extended with data. Each
task is associated with three sets that indicate which data
elements the task reads, writes or destroys. This extension
allows analysis techniques to check for errors such as
deadlocks or livelocks without abstracting from the data
perspective, and hence extending the detection power of such
tools.

In [5, 6], a modeling framework is presented that natively

addresses the context, control-flow, time and resource
perspectives of business processes. The multiperspective
nature of that approach has been illustrated by works focusing
on the human resources [9], mobility [8] and security [7]
aspects of business processes. This work falls within this
approach.

3. THE CONTEXT-BASED MODELING

FRAMEWORK

The modeling framework used in this paper has been
described in [6]. The cornerstone of this approach is the

concept of environment which formalizes the execution
contexts of business processes defined here as a set of boolean
observers. It is worthy to note that the notion of context used

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

28

here is different from the notion of context used in [18], where

a context is an assignment of a status (wait or dead) to arcs
linking two nodes of a process in order to manage the arrival
of tokens. Here, a context is a”means to focus on aspects that
are relevant in a particular situation while ignoring others”
[19]. The relevant aspects are captured through the concept of
observers. A business process environment is therefore the set

of relevant observers required for the execution of that
business process.

The mutations of business process environments are enforced
through business process tasks which have the capacity of
changing the values of observers, thus modifying the states of
the environments. The business process tasks are ordered by a
follow function in order to achieve an expected goal.

The rest of the section is organized as follows: section 3.1
defines the business process environments, business process

tasks are defined in section 3.2, section 3.3 gives a formal
model of business processes and, section 3.4 shows that this
model captures some common routing constructions. In
section 3.5, an example to illustrate the model is given.

3.1 Business Process Environments

The context of execution of a business process is an important
modeling input that determines a number of actions. As it is
not possible to capture the entire context, we restrict ourselves
to the part of the real world that is of interest for a business
process. We call it the environment. We define an

environment as a set of different metrics whose value may

change [6]. Every relevant characteristic of the real world is
captured through boolean objects that we call observers.

Definition 1. Environments

An environment ξ is a tuple <θ,S,val> where:

- θ is a non empty set whose elements are called
observers;

- S is a non empty set whose elements are called
states (θ ∩ S = ∅);

- val: θ → (S → Bool) is a function which describes

the behaviour of observers in the different states.

When the context is clear, we write s(o)for val(o)(s) with the
intuitive meaning that s(o) is the value of the observer o in the
state s.

Given an environment ξ, an observation tells us if a condition
over a set of observers is satisfied or not. An observation
therefore has a positive part and a negative part. The positive
part of an observation is the set of the observers whose value
is expected to be true, while the negative part is the set of
observers whose value is expected to be false.

Definition 2. Observations

Let ξ =< θ,S,val > be an environment, an observation on ξ is a
couple <P,M > where P and M are disjoint sets of observers of
θ.

The set of the observations on the environment ξ is denoted
Oξ. When the context is clear, we write O for Oξ.

Definition 3. Satisfaction of an observation

Given an environment ξ =< θ,S,val >, the satisfaction of an
observation obs =<P,M>∈O in a state s ∈ S is given by the

function

Φ : S ×O→ Bool defined by:

Φ(s, obs)= (∀o ∈ P, s(o)) ∧ (∀o ∈ M, ¬s(o))

We write s(obs)for Φ(s, obs).

Definition 4. Gap between states

Givenanenvironment ξ =<θ,S,val>,two states s1,s2 ∈ S, the gap

between s1 and s2 (denoted s1 • s2) is defined by:

s1 • s2 = {o ∈ θ: s1(o) = s2(o)}.

The gap between two states s1 and s2 is the set of the

observers that have different values in s1 and s2.

3.2 Business Process Tasks

The concept of task is not quite new in the modeling of
workflows. All the workflow modeling approaches consider

this concept [13]. In [5], a task is defined as a state transition
function task: S → S. This definition includes multipurpose

tasks - that can produce different effects according to the

initial state, and single-purpose tasks which produce the same

effect (post-condition), whatever the initial state may be.

Intuitively, any multipurpose task can be viewed as
a”combination” of single purpose tasks with appropriate
branching. Therefore, single-purpose tasks behave like atomic

tasks. In this paper, we restrict ourselves to atomic tasks.

Definition 5. Tasks

Let ξ =<θ,S,val> be an environment, a task on ξ is a triple
<t,ec,action> where t is the identifier of the task, ec is an

observation specifying its precondition, and action is an
observation specifying its post-condition. In the rest of the
paper, the execution condition (resp. post-condition) of the
task <t,ec,action> is denoted ec(t)(resp. action(t)); In the
same vein, P(action(t)) (resp. M(action(t))) is denoted
P(t)(resp. M(t)).

Definition 6. Conflicting Tasks

Let t1, t2 be two tasks on the environment ξ =<θ,S,val>, we
say that t1 and t2 are conflicting tasks if:

(P(t1)∩M(t2) = ∅)∨(P(t2)∩M(t1) = ∅), i.e there exist an

observer on which t1 and t2 have opposite actions.

This notion can easily be extended to a set of tasks as follows:
ts is a non conflicting set of tasks if: ∀{t1,t2}⊆ ts, t1 and t2 are

not conflicting tasks.

 3.3 Formal Model for Business Processes

A business process is defined as “a set of logically related
tasks performed to achieve a defined business outcome” [12]
which is the goal of the business process. According to the
section 3.2, any business process with multipurpose tasks can
be modeled as a business process with single-purpose tasks. In

this framework, business processes are therefore formalized as
follows:

Definition 7. Business Processes

Given an environment ξ, a Business Process is a tuple BP
=<θ, T, f, g> where:

- θ is a set of observers over ξ,

- T is a set of tasks on ξ,

- g ∈O is a distinguished observation called the goal

of BP.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

29

- f: T → 2T is a function which, for every task, gives
the names of the tasks that can be executed right
after it.

We observe that in this definition, the follow function can be
cyclic, allowing this framework to model loops. The execution

model, (i.e. the operational semantics) of the business process
is defined through the definition of the execution of a non
conflicting set of tasks.

Definition 8. Execution of non conflicting tasks

Let ξ be an environment, BP =<θ,T,f,g> a business process
over ξ, ts a non conflicting set of tasks, and s a state of ξ.

The execution of the set of tasks ts in the state s moves the
environment into the state s’, and activates the set of taks
ts’such that:

- s’• s =(∪ t∈tsP(t)) ∪ (∪ t∈tsM(t)) (the gap between

s and s’ is the set of observers modified by tasks of
ts)

- ts’= {t ∈∪ t∈tsf(t): Φ(s’,P(ec(t))) ∧ Φ(s’,M(ec(t)))}

(the followers of the tasks of ts whose execution

conditions are satisfied in s’)

We write exec(ts, s) = (ts’, s’).

The intuitive idea is that all the tasks whose execution
conditions are satisfied in a state are concurrently executed,
unless they are conflicting.

Definition 9. Implementations of Business

Processes

Let ξ be an environment, BP =< θ,T,f,g > a business process
over ξ.An implementation of BP is a list of couples < (ts0,s0),
...(tsn,sn) > where:

– si is a state,

– tsi is a non conflicting set of tasks,

– (tsk+1, sk+1) = exec (sk,sk)

– g is satisfied in sn.

The complete investigation of the operational

semantics is not the main purpose of this paper. A substantial
amount of this investigation can be found in [5].

 3.4 Common Routing Constructions

Modeling

A model pretending to describe a workflow process shall
implement some basic routing constructions that will guide
the flow of work. Along with the sequential execution which
is part of our business process definition and implemented by
the f (follow) function, it should be possible to address parallel
execution, switching and synchronization.

This section shows that execution conditions and the follow
function are very powerful routing tools that will enable one
to route work in all cases.

Definition 10. Sequential execution

The routing”t2 is executed after t1” is formalized as f(t1)= {t2}.

Definition 11. Parallel execution

The routing”t1 can be executed in parallel with t2 after the task

t” is formalized as

1 2

1 2

1 2

 (

,

 and are not conflicting

ec t ec t

t t f t

t t

Definition 12. Switch

The routing”after t,either t1or t2 will execute, not both” is

formalized as:

1 2

1 2

1 2

()

()

,

P ec t M ec t

M ec t P ec t

t t f t

This formalization says that at most one of the tasks t1 and t2

can be executed after t because their execution conditions are

conflictual.

Definition 13. Synchronization

The routing”t will be executed only when both t1 and t2 have
been executed” is formalized as:

1 2

1 2

1 2

1 2

1 (()

2 (()

P ec t P t P t

P ec t P t P ec t P t

M ec t M t M t

M ec t M t M ec t M t

Whose meaning is that t can only be executed if both t1and t2

have been executed. None of them alone suffices for t to be

executed.

4. BUSINESS PROCESS

PERSPECTIVES

The definition of a business process as a set of logically
related tasks directly suggests the control flow perspective of a
business process. A coherent theory about business processes
cannot ignore this perpective. But this perspective should not

over-shadow the others whose importance have been stressed
a long time ago [3].
In this section, we show how this model captures three usually
uncovered perspectives. The first one is the context perpective
which describes the environment of the business process. The
second one is the goal perspective which defines the expected
outcome. Finally, we show how this model allows the
designer to include semantics in his business process

definition.

4.1 Context Perspective

In [17], the context is defined as a perspective that”provides
an overview perspective of the process and describes major
business process characteristics” for”people who do not know
or do not need to know the process in detail”. In this case, the
context is some kind of summary perspective of the overall

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

30

complex process. This is not the sense given to the word
context in this paper. Rather, we agree with Aalst et al. in [3]
where”the context describes the environment for which a
process model has been designed”.

In this model, the context is captured by the notion of

environment (defined as a set of observers) and the set of
tasks. So the context is the set of tools available in a given
environment.

For example, in a context of disaster such as after an
earthquake, a medical doctor will not request an X-ray when
he suspects a fracture, because there is probably no electricity,
and even no radiologist around. The context determines the set
of actions that can be taken. We can compare the process of

treating a common tibia fracture in a normal context (BP1)
and in an emergency context (BP2).

BP1 =<θ1, T1, f1, g1> and BP2 =<θ2, T2, f2, g2 > where:

θ1= {hasFracture Symptoms,
 isFracture Diagnosed,isTibiaBroken,
 isXRayDone, isFracture Confirmed,
isCastApplied, isFracture T reated}

T1= {DiagnoseFracture ,MakeXRay,

ConfirmFracture, ApplyCast}

θ2= {hasFracture Symptoms,

isFracture Diagnosed,

isT ibiaBroken, isT ibiaImmobilized,

isFracture T reated}

T2= {DiagnoseFracture, ImmobilizeT ibia}

In a normal context (BP1), when a fracture is diagnosed, an X-

Ray will be done to confirm the fracture before a cast is

applied to treat the fracture. In an emergency context (BP2),

the task ApplyCast is replaced by ImmobilizeT ibia which can

be done with a cast (if available) or any other means (like a

piece of wood and a string to tie the leg). Also, the tasks

MakeXRay and ConfirmFracture do not exist in the

emergency context.

4.2 Semantics Perspective

When designing a business process, it is crucial to be able to
also integrate semantic knowledge within the process [16].
The goal of integrating application knowledge is to enable the
system to perform process checks at the semantic level.

This central preoccupation is tackled in this model by the
notion of observation that enables one to define conditions.
Each observer of a business process environment is a semantic
unit. Having it true or false in a state yields a non ambiguous
understanding that is captured by the notion of observation
that we used to define the pre and post-condition of any
business process task. Using our task model, two semantic
problems expressed in [16] are easily solved: mutual
exclusion and dependency constraints. Mutual exclusion

constraints express that two activities are not compatible and
should not be executed together. Mutual exclusion constraints
are symmetric. For instance administering two incompatible
drugs (Marcumar and Aspirineas as in [16]). We do not want a
patient to take Aspirin after Marcumar.

Let us define a business process BP =<θ,T,f,g>, where :

θ = {tookAspirin, tookMarcumar, o, ...}

T = {AdministerMarcumar,AdministerAspirin, t1,t2,t3,t4}

AdministerMarcumar :

Pre-condition:
P(ec(AdministerMarcumar)) = {o};
M(ec(AdministerMarcumar)) =

{tookAspirin};(we want to make sure the patient did
not take Aspirin before)

Post-condition:
P(AdministerMarcumar)=

{tookMarcumar};
M(AdministerMarcumar)= {o};

AdministerAspirin :

Pre-condition:

P(ec(AdministerAspirin)) = ∅;

M(ec(AdministerAspirin)) =
{tookMarcumar, o};
 (we want to make sure the
patient did not take Marcumar
before)

Post-condition:
P(AdministerAspirin)= {tookAspirin};
M(AdministerAspirin)= ∅;

Tasks t1, t2, t3, t4 :

Pre-condition:

P(ec(t1)) = ∅; P(ec(t2)) = ∅; P(ec(t3)) = ∅; P(ec(t4))

= ∅;

M(ec(t1)) = ∅;M(ec(t2)) = ∅;M(ec(t3)) = ∅;M(ec(t4))
= ∅;

Post-condition:

P(t1)= {o1}; P(t2)= {o2}; P(t3)= {o3}; P(t4)= {o4};
M(t1)= ∅;M(t2)= ∅;M(t3)= ∅;M(t4)= ∅;

Follow function

f(t1)= {AdministerAspirin,AdministerMarcumar}

With such a business process definition, we are assured that

the patient will get either Marcumar or Aspirin, according to

the value of the observer o that belongs to the pre-conditions

of both tasks, but with opposite values. He will never get the

two (fig. 1). This solution is the one found in [16].

Fig. 1. Switch

Fig. 2. Global dependency

Even with another follow function defined as:

f(t1)={t2,AdministerMarcumar}; f(AdministerMarcumar)=
{t3};

f(t2} = {t3}; f(t3)= {AdministerAspirin, t4}

If AdministerMarcumar is the only task of the environment
that modifies the observer tookMarcumar, we are assured that

Administer
Aspirin

Administer
Marcumar

t1

Admi
nister
Marcu

mar

Adminis
ter

Aspirin

t1 t3

t4
t2

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

31

if AdministerMarcumar has been executed, AdministerAspirin
will not be executed. This is because AdministerMarcumar
sets the observer tookMarcumar to true, and no other task will
change its value. It is then guaranteed that AdministerAspirin
cannot be executed as it needs the observer tookMarcumar to

be false as its precondition. This illustrates the global
dependency property of the model. Two tasks do not need to
be adjacent to enforce a dependency constraint.

This second solution (illustrated in fig. 2) were labeled
conflictual in [16] since the conflict there was dependent of
process structure, not on the semantics of tasks as it is the case
here.

4.3 Goal Perspective

In this model, the notion of goal is explicit. In a business
process BP = <θ,T,f,g >, the goal g is an observation that has
to be satisfied at the end of the process. Beyond the
disambiguating role of the goal in the business process
definition, it increases the reliability potential of the model.

Each task can be evaluated according to its input in the
satisfaction of the goal (like counting the number of observers
that the task sets for the goal). We then have two categories of
useful tasks: those that directly impact the goal, and those that
contribute to the satisfaction of the execution conditions of
another task. For example, with the goal definition

g: P(g)= {isFractureTreated};M(g)= ∅,

The execution of the task ApplyCast is enough to satisfy the
goal; but to execute the task; its pre-condition requires that the
observers isFractureDiagnosed and isFractureConfirmed be

set to the value true. This is only possible if the tasks
DiagnoseFracture (to set the observer isFractureDiagnosed)
and ConfirmFracture (to set the observer
isFractureConfirmed) have been executed. The task
ConfirmFracture itself needs the task MakeXRay to be
executed to set the observer isXRayDone to true.

The notion of goal also enables the setting of a kind of process
quality of service. The quality of service here does not refer to

performance. It refers to the nature of the process. Using the
previous section example, we can define goals with different
quality of service.

g: P(g)= {isFracture T reated};M(g)= ∅

The execution of the task ApplyCast is enough to satisfy the
goal; but to execute the task; its pre-condition requires that the
observers isFractureDiagnosed and isFractureConfirmed be
set to the value true. This is only possible if the tasks
DiagnoseFracture (to set the observer isFractureDiagnosed)
and ConfirmFracture (to set the observer
isFractureConfirmed) have been executed. The task

ConfirmFracture itself needs the task MakeXRay to be
executed to set the observer isXRayDone to true.

The notion of goal also enables the setting of a kind of process
quality of service. The quality of service here does not refer to
performance. It refers to the nature of the process. Using the
previous section example, we can define goals with different
quality of service.

g: P(g)= {isFracture T reated};M(g)= ∅,

g’: P(g’)= {isFracture T reated, isCastApplied}:

M (g’) = ∅,

It appears that g’ suggest a better quality of service than g,

because unlike g, g’ requires that the process designed

respects particular care (applying a cast) that is considered
essential for the quality of the final result.

5. CONCLUSION

In this paper, a business process modeling approach based on
the concept of environment is presented, that allows one to
precisely describe the execution context of business processes
by using a set of observers. The model presented in this paper
is used to address three perspectives: the context perspective,
the semantic perspective and the goal perspective.

A task concept has been defined, where the action of every
task is deterministic and the execution condition of a task is
linked to the environment rather than a predefined and rigid
order between tasks. Finally, given the environment and the
tasks, a formal definition of a business process is given, that
associates the environment and the tasks to a follow function
in order to achieve a given goal. By expressing constraints
over tasks using conditions over the environment rather than a

strong task ordering scheme, tasks behave like independent
components.

In ongoing researches, we are looking forward to enrich this
model with business process generation and verification
capacity given that semantics is easily expressed.

6. REFERENCES

[1] van der Aalst, W.M.P.: The application of Petri nets to
workflow management. The Journal of Circuits, Systems
and Computers 8(1), 21–66 (1998).

[2] van der Aalst, W.M.P., van Hee, K.M.: Workflow
management: models, methods, and systems, p. 267.
MIT Press, Cambridge (2004).

[3] van der Aalst, W.M.P., Rosemann, M., Dumas, M.:
Deadline-based Escalation in Process-Aware Information
Systems. Decision Support Systems 43(2), 492–511
(2007)156.

[4] van der Aalst, W.M.P.: Three Good Reasons for Using a
Petri-net-based Workflow Management System. In:
Navathe, S., Wakayama, T. (eds.) IPIC 1996, Cambridge,
Massachusetts, pp. 179–201 (1996).

[5] Atsa Etoundi, R.: A Domain Engineering approach for

multiperspectives Workflow modelling, Ph.D Thesis,
University of Yaounde I - Cameroon (2004).

[6] Atsa, R., Fouda, M.: An Abstract Model for Workflows
and Business Processes. In: CARI 2002, pp. 239–247
(2002).

[7] Atsa, R., Fouda, M.: Security Based Approach to Data
Consistency in a Virtual Enterprise. In: ACS-IEEE
International Conference on Computer Systems and

Applications (2003), IEEE Catalog Number: 03EX722,
ISBN: 0-7803-7983-7.

[8] Atsa, R., Fouda, M.: Mobile-Based support for Business
Processes: Feasibility and Correctness. In: ACS-IEEE
International Conference on Computer Systems and
Applications (2003), IEEE Catalog Number: 03EX722,
ISBN: 0-7803-7983-7.

[9] Atsa, R., Fouda, M.: Human Resource Constraints driven

Virtual Workflow Specification. In: Proceeding of the

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.6, January 2011

32

International Conference on Signal-Image technology &
Internet-based Systems, pp. 176–182 (2005), 2-9525435-
0 c IEEE SITIS 2005.

[10] Attie, P., Singh, M., Sheth, A., Rusinkiewicz, M.:
Specifying and enforcing intertask dependencies. In:

Proceedings of the 19th VLDB Conference (1993).

[11] Cardoso, J., Sheth, A.,Miller, J., Arnold, J., Kochut, K.:
Quality of service for workflows and web service
processes. Journal of Web Semantics 1(3), 281–308
(2004).

[12] Davenport,T., Short, J.E.:TheNewIndustrialEngineering:
InformationTechnology and Business Process Redesign.
Sloan Management Review, 11–27 (Summer 1990).

[13] Dehnert, J., Freiheit, J., Zimmermann, A.: Modelling and
evaluation of time aspects in business processes. Journal
of the Operational Research Society 53, 1038–1047
(2002).

[14] Kiepuszewski, P., ter Hofstede, A.H.M., van der Aalst,
W.M.P.: Fundamentals of Control Flow in Workflows.
Acta Informatica 39(3), 143–209 (2003).

[15] Lamport, L.: Specifying Concurrent Program Modules.

ACM Transactions on Programming Languages and
Systems 5(2), 190–222 (1983).

[16] Ly, L.T., Rinderle, S., Dadam, P.: Semantic correctness
in adaptive process management systems. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol.
4102, pp. 193–208. Springer, Heidelberg (2006).

[17] List, B., Korherr, B.: An Evaluation of Conceptual
Business Process Modelling Languages. In: Proceedings
of the 21st ACM Symposium on Applied Computing
(SAC 2006). ACM Press, New York (2006).

[18] Mendling, J., van der Aalst, W.M.P.: Towards EPC

Semantics based on State and Context. In: Proceedings of
the 5th EPC Workshop EPK 2006, CEUR 2006
Workshop Proceedings, pp. 25–48 (2006).

[19] Motschnig-Pitrik, M.: Contexts as means to decompose
Information Bases and represent relativized Information.
In: Proc. CHI Workshop #11: The Who, What, Where,
When, Why and How of Context-Awareness. Hague,
Netherlands (2000)

[20] Puhlmann, F.: Why do we actually need the Pi-Calculus
for Business Process Management? In: Abramowicz, W.,
Mayr, H. (eds.) 9th International Conference on Business
Information Systems (BIS 2006). Bonn, Gesellschaft fur
Informatik. LNI, vol. P-85, pp. 77–89 (2006).

[21] Trcka, N., van der Aalst, W.M.P., Sidorova, N.: Data-
Flow anti-patterns: Discovering data-flow errors in
Workflows. In: van Eck, P., Gordijn, J., Wieringa, R.

(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 425–439.
Springer, Heidelberg (2009).

[22] Wenfei, F., Weinstein, S, (1999).: Specifying and
Reasoning About Workflows with Path Constraint. In:
Hui, L.C.K., Lee, D.-L. (eds.) ICSC 1999. LNCS, vol.
1749, pp. 226–235. Springer, Heidelberg.

