
International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

9

 Many-Objective Comparison of Twelve Grid Scheduling
Heuristics

Rajendra Sahu

ABV-IIITM Gwalior, India

Anand K Chaturvedi

ABV-IIITM Gwalior, India

ABSTRACT
Different class of stakeholders of Computational Grid has their
own perspective and preferences, which result in different, often
contradictory, criteria for scheduling (main step of grid resource
management). To increase the level of satisfaction of different
class of stakeholders grid management system must use the
scheduling heuristic, which provides compromise solution (i.e. a
compromise schedule) using the many conflicting objectives.

Present work analysed, conflicting as well as harmonious,
interactions of Many-Objectives and performed many objective
comparison to find the most suited heuristics out of the twelve
popular heuristics by1- Visualization objectives of using 3D Bar
Chart and Radar Chart in manner suggested, 2- Non-dominated
Ranking of Heuristics and 3-Qualitative Comparison. Emphasis is
given to computation time taken by heuristics.

Keywords

Computational Grid, Scheduling Heuristic, Many-objective
comparison

1. INTRODUCTION
Connecting geographically distributed computational resources
such as PCs, workstations, clusters, servers, and super computers,
Computational Grids have emerged as a next generation
computing platform for large-scale problems solving in
academics, research and industry. Grid resource management
involves dealing with three classes of stakeholders - end users
making use of grid resources, owners of resources, and grid
administrators. Each class of stakeholders has their own

perspective and preferences, which result in different, often
contradictory, criteria for scheduling (main step of Grid Resource
Management). To increase the level of satisfaction of these
stakeholders grid management system must use the scheduling
heuristic, which provides compromise solution (i.e. a
compromise schedule) using the many conflicting objectives.

Scheduling of task on heterogeneous grid resources is known to
be a NP-complete problem; therefore, to get a near optimal

solution within finite duration, heuristics/meta-heuristics are used
instead of exact optimization methods. In some real-world
situations, the meta-heuristic methods are too difficult or
inappropriate, for example in fully automated systems (where we
cannot tune parameters manually) or where the execution time
should be very short, or for extremely large problems, etc.
Therefore using pure heuristics in such situations is an appropriate
solution (Izakian et al, 2009 b).

Much of the research into multi-objective algorithms concentrates
on optimisation with two conflicting objectives. However, the
real-world challenges to which these algorithms are applied often
feature many more objectives (Coello et al, 2002). As the number
of objectives increases solutions provided by methods become
non-dominated and selecting one of the method from the available

scheduling methods become difficult. Hence, there is a clear need
to extend multi-objective optimization research into the realm of
many-objectives (Farina and Amato, 2002).

Multi-objective algorithms are widely established and well
developed for problems with two or three objectives. However, it
is known that for many-objective optimization, where there are
typically more than three objectives, applying Pareto optimality
as a ranking metric may loose their effectiveness (Purhouse,
2003).

Present work analysed, conflicting as well as harmonious,
interactions of Many-Objectives and performed many objective

comparison to find the most suited heuristics out of the several
available heuristics by following proposed methods

 Visualization of objectives using 3D Bar Chart and

Radar Chart in manner suggested.

 Non-dominated Ranking of Heuristics

 Qualitative Comparison

Emphasis is given to computation time taken by heuristics.

Section 2 discussed proposed methods to compare Many-
Objectives of a problem, in section 3 Many-Objectives of
different stakeholders of computational grid are identified, twelve

heuristics for grid scheduling are explained in section 4, set of
popular twelve challenging instance of grid scheduling problem
are mentioned in section 5, computational results and conclusions
are presented in section 6 and 7 respectively.

2. MANY OBJECTIVE COMPARISON
In grid scheduling problem there are many objectives and these

objectives are not independent. There exist conflicting as well as
harmonious interaction between objectives. When objectives are
in harmony improvement of objective leads to simultaneous
improvement of other but when objectives are in conflict
improvement of one leads to simultaneous deterioration of
another.

2.1 Visualisation of Objectives
For more than three objectives it is not possible to compare the
result in objective space using conventional methods like x,y
scatter plot, 3d plot. Here it is suggested to use 3D Bar Chart and
Radar Chart, in the manner described below, to graphically
represent the many objective result.

To bring the different objective function values on common scale

normalized value of objective function on 0 to 1 scale is
calculated using maximum and minimum value of the objective
function for all methods

 (1)

Here fmax and fmin are the maximum and minimum value of

objective function calculated using different heuristics

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

10

2.2 Non-dominated Ranking of Heuristics
Many-objective optimization, where there are typically more than

three objectives, applying Pareto optimality as a ranking metric
may loose their effectiveness (Purhouse, 2003). To overcome this
Many-objective performance of different scheduling heuristics is
compared by finding frequency of their attaining different ranks in
non dominated comparisons.

Non-dominated Ranking comparison segregates the heuristic
methods in different ranks i.e. rank 1,2,3…so on. Rank 1 is the
highest rank. The methods, which get rank 1 are non-dominated

by other rank 1 methods but dominates all the methods which get
lower than 1 rank. Similarly rank 2 methods dominate methods
of rank 3 and lower ones.

Non-dominated ranking can be performed for different
combinations of objective functions i.e. by considering all
objectives as well as by considering less number of objectives. If
there are N objective then there can be NCN,

NCN-1,
NCN-2 …

NC4,

NC3, and NC2 combination.

Overall performance of these heuristics is evaluated by finding
frequency of their attaining different ranks in non dominated
ranking for all possible combinations of objective functions and
for all instances of scheduling problem. Method can be rated
based on their frequency count of different ranks.

2.3 Qualitative Comparison
Value of different objective function varies in different range
hence Many-objective comparison is difficult.. For comparison of
quality of solution provided by a particular heuristic normalized
value of each objective function is calculated using equation (1)

Quality of objective function value can be expressed subjectively
using word Best, Good, Fair and Poor based on range of
normalized objective function value as shown below.

Quality of
Objective

Range of

Best

Good

Fair

Poor

Heuristic giving more number of best objectives can be
considered a better method.

2.4 Correlation between Objectives
In grid scheduling problem there are many objectives and these
objectives are not independent. There exist conflicting as well as
harmonious interactions between objectives. To evaluate this
correlation can be find out between these objectives. When
correlation coefficient is positive then there is harmony between
objectives and when this is negative then there is conflict between
the objectives.

3. OBJECTIVES OF GRID SCHEDULING
The grid scheduling problem is multi-objective in nature. Several
performance measures and optimization criteria can be considered
to evaluate the quality of a given schedule and overall grid system
performance.

3.1 Makespan
Most popular optimization criterion is minimization of Makespan

i.e. the finishing time of the latest job. Makespan measures the
throughput of grid system. It can be defined as:

Cmax = max {Cj , j=1,…,N} (2)

3.2 Flow time
Flow-time is the sum of the finishing times of jobs. Flow time
measures the Quality of Service of the grid system. It can be
defined as:

F =∑Cj , j=1,…,N (3)

Flow time is minimum when jobs are processed in ascending
order of processing time on a particular grid resource. It is
followed while calculating Flow-time.

3.3 Resource utilization
Due to economic aspect resource providers and grid managers are
interested in the maximum utilization of resource. Resource
utilization defined as the degree of utilisation of resources with
respect to the schedule. The resource utilisation is defined using
the completion time of a machine, which indicates the time at
which machine m will finalise the processing of the previous

assigned jobs as well as those already planned for the machine.
Formally, it is defined as follows:

 (4)

Here completion[i] is the completion time of last job on machine
i, nb_machines is number of machines. Objective is to maximize
the resource utilisation for all possible schedules.

3.4 Matching Proximity
In grid computing effort is made to process the task on the best
possible machine i.e. the machine which takes minimum
execution time. Matching Proximity indicates the degree of
proximity of a given schedule to the schedule produced by the

Minimum Execution Time (MET) method, which assigns a job to
the machine having the smallest execution time for that job.
Matching proximity is an additional performance parameter of
batch mode methods. A large value for matching proximity means
that a large number of jobs is assigned to the machine that
executes them faster. It can be defined as:

 (5)

3.5 Computation Time
Due to dynamic nature of grid, computation time needed to
generate schedule is also an important criterion for selecting a
suitable scheduling method. In grid scheduling problem there is
no need to get the optimal solutions. In the highly dynamic
environment it is essential to get high quality feasible solution in
short time. Computation time of the order of 1 micro second is
measured for different heuristics.

4. HEURISTIC METHODS FOR GRID

SCHEDULING
There are many heuristics for grid scheduling. Twelve popular
heuristics, considered in this comparative study, are described in

this section. For details please refer (Braun et al, 2001),

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

11

(Maheswaran et al, 1999), (Xhafa et al, 2007a), (Xhafa et al,
2007b), and (Izakian et al, 2009 a).

4.1 Opportunistic Load Balancing (OLB)
In this method earliest idle machine is selected without
considering the job’s execution time on the selected machine. If
two or more machines are idle then machine is selected arbitrarily.
In this method time required for Scheduling is less and it keeps
almost all the machines busy at all possible time. Resulting
schedule is not optimal.

4.2 Minimum Execution Time (MET)
In this method minimum execution time is used to assign the job
without considering the machine availability. Job is assigned to
the machine on which it can be executed in minimum time.
Allocating job without considering machine availability results in
load imbalance on grid machines.

4.3 Minimum Completion Time (MCT)
In this method job is assigned to the machine that gives minimum
completion time (ready time of machine + job execution time on
the selected machine) for the job. Allocating job in this manner
may result in execution of job on less faster grid machines.

4.4 Switching Algorithm (SA)
This method of scheduling combines the best features of MCT
and MET methods of scheduling. The method tries to use better
load balancing of MCT and execution on fastest machine of MET.
Here the idea is to first use the MCT till a threshold of balance is

reached followed by MET which creates the load unbalance by
assigning jobs on faster machines. Here MCT and MET are used
in cyclic manner.

4.5 k-Percent Best (kPB)
This method also attempts to combine the best features of MCT

and MET simultaneously instead of cyclic manner. In this method
only k percentage of best resources, on the basis of execution
time, are considered while assigning the jobs. For a particular job
a resource which gives minimum completion time is selected out
of the k percent best resources instead of all possible resources.
For k=100 this method act similar to MCT while for k=100/total
number of machines this method act similar to MET. Here kPB
has serious drawback that in a situation when k percentage
resources are busy but other resource are free, even in such

situation kPB allocates job only to one of busy k percent best
resource. As a result there is large idle time of resources in the
generated schedule.

4.6 Min-min
In this method completion time of all unassigned tasks (1 ≤ j ≤n)

on all the available machines (1 ≤ i ≤ m) is used to calculate the
minimum completion time (MCTi) of task Ti on machine Mi*.
Then task which gives minimum of MCTi is identified
T*={min(MCTi) for (1 ≤ i ≤ m) } and assigned on the machine
M*. Subsequently the task T* is removed from the list of
unassigned task and workload of machine M* is updated. Above
procedure is repeated till unassigned task list get exhausted.

4.7 Max-min
In this method, similar to min-min method, completion time of all
unassigned tasks (1 ≤ j ≤n) on all the available machines (1 ≤ i
≤m) is used to calculate the minimum completion time (MCTi) of
task Tj on machine Mi*. Then task which gives maximum of

MCTi is identified T*={max(MCTi) for (1 ≤ i ≤ m) } and
assigned on the machine M*. Subsequently the task T* is
removed from the list of unassigned task and workload of
machine M* is updated. Above procedure is repeated till
unassigned task list get exhausted.

4.8 LJFR-SJFR
Largest Job on Fastest Resource – Shortest Job on Fastest
Resource (LJFR-SJFR) method allocates largest job on fastest
resource to reduce the makespan and allocates smallest job to
fastest resource to reduce the flow time of the schedule.

In first stage the algorithm allocates m number of jobs similar to
Max-min i.e. completion time of all unassigned tasks (1 ≤ j ≤n)
on all the available machines (1 ≤ i ≤m) is used to calculate the
minimum completion time (MCTi) of task Ti on machine Mi*.
Then task which gives maximum of MCTi is identified
T*={max(MCTi) for (1 ≤ i ≤ m) } and assigned on the machine
M*. Subsequently the task T* is removed from the list of
unassigned task and workload of machine M* is updated. In this

manner m number of jobs are assigned to m number of
unallocated machines.

In second stage remaining unassigned jobs are assigned
alternatively using min-min and max-min method i.e. smallest job
on fastest resource followed by largest job on fastest resource till
the list of unassigned jobs get exhausted.

4.9 Suffrage
Suffrage for a job is the difference between second minimum
completion time and first minimum completion time for that job.
Suffrage method tries to allocate most suffered jobs in terms of
expected completion time first. In this method suffrage is
calculated for all unassigned jobs and the job which has maximum
suffrage value is assigned to the machine which gives first

minimum completion time. Then job is removed from unassigned
job list, machine workload updated and above cycle of job
allocation repeated till list of unassigned jobs get exhausted.

4.10 Work Queue (WQ)
It is a very simple method of job allocation. Jobs are randomly
selected from the list of unassigned jobs and assigned to the

machine with minimum workload. Job assignment repeated in
similar manner till list of unassigned jobs get exhausted.

4.11 Relative Cost (RC)
While assigning jobs relative cost method considers both the load
balancing of machines and the execution time of jobs on

machines. Method calculates two parameters static relative cost

 and dynamic relative cost . Static relative cost is

computed only once at the start of the method, on the other, the
dynamic relative cost is computed at the start of each iteration k.
For job i and machine j

 (6)

 (7)

At each iteration k, the best job ibest is the one that minimises the
expression:

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

12

 (8)

where:

mi*=argmin[completions i,m (k) | Machines]

The value of α is fixed to 0.5 for the computational results.

4.12 Min-max
Min-max heuristic has two steps for assigning jobs to machines.

In first step, similar to min-min method, completion time of all
unassigned tasks (1 ≤ j ≤ n) on all the available machines (1 ≤ i
≤ m) is used to calculate the minimum completion time (MCTi)
of task Ti on machine Mi*. In the second step for all tasks ratio of
minimum execution time (time to execute on fastest machine) to
its execution time on selected machine Mi* is computed and the
task which has maximum value pf it is selected for assignment.
Then job is removed from unassigned job list, machine workload

updated and above cycle of job allocation repeated till list of
unassigned jobs get exhausted.

5. TEST PROBLEM
For fair comparison of different scheduling methods we used ETC
model of benchmark simulation experiments by (Braun et al,
2001) in our study. This model is based on Expected Time to
Complete (ETC) matrix for 512 tasks and 16 machines. There are

Table 1 Heterogeneity and consistency combinations in the
ETC model.

Heterogeneity Consistency

Task Machine Consistent In-
consistent

Semi-
consistent

high high u_c_hihi u_i_hihi u_s_hihi

High low u_c_hilo u_i_hilo u_s_hilo

low high u_c_lohi u_i_lohi u_s_lohi

low low u_c_lolo u_i_lolo u_s_lolo

Twelve different benchmark instances of ETC matrices (512x16)

each based on task heterogeneity, machine heterogeneity, and
consistency. Their twelve combinations are as shown in Table 1.
Machine heterogeneity represents the variation of execution times
for a given task across the resources. An environment having
similar resources will be represented by low machine
heterogeneity, while high machine heterogeneity represents
computing resources of different type and power. Task
heterogeneity represents the degree of variation among the

execution times of tasks for a given machine. In High task
heterogeneity different types of applications are submitted to
execute in the system, from simple programs to large and complex
tasks which require large CPU times to be performed. An ETC
matrix is considered consistent when, if a machine mi executes
job t faster than machine mj, then mi executes all the jobs faster
than mj. Inconsistency means that a machine is faster for some
jobs and slower for others. An ETC matrix is considered semi-

consistent if it contains a consistent sub-matrix. Instances are
labeled as u_x_yyzz. u means uniform distribution (used in
generating the matrix).

• x means the type of consistency

(c – consistent, i – inconsistent and s– semi-consistent).

• yy indicates the heterogeneity of the jobs

 (hi means high, and lo means low).

• zz indicates the heterogeneity of the resources

(hi means high, and lo means low).

These benchmark instances are considered one of the most
demanding for the scheduling problems in heterogeneous
computing environment by the large number of researchers. The
main references in the literature used these instances in their
scheduling methods.

6. COMPUTATIONAL RESULTS
In this section we present the results obtained for scheduling of
twelve instances of test problem using the twelve heuristics of
grid scheduling.

6.1 Computation Program
A computer program in C++ language is developed for all
methods mentioned above which produces respective schedule
and value of the various objectives. Program is executed on Intel
(R) Core 2 Duo CPU T5550 @ 1.83 GHz, 1.83 GHz with 2 GB
RAM and Window Vista operating system. Result obtained are

discussed as follows.

6.2 Single Objective Comparison
Five objective functions are considered for this study. While
considering one objective function at a time result obtained are as
follows:

6.2.1 Makespan
Out of twelve instances Min-max method gives minimum
Makespan in ten instances. For two instances of low task
heterogeneity with consistency Min-Min method gives minimum

value of Makespan.

6.2.2 Flow time
For all twelve instances, Min-Min method gives minimum value

of flow time. Flow time is calculated by arranging task in
ascending order of processing time on the assigned machine.

6.2.3 Resource utilization
Max-Min method gives best resource utilization for all twelve

instances.

6.2.4 Matching proximity
For all instances best value of matching proximity is given by
MET method.

6.2.5 Computation time
Out of twelve instances WQ method takes minimum computation
time in eight instances. For rest of three, one and one instances
minimum computation time is respectively taken by MET, MCT
and kPB. Minimum computation time taken by WQ method is
3921 micro seconds.

6.3 Many Objective Comparison
As evident from single objective comparison of heuristic methods
there is no single method which perform best on all objectives.
Hence result must be analyzed considering more than one
objective functions together.

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

13

6.3.1 Visualisation of objectives
It is difficult to draw conclusion while simultaneously considering
result of all different heuristic methods for all twelve instances
hence geometric mean of objective function values for all twelve
instances is calculated for result of all heuristic methods.

This normalized value of geometric mean of all objective function
values for all heuristic method is shown in Figure 1.

6.3.2 Non-dominated ranking of methods
Non-dominated ranking can be performed for different
combinations of objective functions i.e. by considering all
objectives as well as by considering less number of objectives.
We considered total five objective here hence there can be 5C5,
5C4,

 5C3, and 5C2 combination i.e. total 26 combinations.

Overall performance of these heuristics is evaluated by finding
frequency of their attaining different ranks in non dominated
ranking for total 26 combinations of objective functions and for

all 12 instances of scheduling problem. In this manner there are
total 312 (=26X12) non dominated comparisons and method
getting highest frequency count is the best method.

Frequency count of ranks of different scheduling heuristics is

shown in Figure 2. Min-min heuristic method get maximum (312
out of 312) rank 1 frequency count hence it is the best method. At
second and third place are MCT and WQ methods with 272 and
255 rank 1 frequency count respectively.

6.3.3 Qualitative Comparison
Qualitative comparison of heuristics using all twelve instances of
test problem is shown in Table 3.

• Min-Min, Min-Max and RC give Best quality Makespan for
all 12 instances while suffrage gives in 10 instances.

• Min-Min, and Min-Max give Best quality Flow-time for all
12 instances while RC gives in 10 instances.

• Max-Min, and LJFR-SJFR give Best quality matching
proximity in 12 and 11instances respectively, while suffrage
and Min-max in 8 and RC gives in 7 instances.

• MET gives Best quality matching proximity for all 12
instances.

• Best quality computation time for all 12 instances is given by
OLB, MET, SA, kPB and WQ.

6.3.4 Correlation between Objectives
Values of correlation coefficient between these objectives are give
in Table 2. Highest positive correlation (0.946) is between
Makespan and Flow-time and most negative correlation

coefficient (-0.3396) is between resource utilization and
computation time.

Table 2 Correlation between objectives

F
lo

w
-t

im
e

R
es

o
u
rc

e
u
ti

li
za

ti
o
n

M
at

ch
in

g

P
ro

x
im

it
y

T
im

e

Makespan 0.9460 0.2348 0.3494 -0.1507

Flow-time 1 0.0951 0.4963 -0.1553

Resource
utilization

1 -0.2682 -0.3396

Matching

Proximity
1 -0.2379

Time

1

7. CONCLUSION
There is no single heuristic that is excellent in satisfying fully all
the conflicting expectations of different class of stakeholders of
computational grid. Computation time taken by heuristics has
most negative correlation with other objectives of gird scheduling

which suggests to get better schedule more computation time is
needed by the heuristics. Heuristics can be segregated into two
groups. One group is suitable for immediate mode consisting
OLB, MCT, MET, SA, kPB, and WQ and another is suitable for
batch mode scheduling consisting Max-Min, LJFR-SJFR,
Suffrage, RC, Min-Min, and Min-Max.

Contrary to belief, there is harmony in objectives of minimum
makespan and minimum flow time. Heuristics giving good
makespan also provide comparably good flow-time.

Min-min emerges as leader providing best quality of service as
well as makespan but inferior resource utilisation. Min-max gives
best makespan, resource utilisation but lacks in flow time.
Qualitative comparison of heuristics suggests Min-max as the best
heuristics.

8. REFERENCES
[1] Braun T.D., Siegel H.J., Beck N., Boloni L.L., Maheswaran

M., Reuther A.I., Robertson J.P., Theys M.D., Yao B., A
comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing
systems, Journal of Parallel and Distributed Computing 61
(6) (2001) 810_837.

[2] Coello, C.A.C. et al, 2002. Evolutionary algorithms for

solving multi-objective problems. New York: Kluwer
Academic Publishers.

[3] Izakian Hesam, Abraham Ajith and Snasel Vaclav,
Comparison of Heuristics for Scheduling Independent Tasks
on Heterogeneous Distributed Environments, The 2009 IEEE
International Workshop on HPC and Grid Applications
(IWHGA2009), China, IEEE Press, USA, ISBN 978-0-7695-
3605-7, pp. 8-12, 2009a.

[4] Izakian Hesam, Abraham Ajith and Snasel Vaclav,
Performance Comparison of Six Efficient Pure Heuristics for
Scheduling Meta-Tasks on Heterogeneous Distributed
Environments, Neural Network World, Volume 19, Issue 6,
pp. 695-710, 2009.b

[5] Maheswaran M., Ali S., Siegel H.J., Hensgen D., Freund
R.F., Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems, Journal of Parallel and
Distributed Computing 59 (2) (1999) 107_131.

[6] Purshouse Robin C.. Evolutionary many-objective
optimisation: An exploratory analysis. In The 2003 Congress
on Evolutionary Computation (CEC 2003), volume 3, pages
2066–2073, Canberra, Australia, 8–12 December 2003.
IEEE.

[7] Xhafa F., Barolli L. and Durresi A. Batch Mode Schedulers
for Grid Systems. International Journal of Web and Grid
Services, Vol. 3, No. 1, 19-37, 2007a.

[8] Xhafa F. Carretero J. Barolli L. and Durresi A Immediate
Mode Scheduling in Grid Systems. International Journal of
Web and Grid Services, Vol.3 No.2, 219-236, 2007b.

http://www.softcomputing.net/iwgha09.pdf
http://www.softcomputing.net/iwgha09.pdf
http://www.uivt.cas.cz/nnw/

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

14

Figure 1 : Normalized Many-Objectives of schedules generated by different heuristics for geometric mean of all instances

of problem represented using 3D Bar Chart

Makespan

Flowtime

Resource utilization

Matching Proximity

Computation Time

0

0.2

0.4

0.6

0.8

1

O
LB

M
C

T

M
E

T

SA

kP
B

W
Q

M
ax

M
in

LJ
FR

SJ
FR

Su
ff

er
ag

e

M
in

M
in

M
in

M
ax R
C

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

15

Figure 2 : Frequency count of ranks of scheduling heuristics

0

50

100

150

200

250

300

350

OLB MCT MET SA kPB WQ MaxMin LJFRSJFR Suffrage MinMin MinMax RC
Rank 1 38 272 218 109 179 255 84 58 19 312 228 27

Rank 2 181 40 94 161 119 36 89 102 74 0 84 222

Rank 3 79 0 0 28 14 14 118 138 156 0 0 63

Rank 4 14 0 0 14 0 7 14 7 63 0 0 0

Rank 5 0 0 0 0 0 0 7 7 0 0 0 0

Rank 6 0 0 0 0 0 0 0 0 0 0 0 0

Fr
e
q
u
e
n
cy

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

16

Table 3 : Qualitative Comparison

OLB MCT MET SA kPB WQ Max-

Min
LJFR-
SJFR

Suffrage Min-
Min

Min-
Max

RC

B
es

t

Makespan 0 3 0 2 5 1 2 2 10 12 12 12

Flow time 0 0 4 1 0 0 0 0 6 12 12 10

Resource Utilisation 2 3 0 0 0 3 12 11 8 0 8 7

Matching Proximity 0 0 12 1 1 0 0 0 4 4 4 4

Computation Time 12 11 12 12 12 12 0 0 0 0 0 0

Total 14 17 28 16 18 16 14 13 28 28 36 33

G
o
o
d

Makespan 2 9 4 10 7 1 3 5 2 0 0 0

Flow time 2 6 0 7 6 2 2 4 4 0 0 2

Resource Utilisation 9 7 0 4 6 8 0 1 2 7 4 2

Matching Proximity 0 4 0 3 3 0 0 0 2 4 2 2

Computation Time 0 1 0 0 0 0 0 0 0 0 0 0

Total 13 27 4 24 22 11 5 10 10 11 6 6

F
ai

r

Makespan 2 0 0 0 0 2 4 3 0 0 0 0

Flow time 0 5 0 3 4 0 4 7 2 0 0 0

Resource Utilisation 1 2 0 3 6 0 0 0 2 1 0 1

Matching Proximity 0 2 0 2 2 0 2 2 2 0 2 2

Computation Time 0 0 0 0 0 0 0 0 0 0 0 0

Total 3 9 0 8 12 2 10 12 6 1 2 3

P
o
o
r

Makespan 8 0 8 0 0 8 3 2 0 0 0 0

Flow time 10 1 8 1 2 10 6 1 0 0 0 0

Resource Utilisation 0 0 12 5 0 1 0 0 0 4 0 2

Matching Proximity 12 6 0 6 6 12 10 10 4 4 4 4

Computation Time 0 0 0 0 0 0 12 12 12 12 12 12

Total 30 7 28 12 8 31 31 25 16 20 16 18

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.6, January 2011

17

Figure 3 : Normalized Many-Objectives of schedules generated by different heuristics for geometric mean of all instances

of problem represented using Radar Chart

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OLB

MCT

MET

SA

kPB

WQ

MaxMin

LJFRSJFR

Sufferage

MinMin

MinMax

RC

Makespan

Flowtime

Resource utilization

Matching Proximity

Computation Time

