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ABSTRACT 
Clustering is the process of finding groups of objects such that the 

objects in a group will be similar to one another and different from 

the objects in other groups. Dimensionality reduction is the 

transformation of high-dimensional data into a meaningful 

representation of reduced dimensionality that corresponds to the 

intrinsic dimensionality of the data. K-means clustering algorithm 

often does not work well for high dimension, hence, to improve the 

efficiency, apply PCA on original data set and obtain a reduced 

dataset containing possibly uncorrelated variables. In this paper 

principal component analysis and linear transformation is used for 

dimensionality reduction and initial centroid is computed, then it is 

applied to K-Means clustering algorithm. 
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1. INTRODUCTION 
Data Mining refers to the mining or discovery of new information in 

terms of patterns or rules from vast amounts of data. Data mining is a 

process that takes data as input and outputs knowledge. One of the 

earliest and most cited definitions of the data mining process, which 

highlights some of its distinctive characteristics, is provided by  

Fayyad, Piatetsky-Shapiro and Smyth (1996), who define it as “the 

nontrivial process of identifying valid, novel, potentially useful, and 

ultimately understandable patterns in data.”Some popular and widely 

used data mining clustering techniques such as hierarchical and k-

means clustering techniques are statistical techniques and can be 

applied on high dimensional datasets [6]. A good survey on 

clustering methods is found in Xu et al. (2005). 

High dimensional data are often transformed into lower dimensional 

data via the principal component analysis (PCA)(Jolliffe, 2002) (or 

singular value decomposition) where coherent patterns can be 

detected more clearly [14]. Such unsupervised dimension reduction is 

used in very broad areas such as meteorology, image processing, 

genomic analysis, and information retrieval [9]. It is also common 

that PCA is used to project data to a lower dimensional subspace and 

K-means is then applied in the subspace (Zha et al., 2002)[8]. In 

other cases, data are embedded in a low-dimensional space such as 

the eigenspace of the graph Laplacian, and K-means is then applied 

(Ng et al., 2001)[3].The main basis of PCA-based dimension 

reduction is that PCA picks up the dimensions with the largest 

variances. Mathematically, this is equivalent to finding the best low 

rank approximation (in L2 norm) of the data via the singular value 

decomposition (SVD) (Eckart & Young, 1936). However, this noise 

reduction property alone is inadequate to explain the effectiveness of 

PCA[5] 

Dimension reduction is the process of reducing the number of 

random variables under consideration, and can be divided into 

feature selection and feature extraction [4]. As dimensionality 

increases, query performance in the index structures degrades. 

Dimensionality reduction algorithms are the only known solution that 

supports scalable object retrieval and satisfies precision of query 

results [16]. Feature transforms the data in the high-dimensional 

space to a space of fewer dimensions [9].The data transformation 

may be linear, as in principal component analysis (PCA), but any 

nonlinear dimensionality reduction techniques also exist [18]. In 

general, handling high dimensional data using clustering techniques 

obviously a difficult task in terms of higher number of variables 

involved. In order to improve the efficiency the noisy and outlier data 

may be removed and minimize the execution time, we have to reduce 

the no. of variables in the original data set. To do so, we can choose 

dimensionality reduction methods such as principal component 

analysis (PCA), Singular value decomposition (SVD), and factor 

analysis (FA). Among this, PCA is preferred to our analysis and the 

results of PCA are applied to a popular model based clustering 

technique [7]. 

Principal component analysis (PCA) is a widely used statistical 

technique for unsupervised dimension reduction. K-means clustering 

is a commonly used data clustering for unsupervised learning tasks. 

Here we prove that principal components are the continuous 

solutions to the discrete cluster membership indicators for K-means 

clustering [5].The main linear technique for dimensionality 

reduction, principal component analysis, performs a linear mapping 

of the data to a lower dimensional space in such a way, that the 

variance of the data in the low-dimensional representation is 

maximized. In practice, the correlation matrix of the data is 

constructed and the eigenvectors on this matrix are computed. The 

eigenvectors that correspond to the largest eigenvalues (the principal 

components) can now be used to reconstruct a large fraction of the 

variance of the original data. Moreover, the first few eigenvectors can 

often be interpreted in terms of the large-scale physical behavior of 

the system. The original space (with dimension of the number of 

points) has been reduced (with data loss, but hopefully retaining the 

most important variance) to the space spanned by a few eigenvectors. 

Many applications need to use unsupervised techniques where there 

is no previous knowledge about patterns inside samples and its 

http://en.wikipedia.org/wiki/Feature_selection
http://en.wikipedia.org/wiki/Feature_extraction
http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace
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grouping, so clustering can be useful. Clustering is grouping samples 

base on their similarity as samples in different groups should be 

dissimilar. Both similarity and dissimilarity need to be elucidated in 

clear way. High dimensionality is one of the major causes in data 

complexity. Technology makes it possible to automatically obtain a 

huge amount of measurements. However, they often do not precisely 

identify the relevance of the measured features to the specific 

phenomena of interest. Data observations with thousands of features 

or more are now common, such as profiles clustering in recommender 

systems, personality similarity, genomic data, financial data, web 

document data and sensor data. However, high-dimensional data 

poses different challenges for clustering algorithms that require 

specialized solutions. Recently, some researchers have given 

solutions on high-dimensional problem. Our main objective is 

proposing a framework to combine relational definition of clustering 

with dimension reduction method to overcome aforesaid difficulties 

and improving efficiency and accuracy in K-Means algorithm to 

apply in high dimensional datasets. Kmeans clustering algorithm is 

applied to reduced datasets which is done by principal component 

analysis dimension reduction method. 

2.    METHODOLOGIES  
Cluster analysis is one of the major data analysis methods widely 

used for many practical applications in emerging areas[12].Clustering 

is the process of finding groups of objects such that the objects in a 

group will be similar  to one another and different from the objects in 

other groups. A good clustering method will produce high quality 

clusters with high intra-cluster similarity and low inter-cluster 

similarity [17]. The quality of a clustering result depends on both the 

similarity measure used by the method and its implementation and 

also by its ability to discover some or all of the hidden patterns [15]. 

2.1 Clustering 
Cluster analysis is one of the major data analysis methods widely 

used for many practical applications in emerging areas[12].Clustering 

is the process of finding groups of objects such that the objects in a 

group will be similar to one another and different from the objects in 

other groups. A good clustering method will produce high quality 

clusters with high intra-cluster similarity and low inter-cluster 

similarity [17]. The quality of a clustering result depends on both the 

similarity measure used by the method and its implementation and 

also by its ability to discover some or all of the hidden patterns [15]. 

2.2 K-Means Clustering Algorithm 
K-means is a commonly used partitioning based clustering technique 

that tries to find a user specified number of clusters (k), which are 

represented by their centroids, by minimizing the square error 

function [13]. Although K-means is simple and can be used for a 

wide variety of data types. The K-means algorithm is one of the 

partitioning based, nonhierarchical clustering methods. Given a set of 

numeric objects X and an integer number k, the K-means algorithm 

searches for a partition of X into k clusters that minimizes the within 

groups sum of squared errors. The K-means algorithm starts by 

initializing the k cluster centers [1]. The input data points are then 

allocated to one of the existing clusters according to the square of the 

Euclidean distance from the clusters, choosing the closest. The mean 

(centroid) of each cluster is then computed so as to update the cluster 

center [1]. This update occurs as a result of the change in the 

membership of each cluster. The processes of re-assigning the input 

vectors and the update of the cluster centers is repeated until no more 

change in the value of any of the cluster centers. The steps of the K-

means algorithm are written below: 

 

Input: X = {d1, d2,……..,dn} // set of n data items. 

 

Output: A set of k clusters 

 

 

Step 1:  Initialization: choose randomly K input vectors (data    

points) to initialize the clusters. 

 

Step 2:  Nearest-neighbor search: for each input vector, find the 

cluster center that is closest, and assign that input vector to 

the corresponding cluster. 

 

Step 3: Mean update: update the cluster centers in each cluster   

using the mean (centroid) of the input vectors assigned to 

that cluster 

 

Step 4: Stopping rule: repeat steps 2 and 3 until no more change in 

the value of the means. 

 

2.3    Principal Component Analysis 
Principal component analysis (PCA) involves a mathematical 

procedure that transforms a number of possibly correlated variables 

into a smaller number of uncorrelated variables called principal 

components. The first principal component accounts for as much of 

the variability in the data as possible, and each succeeding 

component accounts for as much of the remaining variability as 

possible. Depending on the field of application, it is also named the 

discrete KarhunenLoève transform (KLT), the Hostelling transform 

or proper orthogonal decomposition (POD).PCA was invented in 

1901 by Karl Pearson.[4] Now it is mostly used as a tool in 

exploratory data analysis and for making predictive models. PCA 

involves the calculation of the eigenvalue decomposition of a data 

covariance matrix or singular value decomposition of a data matrix, 

usually after mean centering the data for each attribute. The results of 

a PCA are usually discussed in terms of component scores and 

loadings. 

PCA is the simplest of the true eigenvector-based multivariate 

analyses. Often, its operation can be thought of as revealing the 

internal structure of the data in a way which best explains the 

variance in the data. If a multivariate dataset is visualized as a set of 

coordinates in a high-dimensional data space (1 axis per variable), 

PCA supplies the user with a lower-dimensional picture, a "shadow" 

of this object when viewed from its (in some sense) most informative 

viewpoint.PCA is closely related to factor analysis; indeed, some 

statistical packages deliberately conflate the two techniques. True 

factor analysis makes different assumptions about the underlying 

structure and solves eigenvectors of a slightly different matrix. 

2.4   Principal Components  
Technically, a principal component (PCS) can be defined as a linear 

combination of optimally weighted observed variables which 

maximize the variance of the linear combination and which have zero 

covariance with the previous PCs. The first component extracted in a 
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principal component analysis accounts for a maximal amount of total 

variance in the observed variables. The second component extracted 

will account for a maximal amount of variance in the data set that 

was not accounted for by the first component and it will be 

uncorrelated with the first component. The remaining components 

that are extracted in the analysis display the same two characteristics: 

each component accounts for a maximal amount of variance in the 

observed variables that was not accounted for by the preceding 

components, and is uncorrelated with all of the preceding 

components. When the principal component analysis will complete, 

the resulting components will display varying degrees of correlation 

with the observed variables, but are completely uncorrelated with one 

another. PCs are calculated using the Eigen value decomposition of a 

data covariance matrix/ correlation matrix or singular value 

decomposition of a data matrix, usually after mean centering the data 

for each attribute. Covariance matrix is preferred when the variances 

of variables are very high compared to correlation. It would be better 

to choose the type of correlation when the variables are of different 

types. Similarly the SVD method is used for numerical accuracy 

[19].After finding principal components reduced dataset is applied to 

kmeans clustering. Here also we have proposed a new method to find 

the initial centroids to make the algorithm more effective and 

efficient. The main advantage of this approach stems from the fact 

that this framework is able to obtain better clustering with reduced 

complexity and also provides better accuracy and efficiency for high 

dimensional datasets 

3.    DATASET DESCRIPTION 
Experiments are conducted on a breast cancer data set which data is 

gathered from uci web site. This web site is for finding suitable 

partners who are very similar from point of personality’s view for a 

person. Based on 8 pages of psychiatric questions personality of 

people for different aspects is extracted. Each group of questions is 

related to one dimension of personality. To trust of user some 

questions is considered and caused reliability of answers are 

increased. Data are organized in a table with 90 columns for 

attributes of people and 704 rows which are for samples. There are 

missing values in this table because some questions have not been 

answered, so we replaced them with 0. On the other hand we need to 

calculate length of each vector base on its dimensions for further 

process. All attributes value in this table is ordinal and we arranged 

them with value from 1 to 5, therefore normalizing has not been 

done. There is not any correlation among attributes and it concretes 

an orthogonal space for using Euclidean distance. All samples are 

included same number of attributes. 

4.    EXPERIMENTAL SETUP 
In all experiments we use MATLAB software as a powerful tool to 

compute clusters and windows XP with Pentium 2.1 GHZ. Reduced 

datasets done by principal component analysis reduction method is 

applied to kmeans clustering. As a similarity metric, Euclidean 

distance has been used in kmeans algorithm.The steps of the 

Amalgamation  k-means clustering algorithm are as follows. 

 

 

 

Input: X = {d1, d2,……..,dn} // set of n data items. 

Output: A set of k clusters 

 

Phase-1: Apply Pca to Reduce the Dimension of the Breast 

Cancer Data Set 

Step 1: Organize the dataset in a matrix X. 

 

Step 2: Normalize the data set using Z-score. 

 

Step 3: Calculate the singular value decomposition of the data 

matrix. X =UDV T 

Step 4: Calculate the variance using the diagonal elements of D. 

Step 5: Sort variances in decreasing order. 

 

Step 6: Choose the p principal components from V with largest 

variances. 

 

Step 7:  Form the transformation matrix W consisting of those p 

PCs. 

 

Step 8: Find the reduced projected dataset Y in a new coordinate axis 

by applying W to X. 

 

Phase-2: Find the Initial Centroids 

 

Step 1:  For a data set with dimensionality, d, compute  

the variance of data in each dimension(column). 

Step 2: Find the column with maximum variance and  

call  it as max and sort it in any order. 

Ste p 3: Divide the data points of cvmax into K subsets,      

where K is the desired number of clusters. 

Step 4: Find the median of each subset. 

Step 5: Use the corresponding data points (vectors) for  

Step 6: each median to initialize the cluster centers. 

 

Phase-3: Apply K-Means Clustering With Reduced Datasets. 

 

Step 1: Initialization: choose randomly K input vectors (data 

points) to initialize the clusters. 

Step 2: Nearest-neighbor search: for each input vector, find the 

cluster center that is closest, and assign that input vector to 

the corresponding cluster. 

Step 3: Mean update: update the cluster centers in each cluster 

using the mean (centroid) of the input vectors assigned to 

that cluster. 

Step 4: Stopping rule: repeat steps 2 and 3 until no more change in 

the value of the means. 

 

4.1 Experimental Results 
Breast cancer original dataset is reduced using principal component 

analysis reduction method. Dataset consists of 569 instances and 30 

attributes. Here the Sum of Squared Error (SSE), representing 

distances between data points and their cluster centers have used to 

measure the clustering quality. 
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Step 1: Normalizing the original data set 

Using the Normalization process, the initial data values are scaled so 

as to fall within a small-specified range. An attribute value V of an 

attribute A is normalized to V’ using Z-Score as follows: 

 

                   V’= (V-mean (A))/std (A)                           (1) 

 

It performs two things i.e. data centering, which reduces the square 

mean error of approximating the input data and data scaling, which 

standardizes the variables to have unit variance before the analysis 

takes place. This normalization prevents certain features to dominate 

the analysis because of their large numerical values. 

 

Step 2: Calculating the PCs using Singular Value Decomposition 

of the normalized data matrix 

The number of PCs obtained is same with the number of original 

variables. To eliminate the weaker components from this PC set we 

have calculated the corresponding variance, percentage of variance 

and cumulative variances in percentage, which is shown in Table 1. 

Then we have considered the PCs having variances less than the 

mean variance, ignoring the others. The variance in percentage is 

evaluated and the cumulative variance in percentage first value is 

same as percentage in variance, second value is summation of 

cumulative variance in percentage and variance in percentage. 

Similarly other values of cumulative variance is calculated. 

 

Step 3: Finding the reduced data set using the reduced PCs 

The transformation matrix with reduced PCs is formed and this 

transformation matrix is applied to the normalized data set to produce 

the new reduced projected dataset, which can be used for further data 

analysis,also applied the PCA on three biological dataset and the 

reduced no. of attributes obtained for each dataset . 

 

Step 4: Finding intial centroids 

The proposed algorithm finds a set of medians extracted from the 

dimension with maximum variance to initialize clusters of the k-

means[10]. The method can give better results when applied to k-

means. 

 

Step 5: Reduced datasets are applied to k-means algorithm with 

computed centroids 

The reduced breast cancer dataset is applied to the standard k-means 

clustering[2] to. The SSE value obtained and the time taken in ms for 

reduced breast cancer datasets with original Amalamation k-means is 

given in Table 2 

 

 

 

 

 

Table 1.The Variances, Variances in Percentages, and Cumulative 

Variances in Percentages Corresponding to Pcs 

 

 

 

Table 2. Shows Results Of Amalgamation Of K-means    With 

Number Of Clusters, SSE and Execution Time 

 

 

 

 

 

 

 

 

 

 

 

 

   Amalgamation   K –Means Algorithm 

  Dataset No of 

Clusters 

    SSE Execution 

Time(in ms) 

 

 

Breast 

Cancer  

Reduced 

Dataset 

        1 12603 0.598 

        2 9513 0.623 

        3 7641 0.791 

        4 4841 0.771 

        5 811 0.889 
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The above results show that the Amalgamation kmeans algorithm 

provides sum of squared error distance and Execution time of 

corresponding clusters. Figure 1. shows graph of SSE and Number of 

clusters. In this figure, when number of clusters increases, sum of 

squared error distance values decreases.Figure 2.shows number of 

clusters increases, Execution time increases. 

 

Figure 1. Shows SSE and Number of Clusters 

 

 

Figure 2. Shows Execution Time and Number Of Clusters 

 

The following Figure 3. And Figure 4. shows the Cluster Results for 

BREAST CANCER DataSet in 2Dand 3D using Amalgamation K-

Means Algorithm with the number of clusters K=5 

Figure 3. Shows Clusters For Breast Cancer Dataset Using    

Amalgamation K-means Algorithm in 2D 

 

Figure 4. Shows Clusters for Breast Cancer Dataset Using 

Amalgamation K-means Algorithm in 3D 

 

 

5.  CONCLUSION 

In this paper a dimensionality reduction through PCA, is applied to k-

means algorithm. Using Dimension reduction of principal component 

analysis, original breast cancer dataset  is compact  to reduced data 

set  which was partitioned in to k clusters in such a way that the sum 

of the total clustering errors for all clusters was reduced as much as 

possible while inter distances between clusters are maintained to be 

as large as possible. We propose a new algorithm to initialize the 

clusters which is then applied to k-means algorithm. The 

experimental results show that principal component analysis is used 

to reduce attributes and reduced dataset is applied to k-means 

clustering with computed centroids. Evolving some dimensional 

reduction methods like canon pies can be used for high dimensional 

datasets is suggested as future work. 
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