Fuzzy Sub-Bi HX Group and its Bi Level Sub-Bi HX Groups

R.Muthuraj **Department of Mathematics** PSNA CET, Dindigul. - 624 622

P.M.Sitharselvam Department of Mathematics PSNA CET, Dindigul. - 624 622

K.H.Manikandan Department of Mathematics PSNA CET, Dindigul. - 624 622

ABSTRACT

The definition of a fuzzy HX group and define a new bialgebraic structure of fuzzy sub-bi HX group of a bi-hx group and some related properties are investigated and redefined in this paper.

Keywords

Bi HXgroup, Fuzzy set, fuzzy subgroup, fuzzy HX group, fuzzy sub-bi HX group of a bi HX group,

AMS Subject Classification (2000): 20N25, 03E72, 03F055, 06F35, 03G25.

1. INTRODUCTION

The concept of fuzzy sets was initiated by Zadeh. Then it has become a vigorous area of research in engineering, medical science, social science, graph theory etc. Rosenfeld gave the idea of fuzzy subgroups. Li Hongxing introduce the concept of HX group and the authors Luo Chengzhong, Mi Honghai , Li Hongxing introduce the concept of fuzzy HX group. The notion of bigroup was first introduced by P.L.Maggu in 1994. W.B. Vasantha Kandasamy and D.Meiyappan introduced concept of fuzzy sub-bigroup of a bigroup and fuzzy subbigroup of a group. In this paper we define a new bialgebraic structure of fuzzy sub-bi HX group of a bi HX group and study some of their related properties. we also discuss the image and pre image of a fuzzy sub-bi HX group of a bi HX group under homomorphism and anti-homomorphism.

2. PRELIMINARIES

In this section we site the fundamental definitions that will be used in the sequel. Through out this paper, G = (G, *) is a group, e is the identity element of G, and xy, we mean x * y.

2.1 Definition

In 2^{G} -{ ϕ }, a nonempty set $\vartheta \subset 2^{G}$ -{ ϕ } is called a HX group on G, if ϑ is a group with respect to the algebraic operation defined by $AB = \{ab | a \in A \text{ and } b \in B\}$, which its unit element is denoted by E.

2.2 Definition

A set $(\vartheta, +, \bullet)$ with two binary operation + and \bullet is called a bi HX group if there exist two proper subsets ϑ_1 and ϑ_2 of θ such that

i.
$$\vartheta = \vartheta_1 \cup \vartheta_2$$

ii. $(\vartheta_1, +)$ is a HX group.
iii. (ϑ_2, \bullet) is a HX group.

A non-empty subset H of a bi HX group $(\vartheta, +, \bullet)$ is called a sub-bi HX group, if H itself is a bi HX group under '+' and '• ' operations defined on ϑ .

2.3 Definition

Let X be any non empty set. A fuzzy subset λ of X is a function $\lambda : X \rightarrow [0,1]$.

2.4 Definition

A fuzzy set λ is called fuzzy HX subgroup of a HX group ϑ if for A, B $\in \vartheta$,

$$\begin{array}{ll} (i) & \lambda \left(AB \right) \geq \min \left\{ \ \lambda (A), \lambda \left(\ B \right) \right\} \\ (ii) & \lambda \left(A^{-1} \right) = \lambda \left(A \right) \,. \end{array}$$

2.5 Definition

(i

Let λ be a fuzzy HX subgroup of a HX group ϑ . For any t $\in [0,1]$, we define the set $\lambda_{\alpha} = \{ A \in \vartheta / \lambda (A) \ge \alpha \}$ is called the level subset of λ .

2.6 Definition

Let $\vartheta = (\vartheta, +, \bullet)$ be a bi HX group. Then $\lambda : \vartheta \rightarrow$ [0,1] is said to be fuzzy sub-bi HX group of the bi HX group ϑ if there exist two fuzzy subsets λ_1 of ϑ_1 and λ_2 of ϑ_2 such that

i.
$$\lambda = \lambda_1 \cup \lambda_2$$

ii. $(\lambda_1, +)$ is a fuzzy HX group of $(\vartheta_1, +)$.

iii. (λ_2, \bullet) is a fuzzy HX group of (ϑ_2, \bullet) .

2.1 Example

Let $G_1 = \{ 0 \}$ and $G_2 = \{ 1, -1 \}$.

Then $(G_1, +)$ and (G_2, \bullet) are groups.

Let $\vartheta_1 = \{ \{0\} \}$ and $\vartheta_2 = \{ \{1\}, \{-1\} \}$, then $(\vartheta_1, +)$ and (ϑ_2, \bullet) are HX groups and hence $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ is a bi HX group.

Define
$$\lambda_1: \vartheta_1 \rightarrow [0,1]$$
 by $\lambda_1(\{0\}) = 0.7$ and
 $\lambda_2: \vartheta_2 \rightarrow [0,1]$ by $\lambda_2(\{1\}) = 0.8$ and
 $\lambda_2(\{-1\}) = 0.5.$

Clearly $(\lambda_1, +)$ is a fuzzy HX group of $(\vartheta_1, +)$ and (λ_2, \bullet) is a fuzzy HX group of (ϑ_2, \bullet) and hence $\lambda = (\lambda_1 \cup \lambda_2, +, \bullet)$ be a fuzzy sub-bi HX group of the bi HX group 9.

2.7 Definition

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ and $\vartheta' = (\vartheta'_1 \cup \vartheta'_2, \oplus, \circ)$ be any two bi HX groups. We say the map $f : \vartheta \to \vartheta'$ is said to be a bi HX group homomorphism if f restricted to ϑ_1 (that is, f / ϑ_1) is a HX group homomorphism from ϑ_1 to ϑ'_1 and f restricted to ϑ_2 (i.e. f / ϑ_2) is a HX group homomorphism from ϑ_2 to ϑ'_2 .

3. BI-LEVEL SUBSETS OF A FUZZY SUB-BI HX GROUP OF A BI HX GROUP 3.1 Definition

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ be a bi HX group and $\lambda = (\lambda_1 \cup \lambda_2, +, \bullet)$ be a fuzzy sub-bi HX group of the bi HX group ϑ . The bi-level subset of the fuzzy sub-bi HX group λ of the bi HX group ϑ is defined as $\lambda_{\alpha} = \lambda_{1\alpha} \cup \lambda_{2\alpha}$ for every $\alpha \in [0, \min \{\lambda_1 (E_1), \lambda_2 (E_2)\}]$ where E_1 denotes the identity element of the HX group $(\vartheta_1, +)$ and E_2 denotes the identity element of the HX group (ϑ_2, \bullet) .

Remark:

The condition $\alpha \in [0, \min \{\lambda_1(E_1), \lambda_2(E_2)\}]$ is essential for the bi-level subset to be a sub-bi HX group, for if $\alpha \notin [0, \min \{\lambda_1(E_1), \lambda_2(E_2)\}]$, the bi- level subset need not in general be a sub-bi HX group of the bi HX group ϑ .

3.1 Example

Consider **Example 2.1**, the bi-level subset λ_{α} for $\alpha = 0.8$ of the fuzzy sub-bi HX group λ is given by $\lambda_{\alpha} = \{1\}$ which is not a sub-bi HX group of the bi HX group 9. Therefore the bi-level subset λ_{α} , for $\alpha = 0.8$ is not a sub-bi HX group of the bi HX group 9.

3.1 Theorem

Every bi-level subset of a fuzzy sub-bi HX group λ of a bi HX group ϑ is a sub-bi HX group of the bi HX group ϑ .

Proof

Let $\lambda = (\lambda_1 \cup \lambda_2, +, \bullet)$ be a fuzzy sub-bi HX group of a bi HX group $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$. Consider the bilevel subset λ_{α} of a fuzzy sub-bi HX group λ for every $\alpha \in [0, \min \{ \lambda_1 (E_1), \lambda_2 (E_2) \}]$ where E_1 denotes the identity element of the HX group $(\vartheta_1, +)$ and E_2 denotes the identity element of the HX group (ϑ_2, \bullet) .

Then $\lambda_{\alpha} = \lambda_{1\alpha} \cup \lambda_{2\alpha}$ where $\lambda_{1\alpha}$ and $\lambda_{2\alpha}$ are sub HX groups of ϑ_1 and ϑ_2 respectively. Hence by the definition of sub-bi HX group λ_{α} is a sub-bi HX group of the bi HX group $(\vartheta, +, \bullet)$.

3.2 Theorem

Let ϑ be a bi HX group and λ be a fuzzy sub-bi HX group of ϑ . Two bi-level subgroups λ_{α} , λ_{β} with $\alpha < \beta$ of λ are equal if and only if there is no $A \in \vartheta$ such that $\alpha \leq \lambda(A) < \beta$.

Proof

Let $\lambda_{\alpha} = \lambda_{\beta}$.

Suppose that there exists $A \in \vartheta$ such that $\alpha < \lambda$ (A) $< \beta$ then, $\lambda_{\beta} \subset \lambda_{\alpha}$. Since $A \in \lambda_{\alpha}$ but not in λ_{β} which contradicts the hypothesis. Hence there exists no $A \in \vartheta$ such that $\alpha \leq \lambda$ (A) $< \beta$.

Conversely, let there be no $A \in \vartheta$ such that $\alpha \leq \lambda(A) < \beta$.

Since $\alpha < \beta$, we have, $\lambda_{\beta} \subseteq \lambda_{\alpha}$.

Let $A \in \lambda_{\alpha}$, then $\lambda(A) \ge \alpha$. Since there exists no $A \in \vartheta$ such that $\alpha \le \lambda(A) \le \beta$, we have

Since there exists no $A \in S$ such that $\alpha \leq \lambda(A) < \beta$, we have $\lambda(A) \geq \beta$ which implies $\lambda_{\alpha} \subseteq \lambda_{\beta}$.

Hence $\lambda_{\alpha} = \lambda_{\beta}$.

3.3 Theorem

Let ϑ be a bi HX group. Let λ be a fuzzy subset of ϑ such that the bi-level subset $\lambda_{\alpha} = \lambda_{1\alpha} \cup \lambda_{2\alpha}$ is a sub-bi HX group of the bi HX group ϑ where $\alpha \in [0, \min \{\mu_{A1}(E_1), \mu_{A2}(E_2)\}]$, then λ is a fuzzy sub-bi HX group of ϑ .

Proof

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ be a bi HX group.

Let the bi-level subset λ_{α} is a sub-bi HX group of the bi HX group ϑ . Then $\lambda_{\alpha} = \lambda_{1\alpha} \cup \lambda_{2\alpha}$ and $(\lambda_{1\alpha} +)$ is a sub HX group of $(\vartheta_1, +)$ and $(\lambda_{2\alpha}, \bullet)$ is a sub HX group of (ϑ_2, \bullet) . We have to prove that λ is a fuzzy sub-bi HX group of the bi HX group ϑ .

 $(\lambda_{1\alpha_{\,,}}+)$ is a sub HX group of $\,(\vartheta_1\,,\,+\,)$, then $(\lambda_{\,1}\,,\,+\,)$ is a fuzzy sub HX group of $\,(\vartheta_1\,,\,+\,)$.

 $(\lambda_{2\alpha_1}, \bullet)$ is a sub HX group of (ϑ_2, \bullet) , then (λ_2, \bullet) is a fuzzy sub HX group of (ϑ_2, \bullet) . Clearly $\lambda = \lambda_1 \cup \lambda_2$.

This implies that λ is a fuzzy sub-bi HX group of the bi HX group ϑ .

3.4. Theorem

A fuzzy subset λ of ϑ is a fuzzy sub-bi HX group of a bi HX group ϑ if and only if the bi-level subsets λ_{α} , $\alpha \in [0, \min \{\lambda(E_1), \lambda(E_2)\}]$, are sub-bi HX groups of ϑ .

Proof

It is clear.

Remark

As a consequence of the Theorem 3.2, the bi-level subbi HX groups of a fuzzy sub-bi HX group λ of a bi HX group ϑ form a chain. Since $\lambda(A) \leq \lambda(E_1)$ or $\lambda(A) \leq \lambda(E_2)$ for all λ in ϑ . Therefore, $\lambda_{\alpha 0}$, $\alpha_0 \in [0, \min \{\lambda(E_1), \lambda(E_2)\}]$, where $\alpha_0 = \min \{\lambda(E_1), \lambda(E_2)\}$ is the smallest sub-bi HX group and we have the chain :

 $\{ \begin{array}{c} E_1 \ , E_2 \end{array} \} \subseteq \ \lambda_{\alpha 0} \ \subset \ \lambda_{\alpha 1} \ \subset \ \lambda_{\alpha 2} \ \subset \ \lambda_{\alpha 3} \ \subset \ \ldots \ldots \ \subset \ \lambda_{\alpha n} \ , \\ where \ \alpha_0 > \alpha_1 > \alpha_2 > \ldots > \alpha_n \ . \end{array}$

4. FUZZY SUB-BI HX GROUP OF A BI HX GROUP UNDER HOMOMORPHISM AND ANTI HOMOMORPHISM

We now discuss the properties of a fuzzy sub-bi HX group of a bi HX group under homomorphism and anti homomorphism.

4.1 Theorem

Let f be a homomorphism from a bi HX group ϑ into a bi HX group ϑ' . If λ is a fuzzy sub-bi HX group of ϑ and λ is f-invariant, then $f(\lambda)$, the image of λ under f, is a fuzzy sub-bi HX group of ϑ' .

Proof

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ and $\vartheta' = (\vartheta'_1 \cup \vartheta'_2, \oplus, \circ)$ be any two bi HX groups. Let $\lambda = (\lambda_1 \cup \lambda_2, +, \bullet)$ be a fuzzy sub-bi HX group of a bi HX group ϑ . Then $(\lambda_1, +)$ is a fuzzy sub HX group of $(\vartheta_1, +)$ and (λ_2, \bullet) is a fuzzy sub HX group of (ϑ_2, \bullet) .

Let f: $\vartheta \rightarrow \vartheta'$ be a homomorphism.

That is, f(AB) = f(A) f(B) for all A, B in ϑ .

We have to prove that $f(\lambda) = \eta$ is a fuzzy sub-bi HX group of ϑ' .

 $\eta \ = f\left(\lambda\right) = f\left(\lambda_1 \ \cup \ \lambda_2 \ \right) = f\left(\lambda_1 \right) \cup f\left(\lambda_2 \ \right).$

Since f is a homomorphism, (f (λ_1), \oplus) is a fuzzy sub HX group of (ϑ'_1 , \oplus) and (f (λ_2), o) is a fuzzy sub HX group of (ϑ'_2 , o).

Hence $\eta = f(\lambda_1) \cup f(\lambda_2)$ is a fuzzy sub-bi HX group of ϑ' .

4.2 Theorem

The homomorphic pre-image of a fuzzy sub-bi HX group η of a bi HX group ϑ' is a fuzzy sub-bi HX group of a bi HX group ϑ .

Proof

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ and $\vartheta' = (\vartheta'_1 \cup \vartheta'_2, \oplus, o)$ be any two bi HX groups.

Let $\eta = (\eta_1 \cup \eta_2, \oplus, o)$ be a fuzzy sub-bi HX group of a bi HX group ϑ' . Then (η_1, \oplus) is a fuzzy sub HX group of (ϑ'_1, \oplus) and (η_2, o) is a fuzzy sub HX group of (ϑ'_2, o) .

Let f: $\vartheta \to \vartheta'$ be a homomorphism.

That is, f(AB) = f(A)f(B) for all A, B in ϑ .

We have to prove that $f^{1}(\eta) = \lambda$ is a fuzzy sub-bi HX group of 9.

 $\lambda \,= f^{\,\text{--}1} \left(\,\, \eta \,\, \right) = f^{\,\text{--}1} (\eta_1 \,\cup \eta_2 \,\,) = f^{\,\text{--}1} (\eta_1 \,) \cup f^{\,\text{--}1} \left(\eta_2 \,\, \right) \,.$

Since f is a homomorphism, (f⁻¹(η_1), +) is a fuzzy sub HX group of (ϑ_1 , +) and (f⁻¹(η_2), •) is a fuzzy sub HX group of (ϑ_2 , •).

Hence $\lambda \ = f^{-1}(\eta_1) \cup f^{-1}$ (η_2) is a fuzzy sub-bi HX group of 9.

4.3 Theorem

Let f be an anti homomorphism from a bi HX group ϑ into a bi HX group ϑ' . If λ is a fuzzy sub-bi HX group of ϑ and λ is f-invariant, then $f(\lambda)$, the image of λ under f, is a fuzzy sub-bi HX group of ϑ' .

Proof

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ and $\vartheta' = (\vartheta'_1 \cup \vartheta'_2, \oplus, \circ)$ be any two bi HX groups. Let $\lambda = (\lambda_1 \cup \lambda_2, +, \bullet)$ be a fuzzy sub-bi HX group of a bi HX group ϑ . Then $(\lambda_1, +)$ is a fuzzy sub HX group of $(\vartheta_1, +)$ and (λ_2, \bullet) is a fuzzy sub HX group of (ϑ_2, \bullet) .

Let $f: \mathfrak{D} \to \mathfrak{D}'$ be an anti homomorphism.

That is, f(AB) = f(B) f(A) for all A, B in ϑ .

We have to prove that $f(\lambda) = \eta$ is a fuzzy sub-bi HX group of ϑ' .

 $\eta = f(\lambda) = f(\lambda_1 \cup \lambda_2) = f(\lambda_1) \cup f(\lambda_2).$

Since f is an anti homomorphism, ($f(\lambda_1), \oplus$) is a fuzzy sub HX group of (ϑ'_1, \oplus) and ($f(\lambda_2)$, o) is a fuzzy sub HX group of (ϑ'_2, o) .

Hence $\eta = f(\lambda_1) \cup f(\lambda_2)$ is a fuzzy sub-bi HX group of ϑ' .

4.4 Theorem

The anti homomorphic pre-image of a fuzzy sub-bi HX group $\eta\,$ of a bi HX group ϑ' is a fuzzy sub-bi HX group of a bi HX group $\vartheta.$

Proof

Let $\vartheta = (\vartheta_1 \cup \vartheta_2, +, \bullet)$ and $\vartheta' = (\vartheta'_1 \cup \vartheta'_2, \oplus, o)$ be any two bi HX groups.

Let $\eta = (\eta_1 \cup \eta_2, \oplus, o)$ be a fuzzy sub-bi HX group of a bi HX group ϑ' . Then (η_1, \oplus) is a fuzzy sub HX group of (ϑ'_1, \oplus) and (η_2, o) is a fuzzy sub HX group of (ϑ'_2, o) .

Let f: $\vartheta \to \vartheta'$ be an anti homomorphism.

That is, f(AB) = f(B)f(A) for all A, B in ϑ .

We have to prove that $f^{1}(\eta) = \lambda$ is a fuzzy sub-bi HX group of ϑ .

 $\lambda \, = f^{\, -1} \, (\, \eta \,) = f^{\, -1} (\eta_1 \, \cup \eta_2 \,) = f^{\, -1} (\eta_1 \,) \cup f^{\, -1} \, (\eta_2 \,) \; .$

Since f is an anti homomorphism, (f⁻¹(η_1), +) is a fuzzy sub HX group of (ϑ_1 , +) and (f⁻¹(η_2), •) is a fuzzy sub HX group of (ϑ_2 , •).

Hence $\lambda = f^{-1}(\eta_1) \cup f^{-1}$ (η_2) is a fuzzy sub-bi HX group of 9.

5. CONCLUSION

In this paper , we define a new bialgebraic structure of fuzzy sub-bi Hx group and studied some of its properties.Futher, we wish to define the relation between fuzzy (normal) HX group and fuzzy (normal) sub bi HX group in HX group also the same in Intuitionistic fuzzy and other some groups are in progress.

6. REFERENCES

- Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S., A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications 131, 537 -553 (1988).
- [2] Das. P.S, Fuzzy groups and level subgroups, J.Math.Anal. Appl, 84 (1981) 264-269.
- [3] Dixit.V.N., Rajesh Kumar, Naseem Ajmal., Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems, 37, 359-371 (1990).

International Journal of Computer Applications (0975 – 8887) Volume 13– No.8, January 2011

- [4] Li Hongxing, HX group, BESEFAL, 33(1987), pp(31-37).
- [5] Luo Chengzhong , Mi Honghai , Li Hongxing , Fuzzy HX group , BUSEFAL.
- [6] Mehmet sait EROGLU, The homomorphic image of a fuzzy subgroup is always a Fuzzy subgroup, Fuzzy sets and Systems, 33 (1989) 255 – 256.
- [7] Mohamed Asaad, Groups and Fuzzy subgroups, Fuzzy sets and systems 39(1991) 323-328.
- [8] Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications 133, 93-100 (1988).
- [9] Muthuraj.R., Sithar Selvam.P.M., Muthuraman.M.S., Anti Q-fuzzy group and its lower Level subgroups, International journal of Computer Applications (0975-8887), Volume 3- no.3, June 2010, 16-20.
- [10] Palaniappan.N., Muthuraj.R., Anti fuzzy group and Lower level subgroups, Antartica J.Math., 1 (1) (2004), 71-76.
- [11] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, J.Math. Anal. Appl. 128 (1987) 241 – 252.
- [12] Rajesh kumar, Homomorphism and fuzzy (fuzzy normal) subgroups, Fuzzy sets and Systems, 44 (1991) 165 – 168.
- [13] Rosenfeld.A., fuzzy groups, J. math. Anal.Appl. 35 (1971), 512-517.