
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

15

High Performance Bit Search Mining Technique

 N. Venkatesan E. Ramaraj
 Assistant Professor Technology Advisor
 IT Department Madurai Kamaraj University
 Bharathiyar Coll of Engg & Tech, Madurai
 Karaikal Tamil Nadu, India

ABSTRACT
Searching algorithms are closely related to the concept of dictionaries.

String searching algorithms are too complex in all sorts of applications.

To analyze an algorithm is to determine the amount of resources (such

as time and storage) necessary to execute it. Most algorithms are

designed to work with inputs of arbitrary length. Usually the efficiency

or running time of an algorithm is stated as a function relating the input

length to the number of steps (time complexity) or storage locations

(space complexity). Time efficiency estimates depend on what defined

to be all step. For the analysis to correspond usefully to the actual

execution time, the time required to perform a step must be guaranteed

to be bounded above by a constant. The main objective of this paper is

to reduce the scanning the dataset by introducing new searching

technique. So far, arrays, trees, hashing, depth first, breadth first, prefix

tree based searching are used in association rule mining algorithms. If

the size of the input is large, run time analysis of the algorithm is also

increased. In this paper, a novel data structure is introduced so that it

reduced dataset scan to one search. This new search technique is bit

search. This bit search technique is to find the kth itemsets (where k

=1,2,3,……n) in one search scan.

Keywords
Association Rules, Breadth First Search, Depth First Search, Bit Search

1. INTRODUCTION

Finding frequent patterns plays an essential role in mining associations,

correlations and many other interesting relationships among data.

Moreover, it helps in data indexing, classification, clustering and other

data mining tasks as well. Thus, frequent pattern mining has become an
important data mining task and a focused theme in database community.

Frequent pattern mining was first proposed by Agrawal et al. [4] for

market basket analysis in the form of association rule mining. It

analyses customer buying behavior by finding associations between the
different items that customers place in their shopping baskets.

Researchers have proposed several algorithms for generating frequent

itemsets. These algorithms differ in their ways of traversing the itemset

lattice and the ways in which they use the anti-monotone property of

itemset support. Another dimension where the algorithms differ is the

way in which they handle the database; i.e., how many passes they

make over the entire database and how they reduce the size of the
processed database in each pass.

It was proposed to address the problem of association rule mining. This

is a multi-pass algorithm in which candidate itemsets are generated

while scanning the database by extending known-frequent itemsets with

items from each transaction. An estimate of the supports of these

candidates is used to guide whether these candidates need to be
extended further to produce more candidates.

Frequent itemsets are found from the dataset through several

searching algorithmic approaches. Motivation of this paper is to

reduce searching time by one time scanning. From this technique,

k-itemset generation is found through one time matching. All the

elements in a particular transaction only one time to match the k-

itemset combination. This is achieved through Bit array format

and its operation.

Organization of the paper is as follows: The preliminary and

related works are discussed in Section 2. Section 3 describes the

new algorithms and its data structure. The experimental and

evaluation of new algorithms are discussed in Section 4.

Performance analysis is shown in Section 5. The paper is

concluded in section 6 along with concise idea on future
enhancement.

2. PRELIMINARY AND RELATED WORKS

Finding frequent itemsets can be seen as a simplification of the

unsupervised learning problem called “mode finding” or “bump

hunting” [9] For these problems each item is seen is a variable.

The goal is to find prototype values so that the probability density

evaluated at these values is sufficiently large. Confidence of a rule

is defined conf(XY) = supp(X U Y)/supp(X). Association rules

are required to satisfy both a minimum support and a minimum

confidence constraint at the same time. Since the definition of

support enforces that all subsets of a frequent itemset have to be

also frequent, it is sufficient to only mine all maximal frequent

itemsets defined as frequent itemsets which are not proper subsets
of any other frequent itemset [19].

2.1. RELATED ALGORITHMS

According to their searching nature, frequent itemset generation

algorithms are classified into two categories. Breadth First Search

(BFS) and Depth First Search (DFS) are two major divisions. It is

further divided into two categories with counting occurrences and

intersecting for both DFS and BFS. The combinations of these

categories are: The first one is BFS with counting occurrence and

BFS with TID List Intersection, The second is DFS with counting

occurrence and DFS with TID List Intersection.

BFS with counting occurrences are the following: The most

popular algorithm of this type is Apriori [4,10] where also the

downward closure property of itemset support was introduced.

Apriori makes additional use of this property by pruning those

candidates that have an infrequent subset before counting their

supports. This optimization becomes possible because BFS

ensures that the support values of all subsets of a candidate are

known in advance.

AprioriTID [1,2] is an extension of basic apriori approach. Instead

of relying on the raw database Apriori TID internally represents

each transaction by the current candidates it contains. With

AprioriHybrid both approaches are combined. DIC is a further

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

16

variation of the Apriori algorithm [14]. DIC softens the strict separation

between counting and generating candidates.

BFS with TID list intersections algorithm is Partition. The partition

algorithm [15] is an apriori like algorithm that uses set intersections to

determine support values. As described above apriori determines the

support vaues of all (k-1) candidates before counting k-candidates. The

problem is that partition of course wants to use the tidlists of the

frequent (K-1) itemsets to generate the tidlists of the k-candidates.

DFS with counting occurrence approach algorithm is called FP Growth

[6]. In preprocessing steps FP Growth derives a highly condensed

representation of the transaction data, the so called FP tree, the

generation of the FP-tree is done by counting occurrences and DFS. FP

Growth uses the FP tree to derive the support value of all frequent

itemsets.

DFS with TID List intersection algorithm [19, 20] éclat is introduced

the combination of DFS with TID Lists intersections. When using DFS,

it suffices to keep tid lists on the path from the root down to the class

currently investigated in memory. That is splitting the databases as done

by partition is no longer needed. Éclat employs an optimization, called

“fast intersection”[17]. Whenever intersected with two tidlists then only

intersect in the resulting tidlists. Among these algorithms is the

implementation of Apriori and éclat algorithm by Borgelt [13]

interfaced in the association rules environment.

2.2. BIT OPIERATIONS
A bit stream is a time series of bits. The term bitstream is frequently

used to describe the configuration data to be loaded into the

reconfigurable computer instead of application specific integrated

circuit. A bit array is an array data structure that compactly stores

individual bits (Boolean values). It implements a simple set data

structure storing a subset of {1,2,...,n}. Each bit in a word can be

singled out and manipulated using bitwise operations.

Although most machines are not able to address individual bits in

memory, nor have instructions to manipulate single bit, each bit in a

word can be singled out and manipulated using bitwise operations. For

example

 OR can be used to set a bit to one: 11101010 OR 00000100 =

11101110

 AND can be used to set a bit to zero: 11101010 AND

11111101 = 11101000

 AND together with zero-testing can be used to determine if a

bit is set:

 11101010 AND 00000001 = 00000000 = 0

 11101010 AND 00000010 = 00000010 ≠ 0

3. BIT SEARCH ALGORITHMS

3.1. Representation of Itemsets
From the definition of association rule mining problem that transaction

databases and sets of association have in common that they contain sets

of items together with additional information, For example a transaction

in the database contains a transaction ID and an itemset. A rule in a set

of mined association rules contain two itemsets, one for the LHS and

one for the RHS, and additional quality information, ex: values for

various itemset measures.

Definition 1: Transaction bit array
Let N be the number of transactions of the data set. Let M be the total

number of items in the datasets. Convert the dataset items into M x N

sparse matrix. Substitute all non-zero elements of sparse matrix as 1

and Mask the matrix as sparse bit matrix. Hence, keep all the

transactions of the dataset as transaction bit array.

Definition 2: Subset bit array
Let I be a set of items. A set X = {i1, . . . , ik} is the subset of I is

called an itemset, or a k-itemset if it contains k items. All the k-

itemset are converted into bit array by substituting the presence of

items as 1 and absence as 0. All subset itemsets are converted into

subset bit array.

Definition 3 : Frequent itemset
An itemset is called frequent if its support is not less than a given

absolute minimal support threshold value which is user defined

one.

Definition 4: Bitwise AND
Bitwise AND operation is a novel searching technique used to find

the frequent itemsets. AND can be used to find the result value for

subset bit array with transaction bit array of dataset sparse bit. If

the result value is as same as the subset bit array value, the k-

itemsets are present in the transaction. This operation is applicable

and done for all the subset k-itemsets (where k = 1,2,3,………n)

and find the result in a single search. If the result value is not

same as the subset bit array value, the items are not present in the

transactions.

Collections of itemsets used for transaction databases and sets of

association can be represented binary incidents matrices with

columns corresponding to the items and rows corresponding to the

itemsets .The matrix entries represents the presence (1) or absence

(0) of an item in a particular itemset. An example of a binary

incidence matrix containing itemsets is shown below.

Table 3.1: Sparse Matrix Representation

1 0 3 0 5

0 2 3 4 0

0 0 3 4 5

 1 0 0 0 5

0 0 0 0 5

Table 3.2: Sparse Bit representation

1 0 1 0 1

0 1 1 1 0

0 0 1 1 1

1 0 0 0 1

0 0 0 0 1

Algorithm 1: Bit_Search_Item
1. Initialize all entries of T[I,N] as 0 as a matrix with single row for

one itemset

2. NNo. of Transactions in the dataset

3. M No. of items in the datasets

4. // sparse bit matrix conversion

5. For k = 1 to N do

6. For j = 1 to M do

7. If j = I then

8. S[k,j] = 1

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

17

9. Else

10. S[k,j] = 0

11. Endif

12. End for

13. Endfor

14. // Get the k-itemsets using permutation combination or any

other procedure

15. // convert all k-itemset into bit array

16. For j = 1 to M do

17. If j = I then

18. T[1,j] = 1

19. Endif

20. Endfor

21. // find the k – itemsets (k = 1,2,…..)

22. For all transaction (tid, I) € D

23. For x = 1 to k // to k-itemsets (k=1,2,…..)

24. Cx = 0 // initialize the count of k-itemsets

25. For j = 1 to M

26. B[1,j] = s[tid,j] BITAND t[I,j]

27. If b[I,j] = t[I,j] then

28. Cx = Cx + 1

29. Endif

30. End for

31. Endfor

Algorithm 2: Bit_Search_TID

1. Initialize all entries of T[I,M] as 0 as a matrix with single row

for one itemset

2. NNo. of items in the datasets

3. M No. of Transactions in the dataset

4. // sparse bit matrix conversion

5. For k = 1 Mo

6. For j = 1 to N do

7. If j = I then

8. S[k,j] = 1

9. Else

10. S[k,j] = 0

11. Endif

12. End for

13. Endfor

14. // Get the k-itemsets using permutation combination or any

other procedure

15. // convert all k-itemset into bit array

16. For j = 1 to N do

17. If j = I then

18. T[1,j] = 1

19. Endif

20. Endfor

21. // find the k – itemsets (k = 1,2,…..)

22. For all transaction (tid, I) € D

23. For x = 1 to k // to k-itemsets (k=1,2,…..)

24. Cx = 0 // initialize the count of k-itemsets

25. For j = 1 to N

26. B[1,j] = s[tid,j] BITAND t[I,j]

27. If b[I,j] = t[I,j] then

28. Cx = Cx + 1

29. Endif

30. End for

31. Endfor

4. EXPLANATION AND EXPERIMENT

To store collections of itemsets with possibly duplicated elements

(identical rows) i.e, itemsets containing exactly the same items.

Since a transaction database can contain different transactions with

the same items. Such a database is still a set of transactions, since

each transaction also contains a unique transaction ID. The binary

incidence matrix will in general be very sparse with many items

and a very large number of rows. A natural representation for such

data is a sparse matrix format. To implement the above procedures,

the following example is used to represent the searching efficiency.

Table 4.1 shows the medical details of the patients who are

affected by fever, cough, throat pain, etc. with numeric
transformed data items for further easy manipulation.

Table 4.1: Medical Dataset example

Symptoms Transformed

Items

Fever, Cough, throat pain 1 2 3 0

Fever, Cough, breathlessness 1 2 4 0

Swallowing difficulty, fever, neck swelling,

Breathlessness
5 1 6 4 0

Cough, vomiting 2 7 0

Cyanosis, noisy breading, chest retraction 8 9 10 0

Cough, ear pain, ear discharge 2 11 12 0

Breathlessness, nasal block, cough, noisy

breading, fever
4 13 2 9 1 0

Breathlessness, cyanosis 4 8 0

Bit_Search_Item Representation

All the transactions of the above dataset are converted into sparse

matrix form and masked into sparse bit form. Table 4.2 shows the

Horizontal representation of the dataset as sparse bit matrix in
order to optimize process memory occupation and search time.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

18

Table 4.2: Horizontal Sparse Bit Representation of Medical Dataset

Tid/items 1 2 3 4 5 6 7 8 9 10 11 12 13

T1 1 1 1 0 0 0 0 0 0 0 0 0 0

T2 1 1 0 1 0 0 0 0 0 0 0 0 0

T3 1 0 0 1 1 1 0 0 0 0 0 0 0

T4 0 1 0 0 0 0 1 0 0 0 0 0 0

T5 0 0 0 0 0 0 0 1 1 1 0 0 0

T6 0 1 0 0 0 0 0 0 0 0 1 1 0

T7 0 1 0 1 0 0 0 0 1 1 0 0 1

T8 0 0 0 1 0 0 0 1 0 0 0 0 0

Total 3 5 1 4 1 1 1 2 2 2 1 1 1

Table 4.3: Vertical representation of Medical dataset

Item/tids T1 T2 T3 T4 T5 T6 T7 T8

1 1 1 1 0 0 0 0 0

2 2 2 0 2 0 2 2 0

3 3 0 0 0 0 0 0 0

4 0 4 4 0 0 0 4 4

5 0 0 5 0 0 0 0 0

6 0 0 6 0 0 0 0 0

7 0 0 0 7 0 0 0 0

8 0 0 0 0 8 0 0 8

9 0 0 0 0 9 0 9 0

10 0 0 0 0 10 0 10 0

11 0 0 0 0 0 11 0 0

12 0 0 0 0 0 12 0 0

13 0 0 0 0 0 0 13 0

Table 4.4: Vertical Sparse Bit Representation of Medical Dataset

Item/tids T1 T2 T3 T4 T5 T6 T7 T8 Total

1 1 1 1 0 0 0 0 0 3

2 1 1 0 1 0 1 1 0 5

3 1 0 0 0 0 0 0 0 1

4 0 1 1 0 0 0 1 1 4

5 0 0 1 0 0 0 0 0 1

6 0 0 1 0 0 0 0 0 1

7 0 0 0 1 0 0 0 0 1

8 0 0 0 0 1 0 0 1 2

9 0 0 0 0 1 0 1 0 2

10 0 0 0 0 1 0 1 0 2

11 0 0 0 0 0 1 0 0 1

12 0 0 0 0 0 1 0 0 1

13 0 0 0 0 0 0 1 0 1

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

19

The sparse bit representation of the table 4.2 is used to implement the

Horizontal representation of association rule mining algorithms such as
Apriori.

Bit_Search_TID Representation

All the transactions are first converted as item wise representation

format. Table 4.3 shows the vertical representation of the dataset and
its sparse matrix form.

All the itemwise transactions of the above dataset are converted into

sparse matrix form and masked into transaction based sparse bit form.

Table 4.4 shows the vertical sparse bit form of the medical dataset for
further searching process.

The above vertical form of sparse bit representation is used to

implement the association rule mining algorithms such as AprioriTID,
Eclat.

All the itemsets combinations are generated through candidate key

generation or any other permutation combination formula. Again the

itemsets are converted into bit array structure.

From the above table 4.2, bit search is organized as the following:

All the itemsets are made bitwise and operated with the corresponding

row transactions for searching itemsets by one scan. Transaction bit

arrays are and operated with subset bit array. The result is compared

with the corresponding itemsets bit array structure. If it is same, all the

items in the itemsets are present in the transaction and count is

incremented by one. Otherwise proceed to compare the next

transactions and find the support level of itemset. Continue tthe above

operations upto k – itemsets search in one search.

From the above table 4.4, bit search is organized as the following:

All the itemsets are made bitwise and operated with the corresponding

column transaction bit arrayx for searching itemsets by one scan.

Column wise bits are and operated with itemsets bit array. The result is

compared with the corresponding itemsets bit array structure. If it is

same, all the items in the itemsets are present in the transaction and

count is incremented by one. Otherwise proceed to compare the next

transactions and find the support level of itemset. Continue tthe above
operations upto k – itemsets search in one search.

For example for both vertical and horizontal sparse bit representation, to

search the itemsets 5,6 in the 3rd transactions the comparison is done as

follows: The first 6 elements of the transaction 3 bit array is – 100111.

5,6 itemsets bit array is 000011. The comparison is 100111 bit and

000011. The result is 000011. Hence, the items are present in the
transaction.

5. PERFORMANCE ANALYSIS
To prove the efficiency, all these algorithms were experimented on

three data sets, which exhibit different characteristics and the results

evaluated. The data sets used were: chess, connect and mushroom

obtained from FIMI web site. For the experiments, we used Intel

Pentium 2.5 GHz processor, Windows XP with 256 MB RAM was

used. The results for these data sets are discussed as shown in figure

5.1 to Figure 5,3. Each figure represents the results for respective

dataset implementation of Bit Search with Apriori-Trie and FP-Growth

in finding k-itemset search. Diagrams are represented as the comparison

of various support level and execution time which is given in seconds.

5.1 Comparison with AprioriTrie and FP-growth

Datasets are real data (Mushroom, chess and Connect-4 data) which are

dense in long frequent patterns. Bit Search algorithms compared with

two popular algorithms - AprioriTrie and FP-growth, the

implementations of which were downloaded from http://

fimi.cs.helsinki.fi software implementation using these datasets.

The characteristics of datasets are shown in Table 5.1.

Table 5.1: CHARACTERISTICS OF EXPERIMENT DATA

SETS

Data

#items avg.

trans.

length

length #

transactions

mushroom 120 23 8,124

Connect-4 130 43 67,557

Chess 75 40 3,225

TABLE 5.2: RUN TIME (S) FOR CONNECT-4 DATA

Support(%) Bit Search AprioriTrie
FP

Growth

5 0.969 3.531 8.984

10 0.9437 3.563 8.313

15 0.9387 3.516 8.093

20 0.9026 3.532 7.953

25 0.9008 3.516 7.734

Table 5.2 and Figure 5.1 show the relative performance of the

algorithms on Connect-4 data. Connect-4 data is very dense. In the

implementation Bit Search algorithm runs faster than AprioriTrie

in all support level and also faster than FP-Growth.

CONNECT-4 DATASET

0

5

10

5 10 15 20 25

Support (%)

Tim
e

(S
ec

) AprioriTrie

FP Grow th

BitSearch

Figure 5.1: COMPARISON OF RUN TIME (S) FOR

CONNECT-4 DATA

Table 5.3 and Figure 5.2 show the relative performance of the

algorithms on Mushroom data. From implementation, Bit Search

algorithm is faster than FP-Growth and AprioriTrie almost in all

support levels.

TABLE 5.3 RUN TIME (S) FOR MUSHROOM DATA

Support(%) Bit Search AprioriTrie FP

Growth

5 0.2286 0.437 1.031

10 0.2291 0.422 0.953

15 0.2208 0.422 0.912

20 0.1998 0.422 0.902

25 0.1989 0.422 0.894

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

20

MUSHROOM DATASET

0

0.5

1

1.5

5 10 15 20 25

Support (%)

Tim
e

(S
ec

) AprioriTrie

FP Grow th

BitSearch

Figure 5.2: COMPARISON OF RUN TIME (S) FOR MUSHROOM

DATA

Table 5.4 and Figure 5.3 show the comparison of the algorithms of

interest on Chess data. AprioriTrie is better than FPGrowth while Bit

Search is better than AprioriTrie.

TABLE 5.4 RUN TIME (S) FOR CHESS DATA

Support(%) Bit Search AprioriTrie

FP

Growth

5 0.2408 0.437 1.078

10 0.2396 0.422 1.078

15 0.2213 0.422 1.031

20 0.2111 0.438 0.984

25 0.2011 0.437 0.904

CHESS DATASET

0

0.5

1

1.5

5 10 15 20 25

Support (%)

Tim
e

(S
ec

)
AprioriTrie

FP Grow th

BitSearch

Figure 5.3: COMPARISON OF RUN TIME (S) FOR CHESS DATA

From the above diagrammatical evidence prove the efficiency of Bit

Search algorithms.

In theoretical analysis of algorithms it is common to estimate their

complexity in the asymptotic sense, i.e., to estimate the complexity

function or arbitrarily large input. Big O notation, omega notation is

used to the new bit search technique. Performance analysis is measured

through finding the time complexity of the algorithms. Normally

Turing machines are permitted bit at a time to be read or written; these

are called bit operations, and the number of bit operations required to

solve a problem is called its bit complexity. Bit complexity generalizes

to any machine where to reduce the memory occupation cells are of a

fixed size that depends on the input values. Put another way, the bit

complexity is the complexity for all numeric values either presence or

absence as a single bit.

Complexity analyses of the new proposed algorithms are defined as

follows: For both horizontal and vertical sparse bit representation of the
dataset are same processes.

Let number of items in dataset be M. Let the number of items in

transaction be N. During the searching process, all the items in the

transactions are converted as bit storage. So the required memory

allocation to represent the array as blt elements. So the memory

occupation is reduced. Approximate number of bytes required to
the represent items and searching is calculated as log M/2.

Time required to search any k-itemset (k=1,2,….) in a single

transaction is 1 (one). For N number of transaction is O(N)=N

which is the lowest one while compared to any other Association

Rule searching technique. In Best case, searching 1-itemset

search space time is 1 and also in the worst case of k-itemset

search space time is also reduced to 1. This algorithm implies its

best performance for all itemset combination from 1 to k search
time is reduced to 1 (one).

5.2. Complexity Analysis of DFS and BFS

Depth First Search Algorithm starts at a specific vertex S in G,

which becomes current vertex. Then algorithm traverse graph by

any edge (u, v) incident to the current vertex u. If the edge (u, v)

leads to an already visited vertex v, then backtrack to current

vertex u. If, on other hand, edge (u, v) leads to an unvisited vertex

v, then go to v and v becomes our current vertex and proceed in

this manner until it reaches to "deadend". Therefore, DFS

complexity is O(V + E). As it was mentioned before, if an

adjacency matrix is used for a graph representation, then all edges,

adjacent to a vertex can't be found efficiently, that results in O(V2)

complexity.

Breadth-first search is a way to find all the vertices reachable from

the given source vertex, s. Like depth first search, BFS traverse a

connected component of a given graph and defines a spanning tree.

Intuitively, the basic idea of the breath-first search is this: send a

wave out from source s. The wave hits all vertices 1 edge from s.

From there, the wave hits all vertices 2 edges from s. etc. The lines

added to BFS algorithm take constant time to execute and so the
running time is the same as that of BFS which is O(V + E).

5.3. Advantages of Bit Search
Bit Search algorithms, despite their simplicity, have a number of

marked advantages over DFS an BFS data structures:

 Bit Search algorithms are extremely compact;

 Arrays of bits to be stored and manipulated in the

register set for long periods of time with no memory
accesses.

 Limit memory access, and maximally use of the itemset

search outperforms many other data structures on

practical data sets. No other searching technique have

search space time is one. Hence Bit Search algorithms

are more efficient while comparing others.

6. CONCLUSION
This paper has proposed a new data structure, Bit-Search to mine

frequent itemsets. Quantitative proof that Bit-Search is superior to

Breadth first search (BFS) and Depth first Search (DFS)

algorithms because

 reduces the search space to 1 for all itemsets

combination.

 Reduces the memory space for finding the frequent

itemsets.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.2, January 2011

21

 Increases the efficiency

 Decrease the time complexity.

The advantages of Bit-Search over existing searching algorithms listed

above are good evidence for efficiency. Bit-Search scores a scalable

height to implement in association rule mining algorithms especially

when transactions are large. By evidence, bit search technique of

vertical representation execution time is compared with FP Growth and

ApriroriTrie. Bit search has low execution time. This new technique

will be applied in any type of searching related algorithms as future
extension work.

7. REFERENCES

[1] Zhi-Choa Li, Pi-Lian He, Ming Lei, “A High Efficient Aprio,iTID

Algorithm for mining Association rule”, Proceedings of 4th

International Conference on machine learning and cybernetics, pp

18-21 AUG 2005.

[2] He Li-jian, Chen Li-chao, Liu shuang-ying, “Improvement of

AprioriTid Algorithm for Mining Association Rules”, Journal of
Yantai University, Vol.16, No.4, 2003.

[3] R. Agrawal, J.Shafer, “Parallel mining of association rules”, IEEE

Transactions on knowledge and Data Engineering, 8(6), December
1996.

[4] R. Agrawal, T. Imielinski, and A.N. Swami. Mining association

rules between sets of items in large databases. In P. Buneman and S.

Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, volume 22(2) of SIGMOD
Record, pages 207–216. ACM Press, 1993.

[5] Ke Su, Fengsdhan Bai Mining weighted Association Rules IEEE
transactions on KDE 489-495, April 2008

[6] J. Han, J. Pei, and Y. Yin, ”Mining frequent patterns without

candidate generation,” Procedings of ACM SIGMOD Intnational

Conference on Management of Data, ACM Press, Dallas, Texas, pp. 1-
12, May 2000.

[7] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, ”Hmine:

Hyper-structure mining of frequent patterns in large databases,” Proc. of
IEEE Intl. Conference on Data Mining, pp. 441-448, 2001.

[8] A. Pietracaprina, and D. Zandolin, ”Mining frequent itemsets using

Patricia Tries,” FIMI ‟03, Frequent Itemset Mining Implementations,

Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining
Implementations, Melbourne, Florida, December 2003.

[9] G. Grahne, and J. Zhu, ”Efficiently using prefix-trees in mining

frequent itemsets,” FIMI ‟03, Frequent Itemset Mining

Implementations, Proceedings of the ICDM 2003 Workshop on

Frequent Itemset Mining Implementations, Melbourne, Florida,
December 2003.

 [10] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules. Proceedings 20th International Conference on Very Large Data
Bases, pages 487–499. Morgan Kaufmann, 1994.

[11] C. Borgelt and R. Kruse. Induction of association rules: Apriori

implementation. In W. H¨ardle and B. R¨onz, editors, Proceedings

of the 15th Conference on Computational Statistics, pages 395–

400, http://fuzzy.cs.unimagdeburg.de/~borgelt/software.html2002.
Physica-Verlag.

[12] D. Burdick, M. Calimlim, and J. Gehrke, ”MAFIA: a maximal

frequent itemset algorithm for transactional databases,”

Proceedings of International Conference on Data Engineering,

Heidelberg, Germany, pp. 443-452, April 2001,

 [13] Christian Borgelt Efficient implementation of Apriori and
Eclat FIMII ‘03

 [14] Bart Goethals Survey on Frequent Pattern Mining, , HIIT
Basic Research Unit, University of Helsinki, Finland.

[15] Ja-Hwung Su, Wen-Yang Lin: CBW: An efficient algorithm

for Frequent Itemset Mining, Proceedings of 37th Hawaii
International Conference on System Science 2004.

[16] Data Mining – Concepts and Techniques, Jiawei Han,

Micheline Kamber – 2004 Edn

[17] Mingju Song and Sanguthevar Rajasekaran A transaction

mapping for frequent itemsets mining IEEE transactions on
Knowledge and Data Engineering 18(4):472-480, April 2006.

[18] Balaji Padmanabhan, Alexandar Tuzhilin On

Characterization and Discovery of Minimal unexpected pattern in
Rule Discovery IEEE trans on KDE vol 18 no. 2 Feb „06

[19] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, ”New

algorithms for fast discovery of association rules,” Proceedings of

the Third International Conference on Knowledge Discovery and
Data Mining, AAAI Press, pp. 283-286, 1997.

[20] M.J. Zaki, and K. Gouda, ”Fast vertical mining using

diffsets,” Proceedings of the Nineth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

Washington, D.C., ACM Press, New York, pp. 326-335, 2003.

[21] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa,

and D. Shah, ”Turbo-charging vertical mining of large databases,”

Procedings of ACM SIGMOD Intnational Conference on

Management of Data, ACM Press, Dallas, Texas, pp. 22-23, May

2000,

Authors
Dr. E. Ramaraj is presently working as a Technology Advisor,

Madurai Kamaraj University, Madurai He has 24 years teaching

experience and 14 years research experience. He has presented

research papers in more than 50 national and international

conferences and published more than 30 papers in National and

International journals. His research areas include Data mining and

Network security.

N.Venkatesan is working as an Assistant Professor, Information

Technology Department, Bharathiyar College of Engineering and

Technology, Karaikal. He has 13 years of teaching experience. He

has been member of ISTE. He published 4 papers in International

journals 12 and papers in National and International conferences.

He has authored a book Data Mining and Warehousing.

