
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

8

A Query based Approach to Reduce the Web Crawler
Traffic using HTTP Get Request and Dynamic Web Page

ABSTRACT
The functions of Web crawler download information from web

for search engine. Web pages changed without any notice. Web

crawler has to revisit web site to download updated and new

web pages. It is estimated 40% of current web traffic is

generated by web crawler. This paper proposes query based

approach to inform updates on web site to web crawler using

Dynamic web page and HTTP GET Request. Dynamic web page

generates HTML based response having list of updates on web

site after crawler last visit. Web crawler only visits updated web

pages instead of visiting full web sites for updates. Proposed

scheme is tested & results show that it is very promising.

General Terms
HTTP GET request query based approach to reduce Web

Crawling Traffic.

Keywords
Web Search Engine, Web, Web Crawler. Web Crawling Traffic.

HTTP GET request query.

I. INTRODUCTION

Today Web is main source of information. Web is network of

interconnected Hyperlinks on Internet. Web is accessed with the

help of web browser [2].

To reach particular page most of the user use search engines.

Web Crawler is a main component of Search Engine. Web

Crawler automatically browses Web and downloads information

for Search engine [1]. Search engine needs updated information

to generate results for user queries. Web crawler revisit web sites

for search of updates.

Yuan, et al. perform analysis to web log of University of Alberta

web site in 2002. They find that maximum 40.6% of total web

traffic is generated by web crawler [15].

In 2010 Sun, et al analysis log file of many different web sites.

They find average 50% of web request is generated by web

crawler [13].

Authors propose approach to use a dynamic web page. This

dynamic web support query. Web crawler send HTTP GET

request with parameter. Dynamic web page checks parameter

and generate response to web crawler having list URLs of

updated web pages.

In this paper section two is about related work done in this

research area. Section three has approach used with figure.

Simulator used for experiment is in section four. Section five

has experiment with tables. Data analysis with graph is in

section six. Conclusion and references are at last

II. RELATED WORK

To reduce the crawling traffic and to find updates effectively,

research is being conducted in different areas.

One of the proposed approach is to place web crawler in

different geographical areas. Web crawler downloads web pages

within its geographical area [7].

Other solution is placing active routers in key place in network.

Active routers record underling traffic for indexing [15].

Another proposed scheme is to place mobile crawler at web

server. Crawler check updates in web site and send updates for

indexing to search engine [6, 11].

 Unethical crawler cause problems to network, web servers.

Causing denial of service, copying user private information and

downloading copyright data [14].

Research is in progress on Crawler ethics. Researchers have

derived the formula to calculate the ethicality of web crawler

[13]

III. APPROACH USED

Authors propose the use of dynamic web page to inform the web

crawler about the new pages and updates on web site. Dynamic

web page accepts one parameter LAST_VISIT. This parameter

indicates time and date of last visit of web crawler to website.

Parameter value is passed by HTTP GET request.

Dynamic web page accepts the HTTP GET request with

parameter LAST_VISIT and generates response. Response is

HTML based. Response is having list of URLs of pages updated

after crawler last visit. Dynamic web page use “List “data

Structure to generate results

Crawler passes the last visit parameter to dynamic web page

with HTTP GET request. Web crawler receives the HTML based

response having list of all updated pages URLs. Crawler only

Shekhar Mishra
RITS Bhopal (MP)

 India

Anurag Jain
RITS Bhopal (MP)

India

Dr. A.K. Sachan
RITS Bhopal (MP)

 India

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

9

visits the URLs list instead of visiting full web sites for updates.

Figure 1 shows the working of proposed scheme.

List: it is an array type of Data Structure, maintains the page

URLs and time of its update. List is updated by web crawler at

web server.

Algorithm for crawler

1. Web crawler sends the HTTP GET request with

LAST_VISIT parameter value to the dynamic page.

Value of LAST_VISIT is time and date of last visit of

web crawler to web site.

2. Crawler receives updated page URLs in HTML form.

3. Web crawler visit updated URLs.

Algorithm for dynamic web pages

1. Dynamic web page Accepts HTTP GET request with

LAST_VISIT parameter.

2. Dynamic web page generates the HTML based

response having URLs of pages updated after crawler

last visit. With the help of “LIST” data structure.

Advantages

1. Proposed scheme can be implemented on existing

system.

2. Existing web crawler can easily send the query to web

server with request URLs.

3. Different web crawler visit web site at different

frequency. Dynamic web page every time produces

different response for web crawler.

4. This scheme guarantees that crawler only visit update

pages

5. When there is no update crawler will only visit the

Dynamic update pages and leave the web site.

6. Crawling is only visiting to update pages. So crawler

will work fast.

Limitation

Both web crawler and web site should follow rules.

Difference between proposed approach with other protocols

Sitemaps protocol: this protocol tells the web crawler about the

Site map of web site. It is based on XML [5]. Proposed scheme

based on HTML. Main aim of proposed scheme is to tell web

crawler about updates.

Robots Exclusion Protocol: this protocol is used to tell web

crawler as to which page to visit and which page should be

omitted. Protocol does not provide updates [3, 4].

Static HTML Update File: different crawler visit web site at

different frequency. It does not support query based approach.

Proposed approach makes sure that crawler only get the list of

updates after crawler last visit [9].

Figure 1 Proposed approach

IV. SIMULATOR

In experiment we use web site of 21 web pages. General

structure of web site is in Figure 2. Web site deployed on

Apache Tomcat 6.0.18 J2ee Web server. Dynamic web page and

list data structure is coded in JAVA and JSP. Web crawler is

coded in java. LAST_VISIT parameter passed is millisecond

time of system, return by java function

(System.currentTimeMillis()).same millisecond time is

maintained in “list”data structure. First we perform crawling on

web site using old approach. Then we perform crawling using

proposed approach.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

10

Figure 2 structure of website used for experiment

V. EXPERIMENT

We perform the web crawling on Experimental website. The results obtained shown in Table1.

Table 1

Inde

x

URL Start Time of Crawler

(Time in milliseconds)

End Time of Crawler

(Time in Milliseconds

)

Time to

reach this

URL(Tim

e in

milliseco

nds)

1 http://localhost:8084/CrawlerTest1/index.jsp 1292068731963 1292068732197 234

2 http://localhost:8084/CrawlerTest1/p2.jsp 1292068731963 1292068732353 390

3 http://localhost:8084/CrawlerTest1/p3.jsp 1292068731963 1292068732509 546

4 http://localhost:8084/CrawlerTest1/p4.jsp 1292068731963 1292068732680 717

5 http://localhost:8084/CrawlerTest1/p1.jsp 1292068731963 1292068732835 872

6 http://localhost:8084/CrawlerTest1/p21.jsp 1292068731963 1292068733022 1059

7 http://localhost:8084/CrawlerTest1/p24.jsp 1292068731963 1292068733193 1230

8 http://localhost:8084/CrawlerTest1/p22.jsp 1292068731963 1292068733348 1385

9 http://localhost:8084/CrawlerTest1/p23.jsp 1292068731963 1292068733550 1587

10 http://localhost:8084/CrawlerTest1/p32.jsp 1292068731963 1292068733706 1743

11 http://localhost:8084/CrawlerTest1/p33.jsp 1292068731963 1292068733892 1929

12 http://localhost:8084/CrawlerTest1/p31.jsp 1292068731963 1292068734079 2116

13 http://localhost:8084/CrawlerTest1/p34.jsp 1292068731963 1292068734234 2271

14 http://localhost:8084/CrawlerTest1/p41.jsp 1292068731963 1292068734421 2458

15 http://localhost:8084/CrawlerTest1/p44.jsp 1292068731963 1292068734686 2723

16 http://localhost:8084/CrawlerTest1/p43.jsp 1292068731963 1292068734811 2848

17 http://localhost:8084/CrawlerTest1/p42.jsp 1292068731963 1292068735095 3132

18 http://localhost:8084/CrawlerTest1/p11.jsp 1292068731963 1292068735188 3225

19 http://localhost:8084/CrawlerTest1/p12.jsp 1292068731963 1292068735437 3474

20 http://localhost:8084/CrawlerTest1/p13.jsp 1292068731963 1292068735655 3692

21 http://localhost:8084/CrawlerTest1/p14.jsp 1292068731963 1292068735831 3868

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

11

To test proposed approach we direct the web crawler to dynamic web page update.jsp and set the last visit time at URL and perform

crawling.

Experiment 1: we update time and URLs of pages P1, P23 and P34 in “List” data structure. At web crawler we set the LAST_VISIT time

before time of pages in the LIST. Performed crawling, results obtained are shown in table 2.

Table 2

Index URL Start Time of

Crawler (Time in

Milliseconds)

End Time of

Crawler (Time in

Milliseconds)

Total Time

to

Download

this

URL(Time

in

milliseconds

)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisi

t=1292236840408

1292236868332 1292236868551 219

2 http://localhost:8084/CrawlerTest1/p1.jsp 1292236868332 1292236868769 437

3 http://localhost:8084/CrawlerTest1/p23.jsp 1292236868332 1292068732509 546

4 http://localhost:8084/CrawlerTest1/p34.jsp 1292236868332 1292236869099 767

Experiment 2: we update time and URLs of pages P1, index and P32 in “List” data structure. At web crawler we set the LAST_VISIT

time before time of pages in the LIST. Performed crawling, results obtained are shown in table 3.

Table 3

Index URL Start Time of

Crawler (Time in

Milliseconds)

End Time of

Crawler (Time in

Milliseconds)

Total Time

to

Download

this

URL(Time

in

millisecon

ds)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisit

=1292236840408

1292259222088 1292259222463 375

2 http://localhost:8084/CrawlerTest1/p32.jsp 1292259222088 1292259222634 546

3 http://localhost:8084/CrawlerTest1/p1.jsp 1292259222088 1292259222761 673

4 http://localhost:8084/CrawlerTest1/index.jsp 1292259222088 1292259222948 860

Experiment 3: we update time and URLs of pages P1, P2 and P3 in “List” data structure. At web crawler we set the LAST_VISIT time

before time of pages in the LIST. Performed crawling, results obtained are shown in table 4.

Table 4

Index URL Start Time of

Crawler (Time in

milliseconds)

End Time of

Crawler (Time in

Milliseconds)

Time to

reach this

URL(Time

in

Millisecond

s)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisit

=1292272248608

1292272266330 1292272266517 187

2 http://localhost:8084/CrawlerTest1/p2.jsp 1292272266330 1292272266642 312

3 http://localhost:8084/CrawlerTest1/p3.jsp 1292272266330 1292272266845 515

4 http://localhost:8084/CrawlerTest1/p1.jsp 1292272266330 1292272267119 789

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

12

Experiment 4: we update time and URLs of pages P22 and P11 in “List” data structure. At web crawler we set the LAST_VISIT time

before time of pages in the LIST. . Performed crawling, results obtained are shown in table 5.

Table 5

Index URL Start Time of

Crawler (Time in

milliseconds)

End Time of

Crawler (Time in

Milliseconds)

Total Time

to

Download

this

URL(Time

in

milliseconds

)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisit

=1292307271473

1292307297416 1292307297665 249

2 http://localhost:8084/CrawlerTest1/p11.jsp 1292307297416 1292307297837 421

3 http://localhost:8084/CrawlerTest1/p22.jsp 1292307297416 1292307297992 576

Experiment 5: we update time and URLs of page P11 in “List” data structure. At web crawler we set the LAST_VISIT time before time of

pages in the LIST. . Performed crawling, results obtained are shown in table 6.

Table 6

Index URL Start Time of

Crawler (Time in

Milliseconds)

End Time of

Crawler (Time in

Milliseconds)

Total Time

to

Download

this

URL(Time

in

Millisecond

s)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisit

=1292307947094

1292307968746 1292307968980 234

2 http://localhost:8084/CrawlerTest1/p11.jsp 1292307968746 1292307969168 422

Experiment 6: we update time and URLs of pages P33 and P42 in “List” data structure. At web crawler we set the LAST_VISIT time

before time of pages in the LIST. . Performed crawling, results obtained are shown in table 7.

Table 7

Index URL Start Time of

Crawler (Time in

Milliseconds)

End Time of Crawler

(Time in

Milliseconds)

Time to

reach this

URL(Time in

Milliseconds

)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisit

=1292309416411

1292309445240 1292309445474 234

2 http://localhost:8084/CrawlerTest1/p33.jsp 1292309445240 1292309445661 421

3 http://localhost:8084/CrawlerTest1/p42.jsp 1292309445240 1292309445787 547

Experiment 7: we update time and URLs of pages P21 and P41 in “List” data structure. At web crawler we set the LAST_VISIT time

before time of pages in the LIST. . Performed crawling, results obtained are shown in table 8.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

13

Table 8

Index URL Start Time of

Crawler (Time in

milliseconds)

End Time of

Crawler (Time in

Milliseconds)

Total Time

to

Download

this

URL(Time

in

milliseconds

)

1 http://localhost:8084/CrawlerTest1/update.jsp?LastVisit=

1292308646738

1292308662962 1292308663196 234

2 http://localhost:8084/CrawlerTest1/p21.jsp 1292308662962 1292308663321 359

3 http://localhost:8084/CrawlerTest1/p41.jsp 1292308662962 1292308663507 545

VI. DATA ANALYSIS

 In normal crawling crawler visit every web page to know all

updates in web site. In normal crawling it visits a total of 21

pages. Crawler takes 3868 milliseconds to visit complete site. In

proposed approach crawler visits Dynamic update page and

updated web pages only. Crawler take about 800 milliseconds

when there are 3 updates, about 550 milliseconds when there are

two update. About 420 milliseconds when there is one update.

 When there are three updates in experimental web site

proposed sachem is 4.83 time faster than old approach. With two

updates proposed scheme is 7.03 times faster than old scheme. If

there is only one update scheme is 9.2 times faster than old

approach.

 Graph 1 shows time taken by web crawler to download

updates.

In normal crawling crawler visits 21 pages to find updates. But

number of page visit is very small in proposed approach. When

there is one update crawler only visit 2 pages. When there are 2

updates crawler only visits 3 pages. If there are 3 updates in web

site crawler visit 4 pages. Graph 2 shows number of page visits

by crawler to reach update.

3868

767 860 789
576

422
545 547

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Normal

Crawling

Experiment

1

Experiment

2

Experiment

3

Experiment

4

Experiment

5

Experiment

6

Experiment

8

 Graph 1. Time take by crawler to download updated web page in Experiments (Time in Milliseconds)

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.3, January 2011

14

21

4 4 4 4
2 3 3

0

5

10

15

20

25

Graph 2 Shows number of page visited by crawler to find updates.

VII. CONCLUSION

With this approach crawler can ask the web server what is new

on server. It is very easy to implement on today’s infrastructure.

Crawler can easily send the queries with request URLs. Many

different types of queries can be implemented with this scheme.

Other metadata of web pages sharing can also be implemented

with this idea.

REFERENCES

[1] “Web crawler”, From Wikipedia,

http://en.wikipedia.org/wiki/Web_crawler

[2] “World Wide Web”, From Wikipedia,

http://en.wikipedia.org/wiki/World_Wide_Web

[3] “Robots Exclusion Protocol”,

http://www.robotstxt.org/robotstxt.html

[4] “Robots exclusion standard”, Wikipedia

http://en.wikipedia.org/wiki/Robots_exclusion_standard

[5] “Sitemaps”, Wikipedia,

http://en.wikipedia.org/wiki/Sitemaps

[6] Bal.S and Nath.R,”Filtering the web pages that are not

modified at remote site without downloading using mobile

crawler”. Information Technology journal 9(2)2010 ISSN 1812-

5638, Asian Network for Sciencetific information. (pp: 376-380)

[7] Cambazoglu, B.B.; Junqueira, F.; Plachouras, V.; Telloli, L.,

“On the feasibility of geographically distributed web crawling.”

(ISBN: 978-963-9799-28-8) In the proceedings of Third

International ICST Conference on Scalable Information

Systems, ICST, Vico Equense, Italy (2008)

[8] Chandramouli A and Gauch. S. “A Co-operative Web

Services Paradigm for Supporting Crawlers”, In the proceedings

of Computer-Assisted Information Retrieval (Recherche

d'Information et ses Applications) - RIAO 2007, 8th

International Conference, Carnegie Mellon University,

Pittsburgh, PA, USA, May 30 - June 1, 2007.

[9] Mishra.S, Jain.A and Sachan A.K,”Smart Approach to

Reduce the Web Crawling Traffic of Existing System using

HTML based Update File at Web Server”, International Journal

of Computer Applications 11(7), December 2010(pp: 34–38)

 [10] McCurley S. Kevin “Incremental Crawling” Google

Research

http://static.googleusercontent.com/external_content/untrusted_d

lcp/www.google.com/en//research/pubs/archive/34403.pdf

[11] Pahal N, Kumar S, Bhardwaj A and Chauhan N,” Security

Mobile Agent Based Crawler = (SMABC)”. International

Journal of Computer Applications 1(14), February 2010. (pp: 5–

11)

[12] Sharma A.K, Dixit. A and Singhal N. “Design of a

Priority Based Frequency Regulated Incremental Crawler” 2010

International Journal of Computer Applications (ISSN: 0975 –

8887) Volume 1 – No. 1. (pp: 42-47)

[13] Sun. Y, Councill G. Isaac and Giles C. Lee, “The

Ethicality of Web Crawlers”, in the proceedings of 2010

IEEE/WIC/ACM International Conference on Web Intelligence

and Intelligent Agent Technology, Toronto Canada august 2010.

(pp: 668-675)

[14] Thelwall. M and Stuart. D, “Web crawling ethics revisited:

Cost, privacy and denial of service". Journal of the American

Society for Information Science and Technology. 2006.

Volume 57, Issue 13 November 2006. (pp: 1771 - 1779)

[15] Yuan, X.M. and J. Harms, “An efficient scheme to

remove crawler traffic from the internet.” Proceedings of the

11th International Conference on Computer Communications

and Networks, Oct 2002. 14-16, IEEE CS Press, (pp: 90-95).

