
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

45

Comparative Study of Arithmetic and Huffman Data
Compression Techniques for Koblitz Curve Cryptography

O. Srinivasa Rao

Dept. of CSE
University College of Engineering

JNTUK-Vizianagaram
Andhra Pradesh, India-535 003

Dr S.Pallam Setty
Professor of CS&SE

University College of Engg.,
Andhra University, Visakhapatnam

Andhra Pradesh, India-530 003

ABSTRACT

Over the past 20 years, numerous papers have been written on

various aspects of ECC implementation. In this paper we

investigate the superiority of the Arithmetic data compression

technique over the Huffman data compression technique in

reducing the channel bandwidth and the transmission time.

The main purpose of data compression is to reduce the

memory space or transmission time, while that of

cryptography is to ensure the security of the data. Applying

Data compression techniques not only reduces the bandwidth

but also enhances the strength of the cryptosystem. It is also

observed that even if the given string is doubled i.e. AAAA

(4A’s) to AAAAAAAA (8A’s), the compression ratio remains

constant. Further in Arithmetic Data Compression the

compression ratio is 50% more when compared to the

Huffman Data Compression and the ratio increases with

increasing string length.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

Elliptic curve cryptography, Koblitz curves, Huffman Data

compression, Arithmetic Data Compression

1. INTRODUCTION
In 1985, Neal Koblitz [1] and Victor Miller [5] independently

proposed using the group of points on an elliptic curve

defined over a finite field in discrete logarithm cryptographic

systems. In 1991, Koblitz[1] suggested using a special family

of elliptic curves now popularly referred to as Koblitz curves.

Koblitz curves have been widely studied in the academia and

have been included in certain standards [2-4]. In the Koblitz

curves point multiplication is considerably more efficient than

on general curves.

The primary advantage that elliptic curve systems have over

systems based on the multiplicative group of a finite field (and

also over systems based on the intractability of integer

factorization) is the absence of a sub exponential-time

algorithm (such as those of ―index-calculus‖) to find discrete

logarithms in these groups. Consequently, one can use an

elliptic curve group that is smaller in size and still maintain

the same level of security. The result is smaller key sizes,

bandwidth savings, and faster implementations—features that

are especially attractive for security applications in smart

cards, personal digital assistance, and wireless devices where

computational power and integrated circuit space are limited.

Elliptic curve cryptographic protocols for digital signatures,

public-key encryption, and key establishment have been

standardized by numerous standards organizations including:

 American National Standards Institute (ANSI X9.62

[6], ANSI X9.63 [7]).

 Institute of Electrical and Electronics Engineers

(IEEE 1363-2000 [8]).

 International Standards Organization (ISO/IEC

15946-3 [9]).

 U.S. government’s National Institute for Standards

and Technology (FIPS 186-2 [2]).

 Internet Engineering Task Force (IETF PKIX [7],

IETF OAKLEY [10]).

 Standards for Efficient Cryptography Group (SECG

[3]).

 Majority of the products and standards use RSA public-key

cryptography for encryption and digital signatures. As seen,

the bit length for secure RSA has increased over the years,

thus putting a heavier processing load on applications. This

burden has ramifications, especially for electronic commerce

sites that conduct large numbers of secure transactions.

Recently elliptic curve based cryptosystems have emerged as

a competing alternative to RSA. [8,11,17]

2. ELLIPTIC CURVE CRYPTOGRAPHY
Elliptic curve cryptography makes use of elliptic curves in

which the variables and coefficients are all restricted to

elements of a finite field. Two families of elliptic curves are

used in cryptographic applications: Prime curves defined over

Zp and binary curves constructed over GF (2m).

Fernandes[12] points out that prime curves are best suited for

software applications, as the extended bit –fiddling operations

needed by binary curves are not required; ,and that binary

curves are best for hardware applications, where it takes

remarkably few logic gates to create a powerful and fast

cryptosystem. In this paper we used Koblitz curves which are

a variant of binary curves for analysis purpose.

2.1 Koblitz curves
A koblitz curve E over F2m is an elliptic curve whose

defining equation has coefficients in F2. There are two koblitz

curves: y2+xy=x3+1 and y2+xy=x3+x2+1.These elliptic

curves were first proposed for cryptographic use by koblitz

[1].They have advantage over randomly selected curves over

binary fields because the point multiplication operation in

Koblitz curves involves no point doubling (See Solinas [14,

15, 19]).Koblitz curves have been standardized in NIST’s

FIPS (186-2[2]).

2.2 Elliptic Curves Arithmetic over F2
m

A (non-super singular) elliptic curve E(F2

m,) over F2
m, defined

by the parameters a, b є F2
m, b ≠ 0 , is the set of all solutions

(x, y), x, y є F2
m, to the equation y2+xy=x3+ax2+b, together

with an extra point O, which is the point at infinity.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

46

The set of points E(F2
m) forms a group with the following

additional rules:

1. O+O =O

2. (x, y)+O=O+(x, y)=(x, y) for all (x, y) ϵ E(F2
m).

3. (x, y)+(x, x + y)=O for all (x, y) ϵ E(F2
m)

 (i.e., the negative of the point (x, y) is –(x, y)=(x, x +y)).

4. (Rules for adding two distinct points that are not inverse of

each other) Let P = (x1, y1) ϵ E(F2
m) and Q=(x2,y2) ϵ E(F2

m)

be two points such that x1≠x2.Then

 P+Q=(x3,y3),where

x3=λ2+ λ+x1+x2+a,

y3= λ(x1+x3) +x3+y1, and

λ = (y2+y1)/(x2+x1)

5. (Rule for doubling a point)

Let P=(x1, y1) ϵ E (F2
m) be a point with x1≠0. (If x1=0 then

P=-P, and so 2P=O) Then 2P =(x3, y3), where

 x3= λ2+ λ + a

y3=x1
2+ (λ+1) x3, and

λ =x1+ (y1/x1)

3. DATA COMPRESSION TECHNIQUES
A data compression method is called universal if the

compressor and decompressor do not know the statistics of

the input stream. A universal method is optimal if the

compressor can produce compression factors that

asymptotically approach the entropy of the input stream for

long inputs. Compression performance: Several quantities are

commonly used to express the performance of a compression

method. The Compression ratio is one of the quantities used

to express compression efficiency and is defined as

Compression ratio =Size of the output stream/size of the input

stream.

A value of 0.6 means that after compression the data occupies

60% of its original size. Values greater than 1 imply that the

output stream is bigger than the input stream (negative

compression). The compression ratio can also be called bpb

(bit per bit), since it equals the number of bits in the

compressed stream needed, on an average, to compress one

bit in the input stream. In image compression, the same term,

bpb stands for ―bits per pixel.‖In modern, efficient text

compression methods, it makes sense to talk about bpc (bits

per character)—the number of bits it takes, on average, to

compress one character in the input stream.

3.1 Huffman coding
 A commonly used method for data compression is Huffman

coding. It serves as the basis for several popular programs

used in personal computers. Some of them use just the

Huffman method, while others use it as one step in a multistep

compression process. The Huffman method [15] is somewhat

similar to the Shannon-Fano method. It generally produces

better codes, and like the Shannon-Fano method, produces

best code when the probabilities of the symbols are negative

powers of 2. The main difference between the two methods is

that Shannon-Fano constructs its codes from top to bottom

(from the leftmost to the rightmost bits), while Huffman

constructs a code tree from the bottom (builds the codes from

right to left). Since its development, in1952, by D. Huffman,

this method has been the subject of intense research in data

compression.

The method starts by building a list of all the alphabet

symbols in descending order of probabilities. It then

constructs a tree, with a symbol at every leaf, from the bottom

up in steps, where at each step the two symbols with the

smallest probabilities are selected, added to the top of the

partial tree, deleted from the list, and replaced with an

auxiliary symbol representing the two symbols. When the list

is reduced to just one auxiliary symbol (representing the entire

alphabet), the tree is complete. The tree is then traversed to

determine the codes for the symbols.

3.2 Arithmetic Coding
The Huffman method is simple, efficient, and produces the

best codes for the individual data symbols. However, it is

shown that the only case where it produces ideal variable-size

codes (codes whose average size equals the entropy) is when

the symbols have probabilities of occurrence that are negative

powers of 2 (i.e., numbers such as1/2, 1/4, or 1/8). This is

because the Huffman method assigns a code with an integral

number of bits to each symbol of the alphabet. Information

theory shows that a symbol with probability 0.4 should ideally

be assigned a 1.32-bit code, since −log20.4 ≈ 1.32.The

Huffman method, however, normally assigns such a symbol a

code of 1 or 2 bits. Arithmetic coding overcomes the problem

of assigning integer codes to the individual symbols by

assigning one (normally long) code to the entire input file.

The method starts with a certain interval, it reads the input file

symbol by symbol, and uses the probability of each symbol to

narrow down the interval. Specifying a narrower interval

requires more bits, so the number constructed by the

algorithm grows continuously. To achieve compression, the

algorithm is designed such that a high-probability symbol

narrows the interval less than a low-probability symbol, with

the result that high-probability symbols contribute fewer bits

to the output .An interval can be specified by its lower and

upper limits or by one limit and width (range). We use the

latter method to illustrate how an interval’s specification

becomes longer as the interval narrows. The interval [0, 1] can

be specified by the two 1-bit numbers 0 and1. The interval

[0.1, 0.512] can be specified by the longer numbers 0.1 and

0.412. The very narrow interval [0.12575, 0.1257586] is

specified by the long numbers 0.12575 and 0.0000086.

4. ECC ENCRYPTION AND

DECRYPTION
Several approaches to encryption/ decryption using elliptic

curves have been analyzed. This paper describes one of them.

The first task in this system is to encode the plaintext message

m to be sent as an x-y point Pm. It is the point Pm that will be

encrypted to cipher text and subsequently decrypted. Note that

we cannot simply encode the message as the x or y coordinate

of a point, because not all such coordinates are in Ep(a, b).

There are techniques for encoding. We developed a scheme

that will be reported elsewhere. As with the key exchange

system, an encryption/decryption system requires a point G

and an elliptic group Ep(a, b) as parameters. Each user selects

a private key nA and generates a public key PA = nA x G.

To encrypt and send a message Pm to B, A chooses a random

positive integer x and produces the cipher text Cm

corresponding to the pair of points ([7],[18],[20])

Cm= {xG, Pm + xPB} (1)

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

47

Note that A has used B’s public key PB. To decrypt the cipher

text, B multiplies the first point in the pair by B’s secret key

and subtracts the result from the second point:

Pm + xPB – nB(xG) = Pm + x(nBG) – nB(xG) = Pm(2)

A has masked the message Pm by adding xPB to it. Nobody

but A knows the value of x, so even though PB is a public key,

nobody can remove the mask xPB. However, A also includes a

―clue,‖ which is enough to remove the mask if one knows the

private key nB. For an attacker to recover the message, he

would have to compute x, given G and xG, which is hard.

5. Analytical study of Bandwidth for

Koblitz Curve using Huffman Data

Compression and Arithmetic Data

compression
We have taken an irreducible polynomial x7+x+1, and the

Koblitz curve of y2+xy=x3+x2+1 in the binary field. Then we

generated the (x, y) points for the chosen koblitz curve. These

points were mapped to the alphanumeric characters [16]. The

mapped points are encrypted using equation (1). The co-

ordinates of the koblitz curve, encryption and decryption of

the input strings, Data compression algorithms are

implemented in C and the results are shown in table1 and

table2 and plot of these tables are shown Figure 1 and Figure

2. From these tables and graphs it is revealed that if the input

string contains alphabets which are repeating, the compression

ratio is high. The compressed data to be sent to the destination

is much less in size and thus requires less bandwidth. The

compression ratio in Arithmetic Data Compression is 50%

more when compared to the Huffman Data Compression

.Further the Compression increases with increase in string

length. At the destination the data is uncompressed and

original text is recovered by using the equation (2).

6. CONCLUSION
We compare the performance of arithmetic and Huffman

Compression techniques for different input strings. It is

observed that Arithmetic compression technique is more

appropriate than Huffman data compression technique in

reducing the channel bandwidth and the transmission time in

Elliptic curve based cryptosystems.

Table 1

S.No Input Data String Encrypted

data

Size(bits)

Huffman

Compressed

Data Size

(bits)

Arithmetic

Compressed

Data Size

(bits)

Huffman

Compression

Ratio

(Percentage)

Arithmetic

Compression

Ratio

(Percentage)

1 AAAAA 70 10 7 14.285714 10

2 AAAAE 70 20 9 28.571429 12.857142

3 AAADA 70 20 9 28.571429 12.857142

4 AAADE 70 30 15 42.857143 21.428571

5 AACAA 70 20 9 28.571429 12.857142

6 AACAE 70 30 15 42.857143 21.428571

7 AACDA 70 30 15 42.857143 21.428571

8 AACDE 70 30 15 42.857143 21.428571

9 ABAAA 70 20 9 28.571429 12.857142

10 ABAAD 70 30 15 42.857143 21.428571

11 ABADA 70 30 15 42.857143 21.428571

12 ABADE 70 30 24 42.857143 34.285714

13 ABCAA 70 30 15 42.857143 21.428571

14 ABCDA 70 30 24 42.857143 34.285714

15 ABCDE 70 30 25 42.857143 35.714285

16 JNTU 56 24 20 42.857143 35.714285

17 JNTUKAKINADA 168 96 26 57.142857 15.476190

18 JNTUKAKIADAVIZIANAGARAM 336 240 26 71.428571 7.7380952

Table 2

S.No Input Data String Encrypted data

Size(bits)

Huffman Compression Arithmetic Compression

Compressed

Data Size

(bits)

Compression

Ratio

(Percentage)

Compressed

Data Size

(bits)

Compression

Ratio

(Percentage)

1 AAAAAAAAAAAA 168 24 14.285714 7 4.166666

2 AAAAAABBBBBB 168 48 28.571428 14 8.333333

3 AAAABBBBCCCC 168 72 42.857143 21 12.5

4 AAABBBCCCDDD 168 72 42.857143 24 14.285714

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

48

5 AABBCCDDEEFF 168 72 42.857143 26 15.47169

6 AABBCCDDDEEE 168 72 42.857143 26 15.47169

7 AAAABCCDDDD 154 66 42.857143 21 13.636363

8 ABCDEEEFFFG 168 96 57.142857 27 16.071428

9 ABCDEEEEEEF 154 88 57.142857 27 17.532467

10 DDEEFGHHHII 154 88 57.142857 27 17.532467

11 KLKLFGHIJJJ 154 88 57.142857 23 14.935064

12 AABCCCDHIJK 154 88 57.142857 26 16.883116

13 AAABBBCDEFJ 154 88 57.142857 24 15.584416

14 AAAABBBBCCC 154 66 42.857143 21 13.636363

15 IJKIJKIJKIJK 168 72 42.857143 19 11.309528

16 GHIJGHIJILAA 168 72 42.857143 25 14.880952

17 CCCDDDABCDEF 168 96 57.142857 20 11.904761

18 AABBBBKLKLKL 168 72 42.857143 24 14.285714

7. REFERENCES
[1] N.Koblitz, CM-curves with good cryptographic

properties in: Advances in cryptology, CRYPTO’91,

Lecture note in Computer Science,Vol.576, Springer

1991, pp 279-287

[2] National Institute of Standards and Technology (NIST),

Digital Signature Standards(DSS), Federal information

processing standard, FIPS PUB 186-2, January 27,2000.

[3] Certicom Research, SEC 1: Elliptic Curve Cryptography,

Standards for efficient cryptography, September,

2000

[4] Certicom Research, SEC 2: Recommended Elliptic

Curve domain parameters, Standards for efficient

cryptography, September 20,2000

[5] V. Miller, ―Uses of elliptic curves in cryptography‖,

Advances in Cryptology– Crypto’85, Lecture Notes in

Computer Science, 218 (1986), Springer-Verlag, 417-

426.

[6] Certicom Corp., ― An Introduction to Information

Security‖, No. 1, March 1997.

[7] ANSI X9.63, Public Key Cryptography for the Financial

Services Industry: Elliptic CurveKey Agreement and

Key Transport Protocols, ballot version, May 2001.

[8] Internet Engineering Task Force, The OAKLEY Key

Determination Protocol, IETF RFC 2412, November

1998.

[9] ISO/IEC 15946-3, Information Technology–Security

Techniques– Cryptographic Techniques Based on

Elliptic Curves, Part 3, Final Draft International Standard

(FDIS), February 2001

[10] M. Jacobson, N. Koblitz, J. Silverman, A. Stein and E.

Teske, ―Analysis of the xednicalculus attack‖, Designs,

Codes and Cryptography, 20 (2000), 41-64.

[11] S. Arita, ―Weil descent of elliptic curves over finite

fields of characteristic three‖, Advances in

Cryptology–Asiacrypt 2000, Lecture Notes in Computer

Science, 1976 (2000),Springer-Verlag, 248-259.

[12] Fernandes, A. ―Elliptic Curve Cryptography‖, Dr.Dobb’s

journal, December 1999

[13] J.Solinas, ―An improved algorithm for arithmetic on a

family of elliptic curve‖, Advances in Cryptology -

CRYPTO '97, Lecture Notes in Computer Science, 1997,

Volume 1294/1997, 357-371, DOI:

10.1007/BFb0052248 ,1294(1997). Springer-Verlog,

357-371

[14] J.Solinas,‖ Efficient arithmetic on koblitz Curves‖,

Design codes and cryptography, 19(2000), 195-249

[15] Huffman, David (1952) ―A Method for the Construction

of Minimum Redundancy Codes,‖ Proceedings of

the IRE 40(9):1098–1101.

[16] O.Srinivasa Rao, S.Pallam Setty, ―Efficient mapping

methods of Elliptic Curve Crypto Systems‖ International

Journal of Engineering Science and Technology, Vol.

2(8), 2010, pp. 3651-3656

[17] M.Prabu, R.Shanmugalakshmi ―A Comparative and

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

49

Overview Analysis of Elliptic Curve Cryptography over

Finite Fields‖2009, International Conference on

Information and Multimedia Technology, IEEE

computer society.

[18] Billy Bob Brumley and Kimmo U. Jarvinen, Member,

IEEE ―Conversion Algorithms and Implementations

for Koblitz Curve Cryptography‖, IEEE Transactions on

computers Vol.59, No.1, January 2010

[19] Yong-hee Jang, Yong-jin Kwon ―Efficient Scalar

Multiplication Algorithms Secure against Power

Analysis Attacks for Koblitz Curve Cryptosystems‖

2010, 10th Annual International Symposium on

Applications and the Internet, IEEE Computer Society

[20] Chang Shu, Soonhak Kwon, and Kris Gaj

―Reconfigurable Computing Approach for Tate Pairing

Cryptosystems over Binary Fields‖ IEEE Transactions

on computers Vol.58, No.8, September 2009

