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ABSTRACT 

Over the past 20 years, numerous papers have been written on 

various aspects of ECC implementation. In this paper we 

investigate the superiority of the Arithmetic data compression 

technique over the Huffman data compression technique in 

reducing the channel bandwidth and the transmission time. 

The main purpose of data compression is to reduce the 

memory space or transmission time, while that of 

cryptography is to ensure the security of the data. Applying 

Data compression techniques not only reduces the bandwidth 

but also enhances the strength of the cryptosystem. It is also 

observed that even if the given string is doubled i.e. AAAA 

(4A’s) to AAAAAAAA (8A’s), the compression ratio remains 

constant. Further in Arithmetic Data Compression the 

compression ratio is 50% more when compared to the 

Huffman Data Compression and the ratio increases with 

increasing string length. 

General Terms 

Your general terms must be any term which can be used for 

general classification of the submitted material such as Pattern 

Recognition, Security, Algorithms et. al. 
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1. INTRODUCTION 
In 1985, Neal Koblitz [1] and Victor Miller [5] independently 

proposed using the group of points on an elliptic curve 

defined over a finite field in discrete logarithm cryptographic 

systems. In 1991, Koblitz[1] suggested using a special family 

of elliptic curves now popularly referred to as Koblitz curves. 

Koblitz curves have been widely studied in the academia and 

have been included in certain standards [2-4]. In the Koblitz 

curves point multiplication is considerably more efficient than 

on general curves. 

The primary advantage that elliptic curve systems have over 

systems based on the multiplicative group of a finite field (and 

also over systems based on the intractability of integer 

factorization) is the absence of a sub exponential-time 

algorithm (such as those of ―index-calculus‖) to find discrete 

logarithms in these groups. Consequently, one can use an 

elliptic curve group that is smaller in size and still maintain 

the same level of security. The result is smaller key sizes, 

bandwidth savings, and faster implementations—features that 

are especially attractive for security applications in smart 

cards, personal digital assistance, and wireless devices where 

computational power and integrated circuit space are limited. 

Elliptic curve cryptographic protocols for digital signatures, 

public-key encryption, and key establishment have been 

standardized by numerous standards organizations including: 

 American National Standards Institute (ANSI X9.62 

[6], ANSI X9.63 [7]). 

 Institute of Electrical and Electronics Engineers 

(IEEE 1363-2000 [8]). 

 International Standards Organization (ISO/IEC 

15946-3 [9]). 

 U.S. government’s National Institute for Standards 

and Technology (FIPS 186-2 [2]). 

 Internet Engineering Task Force (IETF PKIX [7], 

IETF OAKLEY [10]). 

 Standards for Efficient Cryptography Group (SECG 

[3]). 

     Majority of the products and standards use RSA public-key 

cryptography for encryption and digital signatures. As seen, 

the bit length for secure RSA has increased over the years, 

thus putting a heavier processing load on applications. This 

burden has ramifications, especially for electronic commerce 

sites that conduct large numbers of secure transactions. 

Recently elliptic curve based cryptosystems have emerged as 

a competing alternative to RSA. [8,11,17] 

 

2. ELLIPTIC CURVE CRYPTOGRAPHY 
Elliptic curve cryptography makes use of elliptic curves in 

which the variables and coefficients are all restricted to 

elements of a finite field. Two families of elliptic curves are 

used in cryptographic applications: Prime curves defined over 

Zp and binary curves constructed over GF (2m). 

Fernandes[12] points out that prime curves are best suited for 

software applications, as the extended bit –fiddling operations 

needed by binary curves are not required; ,and that  binary 

curves are best for hardware applications, where it takes 

remarkably few logic gates to create a powerful and fast 

cryptosystem. In this paper we used Koblitz curves which are 

a variant of binary curves for analysis purpose. 

2.1 Koblitz curves 
A koblitz curve E over F2m is an elliptic curve whose 

defining equation has coefficients in F2. There are two koblitz 

curves: y2+xy=x3+1 and y2+xy=x3+x2+1.These elliptic 

curves were first proposed for cryptographic use by koblitz 

[1].They have advantage over randomly selected curves over 

binary fields because the point multiplication operation in 

Koblitz curves involves no point doubling (See Solinas [14, 

15, 19]).Koblitz curves have been standardized in NIST’s 

FIPS (186-2[2]). 

2.2 Elliptic Curves Arithmetic over F2
m

 
A (non-super singular) elliptic curve E(F2

m,) over F2
m, defined 

by the parameters a, b є F2
m, b ≠ 0 , is the set of all solutions 

(x, y), x, y є F2
m, to the equation y2+xy=x3+ax2+b, together 

with an extra point O, which is the point at infinity. 
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The set of points E(F2
m) forms a group with the following 

additional rules: 

1. O+O =O 

2. (x, y)+O=O+(x, y)=(x, y) for all (x, y) ϵ  E(F2
m). 

3. (x, y)+(x, x + y)=O for all (x, y) ϵ  E(F2
m)  

    (i.e., the negative of the point (x, y) is –(x, y)=(x, x +y)). 

4. (Rules for adding two distinct points that are not inverse of 

each other) Let P = (x1, y1) ϵ  E(F2
m) and Q=(x2,y2) ϵ  E(F2

m) 

be two   points such that x1≠x2.Then 

    P+Q=(x3,y3),where 

x3=λ2+ λ+x1+x2+a, 

y3= λ(x1+x3) +x3+y1, and 

λ = (y2+y1)/(x2+x1) 

5. (Rule for doubling a point) 

Let P=(x1, y1) ϵ  E (F2
m) be a point with x1≠0. (If x1=0 then 

P=-P, and so 2P=O) Then 2P =(x3, y3), where 

        x3= λ2+ λ + a 

y3=x1
2+ (λ+1) x3, and 

λ =x1+ (y1/x1) 

3. DATA COMPRESSION TECHNIQUES  
A data compression method is called universal if the 

compressor and decompressor do not know the statistics of 

the input stream. A universal method is optimal if the 

compressor can produce compression factors that 

asymptotically approach the entropy of the input stream for 

long inputs. Compression performance: Several quantities are 

commonly used to express the performance of a compression 

method. The Compression ratio is one of the quantities used 

to express compression efficiency and is defined as 

Compression ratio =Size of the output stream/size of the input 

stream. 

A value of 0.6 means that after compression the data occupies 

60% of its original size. Values greater than 1 imply that the 

output stream is bigger than the input stream (negative 

compression). The compression ratio can also be called bpb 

(bit per bit), since it equals the number of bits in the 

compressed stream needed, on an average, to compress one 

bit in the input stream. In image compression, the same term, 

bpb stands for ―bits per pixel.‖In modern, efficient text 

compression methods, it makes sense to talk about bpc (bits 

per character)—the number of bits it takes, on average, to 

compress one character in the input stream. 

3.1 Huffman coding 
 A commonly used method for data compression is Huffman 

coding. It serves as the basis for several popular programs 

used in personal computers. Some of them use just the 

Huffman method, while others use it as one step in a multistep 

compression process. The Huffman method [15] is somewhat 

similar to the Shannon-Fano method. It generally produces 

better codes, and like the Shannon-Fano method, produces 

best code when the probabilities of the symbols are negative 

powers of 2. The main difference between the two methods is 

that Shannon-Fano constructs its codes from top to bottom 

(from the leftmost to the rightmost bits), while Huffman 

constructs a code tree from the bottom (builds the codes from 

right to left). Since its development, in1952, by D. Huffman, 

this method has been the subject of intense research in data 

compression. 

The method starts by building a list of all the alphabet 

symbols in descending order of probabilities. It then 

constructs a tree, with a symbol at every leaf, from the bottom 

up in steps, where at each step the two symbols with the 

smallest probabilities are selected, added to the top of the 

partial tree, deleted from the list, and replaced with an 

auxiliary symbol representing the two symbols. When the list 

is reduced to just one auxiliary symbol (representing the entire 

alphabet), the tree is complete. The tree is then traversed to 

determine the codes for the symbols. 

3.2 Arithmetic Coding 
The Huffman method is simple, efficient, and produces the 

best codes for the individual data symbols. However, it is 

shown that the only case where it produces ideal variable-size 

codes (codes whose average size equals the entropy) is when 

the symbols have probabilities of occurrence that are negative 

powers of 2 (i.e., numbers such as1/2, 1/4, or 1/8). This is 

because the Huffman method assigns a code with an integral 

number of bits to each symbol of the alphabet. Information 

theory shows that a symbol with probability 0.4 should ideally 

be assigned a 1.32-bit code, since −log20.4 ≈ 1.32.The 

Huffman method, however, normally assigns such a symbol a 

code of 1 or 2 bits. Arithmetic coding overcomes the problem 

of assigning integer codes to the individual symbols by 

assigning one (normally long) code to the entire input file. 

The method starts with a certain interval, it reads the input file 

symbol by symbol, and uses the probability of each symbol to 

narrow down the interval. Specifying a narrower interval 

requires more bits, so the number constructed by the 

algorithm grows continuously. To achieve compression, the 

algorithm is designed such that a high-probability symbol 

narrows the interval less than a low-probability symbol, with 

the result that high-probability symbols contribute fewer bits 

to the output .An interval can be specified by its lower and 

upper limits or by one limit and width (range). We use the 

latter method to illustrate how an interval’s specification 

becomes longer as the interval narrows. The interval [0, 1] can 

be specified by the two 1-bit numbers 0 and1. The interval 

[0.1, 0.512] can be specified by the longer numbers 0.1 and 

0.412. The very narrow interval [0.12575, 0.1257586] is 

specified by the long numbers 0.12575 and 0.0000086. 

4. ECC ENCRYPTION AND 

DECRYPTION 
Several approaches to encryption/ decryption using elliptic 

curves have been analyzed. This paper describes one of them. 

The first task in this system is to encode the plaintext message 

m to be sent as an x-y point Pm. It is the point Pm that will be 

encrypted to cipher text and subsequently decrypted. Note that 

we cannot simply encode the message as the x or y coordinate 

of a point, because not all such coordinates are in Ep(a, b). 

There are techniques for encoding. We developed a scheme 

that will be reported elsewhere. As with the key exchange 

system, an encryption/decryption system requires a point G 

and an elliptic group Ep(a, b) as parameters. Each user selects 

a private key nA and generates a public key PA = nA x G.  

To encrypt and send a message Pm to B, A chooses a random 

positive integer x and produces the cipher text Cm 

corresponding to the pair of points ([7],[18],[20] ) 

Cm= {xG, Pm + xPB} (1) 
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Note that A has used B’s public key PB. To decrypt the cipher 

text, B multiplies the first point in the pair by B’s secret key 

and subtracts the result from the second point: 

Pm + xPB – nB(xG) = Pm + x(nBG) – nB(xG) = Pm(2)  

A has masked the message Pm by adding xPB to it. Nobody 

but A knows the value of x, so even though PB is a public key, 

nobody can remove the mask xPB. However, A also includes a 

―clue,‖ which is enough to remove the mask if one knows the 

private key nB. For an attacker to recover the message, he 

would have to compute x, given G and xG, which is hard.  

5. Analytical study of Bandwidth for 

Koblitz Curve using Huffman Data 

Compression and Arithmetic Data 

compression 
We have taken an irreducible polynomial x7+x+1, and the 

Koblitz curve of y2+xy=x3+x2+1 in the binary field. Then we 

generated the (x, y) points for the chosen koblitz curve. These 

points were mapped to the alphanumeric characters [16]. The 

mapped points are encrypted using equation (1). The co-

ordinates of the koblitz curve, encryption and decryption of 

the input strings, Data compression algorithms are 

implemented in C and the results are shown in table1 and 

table2 and plot of these tables are shown Figure 1 and Figure 

2. From these tables and graphs it is revealed that if the input 

string contains alphabets which are repeating, the compression 

ratio is high. The compressed data to be sent to the destination 

is much less in size and thus requires less bandwidth. The 

compression ratio in Arithmetic Data Compression is 50% 

more when compared to the Huffman Data Compression 

.Further the Compression increases with increase in string 

length. At the destination the data is uncompressed and 

original text is recovered by using the equation (2). 

6. CONCLUSION 
We compare the performance of arithmetic and Huffman 

Compression techniques for different input strings. It is 

observed that Arithmetic compression technique is more 

appropriate than Huffman data compression technique in 

reducing the channel bandwidth and the transmission time in   

Elliptic curve based cryptosystems. 

 

Table 1 

S.No Input Data String Encrypted 

data 

Size(bits) 

Huffman 

Compressed 

Data Size  

(bits) 

Arithmetic 

Compressed 

Data Size  

(bits) 

Huffman 

Compression 

Ratio 

(Percentage) 

Arithmetic 

Compression 

Ratio 

(Percentage) 

1 AAAAA 70 10 7 14.285714 10 

2 AAAAE 70 20 9 28.571429 12.857142 

3 AAADA 70 20 9 28.571429 12.857142 

4 AAADE 70 30 15 42.857143 21.428571 

5 AACAA 70 20 9 28.571429 12.857142 

6 AACAE 70 30 15 42.857143 21.428571 

7 AACDA 70 30 15 42.857143 21.428571 

8 AACDE 70 30 15 42.857143 21.428571 

9 ABAAA 70 20 9 28.571429 12.857142 

10 ABAAD 70 30 15 42.857143 21.428571 

11 ABADA 70 30 15 42.857143 21.428571 

12 ABADE 70 30 24 42.857143 34.285714 

13 ABCAA 70 30 15 42.857143 21.428571 

14 ABCDA 70 30 24 42.857143 34.285714 

15 ABCDE 70 30 25 42.857143 35.714285 

16 JNTU 56 24 20 42.857143 35.714285 

17 JNTUKAKINADA 168 96 26 57.142857 15.476190 

18 JNTUKAKIADAVIZIANAGARAM 336 240 26 71.428571 7.7380952 

 

Table 2 

S.No Input Data String Encrypted data 

Size(bits) 

Huffman Compression  Arithmetic Compression 

Compressed 

Data Size  

(bits) 

Compression 

Ratio 

(Percentage) 

Compressed 

Data Size  

(bits) 

Compression 

Ratio 

(Percentage) 

1 AAAAAAAAAAAA 168 24 14.285714 7 4.166666 

2 AAAAAABBBBBB 168 48 28.571428 14 8.333333 

3 AAAABBBBCCCC 168 72 42.857143 21 12.5 

4 AAABBBCCCDDD 168 72 42.857143 24 14.285714 
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5 AABBCCDDEEFF 168 72 42.857143 26 15.47169 

6 AABBCCDDDEEE 168 72 42.857143 26 15.47169 

7 AAAABCCDDDD 154 66 42.857143 21 13.636363 

8 ABCDEEEFFFG 168 96 57.142857 27 16.071428 

9 ABCDEEEEEEF 154 88 57.142857 27 17.532467 

10 DDEEFGHHHII 154 88 57.142857 27 17.532467 

11 KLKLFGHIJJJ 154 88 57.142857 23 14.935064 

12 AABCCCDHIJK 154 88 57.142857 26 16.883116 

13 AAABBBCDEFJ 154 88 57.142857 24 15.584416 

14 AAAABBBBCCC 154 66 42.857143 21 13.636363 

15 IJKIJKIJKIJK 168 72 42.857143 19 11.309528 

16 GHIJGHIJILAA 168 72 42.857143 25 14.880952 

17 CCCDDDABCDEF 168 96 57.142857 20 11.904761 

18 AABBBBKLKLKL 168 72 42.857143 24 14.285714 
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