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ABSTRACT 
Heart rate variability analysis is fast gaining acceptance as a 

potential non-invasive means of autonomic nervous system 

assessment in research as well as clinical domains. In this study, a 

new nonlinear analysis method is used to detect age related 

changes in the degree of nonlinearity and stochastic nature of 

heart rate variability signals. The data obtained from an online and 

widely used public database (i.e., MIT/BIH physionet database), 

of young and elderly subjects is used in this study. The method 

used is the delay vector variance (DVV) method, which is a 

unified method for detecting the presence of determinism and 

nonlinearity in a time series and is based upon the examination of 

local predictability of a signal. From the results it is clear that 

there is no significant change in the minimum target variance 

values for young and elderly subjects and also the values are very 

small, which indicates that there is a strong deterministic 

component over the stochastic one in both the groups. There is a 

significant decrease in the degree of nonlinearity from younger to 

elder subjects (p- value, 0.0002). This indicates that there is no 

change in the stochastic or deterministic nature of the signals but 

there is a considerable change in the degree of nonlinearity with 

aging. 
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1. INTRODUCTION 

Heart rate variability (HRV) analysis is gaining acceptance as a 

potential non-invasive means of autonomic nervous system 

assessment in research as well as clinical domains. Usually HRV 

data is obtained from R peaks of electrocardiogram (ECG). The 

heart beat instants are taken at these points and consequently the 

beat to beat intervals are determined as the time interval from one 

R peak to the next one. Therefore, these intervals are called R-R 

intervals and are plotted against their beat number, which is called 

a tachogram (Figure 1). In 1996, the Taskforce of the 

ESC/NASPE published standards in HRV analysis proposing 

several time and frequency parameters based on short-term (5-

min) and long-term (24-h) HRV data [1]. Although HRV has been 

the subject of many clinical studies investigating a wide spectrum 

of cardiological and non-cardiological diseases and clinical 

conditions, a general consensus of the practical use of HRV in 

medicine has been reached only in two clinical scenarios: 

depressed HRV can be used as a predictor of risk after acute 

myocardial infarction and as an early warning sign of diabetic 

neuropathy. The HRV can be analyzed using several methods 

which are broadly classified as time domain and frequency 

domain methods. Time domain measures are simple statistical 

operations on R-R intervals, such as standard deviation of normal 

R-R intervals (SDNN), root mean square of successive R-R 

interval differences (RMSSD) and  the percentage change of 

normal R-R intervals that differ by > 50 ms (PNN50)  etc. 

Frequency domain analysis includes FFT or AR based power 

spectral density measures which provide information on how 

variance distributes as a function of frequency. Three main 

spectral components are distinguished in a spectrum calculated 

from short-term recordings in both absolute and normalized units: 

very low frequency (VLF) (≤0.04 Hz), Low frequency (LF) (0.04 

- 0.15 Hz), and high frequency (HF) (0.15 – 0.4 Hz) components. 

Heart rate dynamics are nonlinear in nature and it is proved that 

nonlinear analysis of it provides more appropriate information for 

the physiological interpretation of heart rate variability [2].  

However, variety of contradictory reports in this domain indicates 

that there is a need for a more rigorous investigation of methods. 

The nonlinear analysis of HRV is a valuable tool in both clinical 

practice and physiological research reflecting the ability of the 

cardiovascular system [3]. Poincare plot, Approximate Entropy, 

Sample Entropy, Detrended Fluctuation Analysis, Correlation 

Dimension and Sequential trend analysis are some of the 

nonlinear analysis methods of HRV. 

In recent years, as the presence of nonlinearity and determinism in 

a biomedical signal is used as an index for risk stratification in 

many diseases [4], detecting the nature of physiological time 

series received large attention. Physiological time series are 

generated by complex systems for which it is not possible to solve 

or even set up the equations governing the dynamics, and 

generally assumed that such time series significantly display 

nonlinearity. There are two types of methods available for testing 

the nonlinearity in a time series [5] 

 

(i) fitting a linear or nonlinear model to the time series 

and their accuracies are evaluated  

(ii) comparing nonlinearity measures computed for the 

signal with those computed for linearised versions 

of the signal (surrogates) 

 

The delay vector variance (DVV) is a unified method for 

detecting the presence of determinism and nonlinearity in a time 

series and is based upon the examination of local predictability of 

a signal. Further, it spans the complete range of local linear 
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models due to the standardization to the distribution of pair wise 

distances between delay vectors. This approach is easy to 

interpret, because it produces diagrams (DVV-plot and DVV 

Scatter plot) that give information about the prevalence of 

stochastic or deterministic components and linear or nonlinear 

nature of signals. The DVV-plot characterizes a time series in a 

standardized manner and DVV Scatter plot employs the concept 

of surrogate data. 

 

This paper describes the parameters from delay vector variance 

method which characterize the nonlinearity and stochastic nature 

of the HRV signal. First the DVV method is introduced and the 

parameters that describe the nonlinearity and determinism are 

presented. Then the parameters of DVV are calculated from HRV 

signals pertaining to healthy young individuals and healthy old 

persons. Finally these parameters for the two groups are 

statistically compared 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. METHODS 

2.1 Data Group 

The data base used in this study is publicly available FANTASIA 

data base from Physionet website [6]. This data base contains 

twenty young (21 - 34 years old) and twenty elderly (68 - 85 years 

old) rigorously-screened healthy subjects electrocardiographic 

(ECG), and respiration signals of 120 minutes duration.  In half of 

each group, the recordings also include an uncalibrated 

continuous non-invasive blood pressure signal. Each subgroup of 

subjects includes equal numbers of men and women.  

To maintain wakefulness all the subjects are made to watch the 

movie fantasia (Disney, 1940) in a resting. All the signals were 

digitized at 250 Hz. The database also contains heart beat 

instances annotated using an automated arrhythmia detection 

algorithm, and each beat annotation was verified by visual 
inspection.  

From this database 19 records from young group and 19 records 

from elderly group are considered for study. The two records 

f2o08 and f2y09 are not used because of lot of ectopic beats. 

2.2 Surrogate Data Generation 

A surrogate signal is a realization of null hypothesis, which in this 

paper is that the original signal is linear. There are two main 

methods of generating a surrogate series  

(i) Phase randomization method 

(ii) Iterative Amplitude Adjusted Fourier Transform 

Any stationary linear process can be fully specified by its auto 

correlation function. Thus computing the Fourier transform of the 

original series and replacing the phases with random number, 

uniformly distributed between 0 and 2π and taking inverse 

transform produces a surrogate series which is having same 

autocorrelation function. This method of generating surrogate 

series by adding random phases to the Fourier Transform is called 

Phase randomization. Nevertheless, surrogate data generated 

using phase randomization has a Gaussian distribution of values, 

whereas HRV series do not have a normal distribution [7]. 

Therefore, the Iterative Amplitude Adjusted Fourier Transform 

approach described in [8] is used for this study because it yields 

superior results and overcomes the normal distribution problem. 

This approach retains the amplitude spectrum and distribution of 

the original signal. The algorithm consists of a simple iteration 

scheme. A sorted list of the values {sn} and the squared 

amplitudes of the Fourier transform of {sn}, {Sk
2} are calculated 

initially. Beginning with a random shuffle (without replacement) 

{sn
(0)}  of the data, {sn

(i)} is brought to the desired sample power 

spectrum. This is achieved by taking the Fourier transform of 

{sn
(i)}, replacing the squared amplitudes {Sk

2,(i)} by {Sk
2}, and 

then transforming back. The phases of the complex Fourier 

components are kept unchanged. Thus the first step enforces the 

correct spectrum but usually the distribution will be modified. 

Therefore, as the second step, rank order the resulting series in 

order to assume exactly the values taken by {sn}. As the spectrum 

of the resulting {sn
(i+1)} will be modified again  the above two 

steps have to be repeated several times. 

 

2.3 Delay Vector Variance Method 

A time series can be represented in phase space conveniently 

using time delay embedding. When time delay is embedded into a 

time series it can be represented by a set of delay vectors (DVs) of 

a given dimension. If m is the dimension of the delay vectors then 

it can be expressed as X (k) =[x (k-mτ) …….  x (k-τ)], where τ is the 

time lag. Now for every DV X (k), there is a corresponding target, 

namely the next sample xk. A set βk (m, d) is generated by 

grouping those DVs that are within a certain Euclidean distance 

(d) to DV X(k).This Euclidean distance will be varied in a manner 

standardized with respect to the distribution of pair wise distances 

between DVs. Now for a given embedding dimension m, a 

 

 

 

Figure 1:  R-R interval tachograms of  a healthy young 

subject (top) and a healthy elder subject (bottom) 
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measure of unpredictability σ*2 (target variance) is computed over 

all sets of βk. The variation of the standardized distance enables 

the complete range of pair wise distances to be examined. The 

procedure for Delay Vector Variance method can be summarized 

as below [9][10]. 

 
The mean μd and the standard deviation σ d are computed over all 

pair wise Euclidean distances between DVs given by 

 

The sets βk (m, d) are generated such that 

k  i.e. , sets which consist of all 

DVs that lie closer to X(k) than a certain distance d, taken from 

the interval [ μd -nd σ d ; μd +nd σ d] where nd is a parameter 

controlling the span over which to perform DVV analysis. 

For every set βk (m, d) the variance of the corresponding targets  

σk 
2(m, d) is computed. The average over all sets βk (m, d) is 

divided by the variance of the time series signal , σk gives the 

inverse measure of predictability, namely target variance  

σ*2(m, d). The variance is computed only if there are at least 30 

DVs in a set βk (m, d). 

 

The plot of target variance σ*2(m, d) as a function of spans d for a 

given dimension m is called DVV plot and as the distance is 

standardized it is easy to interpret the plot. An example of DVV 

plot is shown in figure 2.  

 

 

Figure 2:  DVV plot for an elderly subject (f2o03) (solid curve) 

and average DVV plots computed over 25 surrogates (dashed 

curve) 

 

The minimum target variance, is a measure of noise 

present in the time series. The amount of noise is the prevalence 

of the stochastic component. The presence of strong deterministic 

component will lead to small target variance for small spans (on 

the left hand side of the DVV plot). At the extreme right, the 

DVV plots smoothly converges to unity, since for maximum 

spans, all DVs belong to the same universal set, and the variance 

of the targets is equal to the variance of the time series.  

 

With the help of the original and the surrogate time series DVV 

scatter diagram can be produced, where the horizontal axis 

corresponds to the DVV plot of the original time series and the 

vertical to that of the surrogate time series. If the surrogate time 

series signal yields DVV plots similar to that of the original time 

series, the „DVV scatter diagram‟ (figure 3) coincides with the 

bisector line and original signal is linear. If the surrogate time 

series yield DVV plots not similar to that of the original time 

series, the curve will deviate from the bisector line and original 

time series is non-linear. Thus the deviation from the bisector line 

is an indication of nonlinearity, and can be quantified as root 

mean square error (RMSE) between the σ*2 s of the original time 

series and the σ*2 s averaged over the DVV plots of the surrogate 

data. 

 

 

Figure 3:  DVV scatter plot for an elderly subject (f2o03) 

 

 

Figure 4:  DVV plot for a young  subject (f1y06) (solid curve) and 

average DVV plots computed over 25 surrogates (dashed curve) 

2.4 Feature Extraction 

In this method the parameters of interest with respect to DVV 

plots are minimum target variance of original signal, minimum 

target variance of average DVV plots computed over surrogate 

signals and their difference ( MTVSOD, minimum target variance 
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difference between surrogates and original). The parameter with 

respect to DVV scatter plot is rms error value i.e., root mean 

square error (RMSE) between the σ*2 s of the original time series 

and the σ*2 s averaged over the DVV plots of the surrogate data. In 

this paper the value of nd  is fixed at 5 to make the DVV plot 

smoothly converge to unity at extreme right , since all DVs belong 

to the same set for maximum span. The value of τ is taken as 1 

and the value of m is taken as 5. Here no procedure is adopted for 

calculating optimum time delay embedding dimension as we are 

comparing the parameters of young and elderly subjects, there 

must be a common dimension for all the subjects. Therefore, all 

the parameters are computed for given dimension (m=5) and 

given distance parameter (nd=5) and τ =1. The number of 

surrogates generated are 25 using IAAFT method. As reported by 

Temujin Gautama et al. [9], the length of the time series must be 

greater than 1000, otherwise there is a profound effect on 

minimum target variance. The length of time series considered in 

this paper is 1200 samples. The feature extraction and 

implementation of method is done in Matlab 7.3. 

 

 

Figure 5:   DVV scatter plot for a young subject (f1y06) 

 

3. RESULTS  

Figure 2 shows a DVV plot for an elderly subject (f2o03) (solid 

curve) and average DVV plots computed over 25 surrogates 

(dashed curve) The two curves almost coincide and has a  

value of  0.253 for surrogates and 0.261 for original signal. There 

is no much difference between these two values. 

Figure 3 shows a DVV scatter plot for an elderly subject (f2o03), 

whose rms error value is 0.0182. Figure 4 shows a DVV plot for a 

young  subject (f1y06) (solid curve) and average DVV plots 

computed over 25 surrogates (dashed curve) There is a clear 

difference seen between the two curves and the  value for 

surrogates is 0.386 and for original signal is  0.279. There is a lot 

of difference between these two values. 

 

Figure 6:   Box – Whiskers plot for the parameters determined 

from DVV plots and DVV scatter plots for young and old groups. 

 

Figure 5  shows a DVV scatter plot for a young subject (f1y06). 

The rms error value for this subject is 0.1342, which a large value 

compared to the rms value in figure 3. 

Box – Whiskers plot for the parameters determined from DVV plots and 

DVV scatter plots for young and old groups is drawn to compare the 

values. The parameters extracted from these plots are tested for null 

hypothesis using a significance test (T-test). T-test is the most 

commonly used method to evaluate the differences in means 

between the two groups. The significance level for rejection of null 

hypothesis is set to 0.01 in this study.  The P value < 0.01 is 

considered to be statistically significant. The p-values are given in 

Table 1 along with the mean and standard deviation values. 

4. CONCLUSION 

From the plots  and the results it is clear that there is no significant 

change in the minimum target variance values for young and 

elderly subjects and the values are very small, which indicates that 

there is a strong deterministic component over the stochastic one. 

The results show that there is a significant decrease in the degree 

of nonlinearity from younger to elder subjects (p- value, 0.0002). 

Significant difference in the differences of minimum target 

variance of original and surrogates is also seen. This indicates that 

there is no change in the stochastic or deterministic nature of the 

signals but there is a considerable change in the degree of 

nonlinearity with aging. 

Table 1  Mean(± std. dev.) values of the DVV parameters 

 min. target 

variance 

MTVSOD rms error 

value 

Elderly 0.0283(±0.014) 0.0475(±0.045) 0.237(±0.132) 

Young 0.0620(±0.031) 0.1128(±0.081) 0.325(±0.118) 

p-value 

(T-test) 

0.063 0.0042 0.0002 
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