Development of Software for Design of Soil and Water Conservation Structures in Watershed

S.B.Nandgude Associate Professor

Dept. of Soil and Water Cons. Engg. DBSK Agril. Univ., Dapoli, India N.N.Solaskar Lecturer CS Dept VP's ASC College, Baramati, India V.U.Kulkarni Dept. of Soil and Water Cons. Engg. DBSK Agril. Univ., Dapoli, India P.A. Bandekar Dept. of Soil and Water Cons. Engg. DBSK Agril. Univ., Dapoli, India

D.M.Mahale Professor and Head Dept. of Soil and Water Cons. Engg.

DBSK Agril. Univ.,

Dapoli, India

ABSTRACT

Watershed management with focus on reduction of runoff and soil erosion by design of location specific engineering structures is essential. Watershed Softguide is the software for design of three structures: bench terrace, farm pond and vegetated waterway, which are very important for conservation of natural resources in environmentally sensitive era. This software has been supported with database that contains data of 150 locations all over Maharashtra State in India to make the design location specific. The software is armed with database addition and editing facility. It also gives to-the scale diagram of the designed structure, which can be printed. Help-pan present on the screen makes it user-friendly. The software has been tested at developer's level. Results obtained using software were compared with on-paper calculation and the results were found satisfactory. Watershed Softguide 1.0 software has lead to the simplification of the design of soil and water conservation structures is achieved to an extent that field officers and farmers can design those structures in their respective locations with easily and readily available information.

Keywords

Bench terrace, vegetated waterway, farm pond, design.

1. INTRODUCTION

Maharashtra state in India is characterized with high range of rainfall in various parts of state. High intensity rainfall and slope are causing irreparable damage in the form of very severe soil erosion ranging from 5 to 33 tones per ha per year[9]. Realizing the need for sufficient productive land to meet the demands of burgeoning population with minimal or ideally no deforestation, erosion control measures have to be undertaken with scientific approach. Since soil erosion is intricately related to rainfall, runoff, land cover and land use[20], conservation measures require scientific design based on available information about land, climate, crop and financial resources[1,11]. With this software we are looking forward to simplify the design of soil and water conservation structures so that a farmer can design those structures in his own style[3].

Watershed Softguide 1.0 software has been developed with objective of extensive use by extension workers, government agencies, field officers and farmers. With above-said focus inbuilt database was created. So that minimum data may be asked from user. It was also provided with soil database addition and editing facility, which improved its adoptability for wider reach, even for other states[8]. Help pan provided on the screen made the software available for instant use as former acts as user manual. Wizard type interface develop for making the operations easier.

This software has been provided with strong input validation framework, so incorrect/invalid data is blocked. This software also gives the help tips about current screen[15]. To the scale graphical diagrams of the soil and water conservation structures made the software more explanatory and acceptable at all levels. Optional cost estimation facility has brought the added advantage to this software.

2. MATERIALS AND METHOD

2.1 Platform

The software for design of various soil and water conservation structures was developed using Microsoft Visual Basic 6.0 Enterprise Edition with Service Pack 6, for 32-bit Windows Development and Microsoft Access 2000 (9.0.2720) for backend[6,12,16].

			Vegetated Waterway	
Select Location			Bench Terrace	
			Farm Pond	
District	SINDHUDU	RG •	India receives 🔺	
Locatio	Dural		substantial amount of	
LUGAIN	Pural	•	rain; but the most of it	
			Water scarcity during	
			summer even in the	
			region like Konkan,	How to Use Software Abo
Colort	Chrushurs		rainfall in Maharashtra	District - Select the district
Select	Structure C Bench Terr	ace	is well-known. This	from the given list where
	Vegetated	Waterways	calls for the efforts to	conservation structure If
			narvest the runott =	the district you want is not
	C Farm Pond		goes as waste, store it	available in the list, you can
			and recycle it. Dugout	foolity But this is
			farmpond can be used	recommended only if you
23/06/2006			terrain to store the rain	have all the values of
9:28:20 AM			water. Since dugout	constants required by
			ponds can be	recommend you to choose
			constructed to expose a minimum water	the nearest district.
			surface area in	linetin Orleation
			proportion to volume,	LI LUCATION - Select the
View Details	Add New Location	Add Now District	where evanoration	
Tica Deidiis	Fign new Focgion	Had NOW DISTLICT	losss are high and	Now Select the structure
Evit	Delete Legation	Edit Looptice	water is scarce.	you want to design. If Yo
EXIL	DeleTe Focariou	Edit Focation	Dugout pond can be	location click on VIEW
				DETAILS

Figure1: Software Interface

2.1 Minimum System Requirements

Intel® Pentium™ III 700MHz or equivalent processor

64 MB RAM.

30 MB Hard disk space.

VGA display with 1024 768 Pixels resolution.

CD ROM drive.

Microsoft® Windows[™] 98 or above.

Microsoft® Visual Basic Runtime Installed.

Figure 2: Flowchart for design of vegetated waterways

2.2 Design of Vegetated Waterways

A trapezoidal section with a slight 'V' bottom can be easily constructed where the waterway is artificially located. Though maximum permissible grade of waterway is 10 per cent, it is normally kept below 5 cent to avoid scouring[17]. Standard engineering design procedure is followed with logical assumptions and steps as briefly shown in flowchart in Fig.2[19]. Cost of excavation was calculated by multiplying earthwork required by cost of excavation per cubic meter. Cost of sodding was calculated from total length to be sodded by cost of sodding per 100 m. Total cost of waterway was determined by adding cost of excavation and cost of sodding[21].

2.3 Design of Bench Terrace

Bench terracing is a method of erosion control, practiced in the steep slopes, accomplished by constructing broad channels across the slope. It consists converting original sloping ground in to step-like fields along contours by half-cutting and halffilling. In rainfed areas, bench terracing is generally practised in 16-33% slope range. However, level bench terracing is recommended for paddy fields even on the mild slopes of 1% for uniform impounding of water.[10,13]

Bench terraces have three types:

1. Level bench terrace- used for paddy growing areas

- 2. Inwardly sloping bench terrace- used for crops susceptible to water logging and where quick disposal of runoff is necessary.
- 3. Outwardly sloping bench terrace- this is a step toward level or inwardly sloping bench terrace used in regions with low rainfall and shallow soil depth.

Standard engineering design procedure is followed with logical assumptions and steps as briefly shown in flowchart in Fig.3[17,19]. Total earthwork required was determined by multiplying earthwork per ha by field area. Total batter length to be sodded was also determined. From cost of earthwork per cubic meter and cost of sodding per 100 m total cost of bench terrace was calculated[21].

2.4 Design of Farm Pond

Average annual rainfall in various parts of Maharashtra State ranges from about 500mm to 4000 mm but dearth of water during summer is very common. This calls for assiduous efforts to harvest rain water and reusing it when

International Journal of Computer Applications (0975 – 8887) Volume 14– No.5, January 2011

natural sources of water are dried up. This can be achieved by constructing farm ponds.

Standard engineering design procedure was used for design of dugout farm pond[17,19].

Start

Input from the location data

Check for hard pan and decide

Population, number of animals

and poultry birds

Other miscellaneous requirements

vegetables information

Calculation of total water requirement and addition of evaporation losses

Determination of middle area by required volume and depth of pond

Agronomical, horticultural and

depth of pond

(optional)

a. Volume of water to be stored was determined from human population, population of cattle and poultry birds, number of horticultural trees, area under agronomical and vegetable crops to be irrigated and other miscellaneous uses with standard water requirements[2,5,7,14,18]. Care was taken to keep the depth within range of 3 to 5 m[4]. Cost A= cost of excavation+ cost of lining + other miscellaneous cost

Total cost = Cost A + 2% of Cost A

d. Cost per litre was calculated as follows

Cost B = cost of excavation+ (cost of lining/3) + other miscellaneous cost

Cost per litre = (1.02 * Cost B) / Capacity of

pond

Flowchart for design of farm pond is given in Fig. 4

Figure 4: Flowchart for design of farm pond

- b. Rectangular pond with trapezoidal crosssection was chosen as it is easy to construct. The side slope was taken as 1:1.
- c. Total cost of pond was calculated as follows

3. RESULTS AND DISCUSION

Software results for Pural watershed in Sindhudurg district of Maharashtra are given here.

3.1 Design for Vegetated Waterway

Input form and result from of vegetated waterway are given in fig.5 and fig.6

egetated waterway De	sign		
	Vegetated V	Waterways	Design Wizard
Location Inform	ation		
Location	Pural	Latitude	16.922 N
District	Sindhudurg	Longitude	73.342 E
	Area to be draine	d (Ha.)* 20	
	Recurrance interval	years * 20	
	Length of natural waterw	ay (m.) 2000	
	Slope of the ar	ea (%)* 10	
Select Land Use	* C. Woodbr	.d	
		iu .	
	Pasture		
	ි <u>C</u> ultivate	be	
Select the type	of Vegetation *		
	Sparse	cover (0.9m/s)	
	ି Vegeta	tion established by	seeding (0.9 to 1.2 m/s)
	• Dense	and vigorous sod (1	.2 to 1.5 m/s)
	Well es	tablished sod of ex	cellent quality (1.5 to 1.8 m/s)
	ି Well es	tablished vegetatio	n (1.8 to 2.1 m/s)
<< HOME	:	Delete Inputs	<u>N</u> ext >>

Figure 5: Vegetated Waterway Input Form

Figure 6:Vegetated Waterway Result Form

For testing purpose we compared the software designs values with the standard design procedure values the summary is as follows. **3.1.1** Comparison of Design for Vegetated Waterway

Table 1: Comparison of output

Parameters	Software Output	Calculated Output
Peak runoff rate	2.22 cumec	2.224 cumec
Total depth of waterway	0.9 m	0.9 m
Bottom width of waterway	1.6 m	1.57 m
Top width of waterway	4.3 m	4.3 m
Total cost of construction	Rs.	Rs.
	203,286/-	203,286/-

3.2 Design for Bench Terrace

Input form and result from of bench terrace are given in fig.7 and fig.8

Bench	Terrace					
		Ber	ich Terrace	s Design	Wizard	
Loca	tion Informa	tion				
	Location	Pural	Latitude	16.922 N		
	District	Sindhudurg	Longitude	73.342 E		
	Axial (in m	Dimension of field along	g the slope *	100		
(in meters) Axial Dimension of field accross the slope * (in meters)			oss the slope *	100		How to Use This Form
	Recu	ırrance interval (in Years	5)*	10		slope in meters.
	Dept	h of productive soil (in o	centimeters)*	95		2. Enter the desired recurrence interval for which you
	Slop	e of land in percent*		12		want to design the bench terrace. By default it will be taken
	Sele	ct Type of Terrace to be	Constructed	• Level Terrac	e	as 10 years.
			(া Inward Slopi	ng Terrace	3. Enter the depth of productive soil
			0	° Outward Slo	ping Terrace	depth should be greater than the root zone
	Sele	ct the crop you want to g	grow*	Rice	•	depth of desired crop.
					6	Flat Terraces are A Recommended for
		<< HOME	Delete Input	t	<u>N</u> ext >>	1 dddy

Figure7: Bench Terrace Input Form

Figure 8: Bench Terrace Design Result

3.2.1 Comparison of Design for Bench Terrace a. Crop=Paddy

Table 2: Comparison of output

Parameters	Software Output	Calculated Output
Vertical interval	0.68 m	0.68 m
Horizontal interval	5.68 m	5.68 m
Width of Terrace	5 m	5 m
Total number of outlets	18	18
Height of shoulder bund	0.3 m	0.3 m
Top width of shoulder	0.15 m	0.15 m
bund		
Bottom width of shoulder	0.75 m	0.75 m
bund		
Total cost of construction	Rs. 46,618/-	Rs 46,618/-

3.3 Design for Farm Pond

Input form and result from of bench terrace are given in fig.9 and fig.10

_ocation Loc	Informa		The			
ocation Loc	Informa		r a	rm Pond De	esig	gn Wizard
Loc		ation				
	Location Pural District Sindhudurg			16.9	922 N	
Dis			rg	Longitude	73.5	3.342 E
Necessor	v Inforr	nation				
Enter th	e depth	of hardpan	in meters	<u>N</u> o ● ⊻	es	4
	Р	opulation fo	or which you w	vant to store the wa	iter	5
	Numh	er of anima	als available (r	except poultry anima	als)	20
				umber of Poultry Bi	rde.	40
			Other misce	allaneous Lises (Lite	are)	
Ľ	Type of	Cultivation	5	maneous oses (Lite	15)	
	₩ Hor	ticultural	En	ter Number of Tree	5	100
	⊠ Aare	onomical	Area unde	r the cultivation (Ha	L)	0.5
		etables	Area unde	r the cultivation (Ha	ι)	0.5
						Done

Figure9: Farm Pond Input Form

		Fa	rn	n Pond	l Des	ign	Wizard							
Location Informa	ation					•								
Location	Pural		L	atitude	16.922	N								
District	Sindhudurg		L	ongitude	73.342	E								
Dimensions of F	arm Pond													
Pond Capacit	y (Liters)			4963353	.00			HE	LP - na is t	ho d	ocian	cum	man	, i
Type of Pond				Rectang	ular Pon	d		for	for the bench terrace desi			lesig	n.	
Top Length o	f Pond (m)			67.00				Clic	Click on the SAVE button t			ion te		
Top Width of	Pond (m)			33.00				save the report in the tex			ext	í		
Bottom Lengt	th of Pond (m)			62.00			file(.txt) format 💡							
Bottom Width	Bottom Width of Pond (m)			28.00			Click on the PRINT button to							
Depth of Farr	n Pond (m)			2.69			get Cau	get hardcopy of the report. Caution - Ensure the Printer is power ON and ONLINE						
Lining Recom	mended			Yes			is p							
Length of Lin	ina (m)			72.62 button.			g the	PRI	NI					
- Width of Linir	a (m)			38.62			_	05.			ar.u			
Cost for exca	vation		Rs	156615	10		_	GR	APH	ICS b	uttor	n to v	iew	
Cost for Linin	a		Rs	42068 A	1					000	-	_		
Cupapricany or	9 ul Cundru abar	aon (5%)	De	0004.01	, 		_	J	une 2	Tue	June	Thu	▼ Z	106
Subervisory at	iu Sulluly Glai	yes (076)	n5	9984.21				28	29	30	31	1	2	3
Total Cost			Rs	209668.3	80			4	5	6	7	8	9	10
								11	12	13	14	15	16	17
								18	19	20	21	72	23	24
<< Return	P	rint		Sav	e	1	/iew Graphics	2	20	21	40	a	36	1

Figure10: Farm Pond Design Results

3.3.1 Comparison of Design for Farm Pond **Table 3: Comparison of Output**

Parameters	Software Output	Calculated Output		
Capacity of pond	4,963,353 lits	4,963,353 lits		
Top length	67 m	67 m		
Top width	33 m	32 m		
Bottom length	62 m	62 m		
Bottom width	28 m	27 m		
Depth of pond	2.69 m	2.69 m		
Length of lining	72.62 m	72.6 m		
Width of lining	38.62 m	37.6 m		
Cost of excavation	Rs. 156,615.70	Rs. 151204.49		
Cost of lining	Rs. 126,208.20	Rs. 122,839.20		
Total cost	Rs. 288,477.30	Rs. 279,524.56		
Cost per litre	Rs. 0.04	Rs. 0.039		

4. CONCLUSIONS

- 1. The software was developed to design bench terrace, vegetated waterway and farm-pond, which are very important soil and water conservation structures in Maharashtra State, India
- 2. The Software is based on validated data, thus there is hardly any chance to input incorrect/invalid information.
- 3. Dynamic database is provided with the software which can be updated in order to adopt the software to any other locality by addition of database of respective location.
- 4. Software is developed by considering the low computer awareness of potential users, supported with help pan and tips to guide the user at every step.
- 5. Design of structure obtained by software was tested with on-paper calculations at developer's level and results were found satisfactory.

5. ACKNOWLEDGMENTS

Our thanks to the honorable Vice-Chancellor and Director of Research of Dr.B.S.Konkan Agricultural University, Dapoli, India who have encouraged us for development of the software "Watershed Softguide"

6. REFERENCES

- [1] Anonymous. 1990. RUNOFF. International Institute for Land Reclamation and Improvement, Netherlands.
- [2] Anonymous. 1998. CropWat 4 Windows Version 4.2. Institute of Irrigation and Development Studies, United Kingdom.
- [3] Anonymous. 2001. Soil and Water Conservation Structure Design (SCS Designer) v1.0. Indian Institute of Technology, Kharagpur.
- [4] Bhandarkar, D. M. 1985. Design and feasibility of dugout pond in black soils of Bhopal region. Soil and water engineering. Proceeding of silver jubilee convention. ISAE. Vol-2. III-30-III38
- [5] Banarjee, G. S. 1964. Textbook of Animal Husbundary. pp. 287.
- [6] Bradley, J.C. and A. C. Millspaugh. 2001. Programming in Visual Basic 6.0. Tata McGraw-Hill Publishing Company Ltd. New Delhi. pp. 86-523

- [7] Chadha, K. L. 2001. Handbook of Horticulture. Indian Council of Agricultural Research. New Delhi. pp. 243.
- [8] Challa O., K. S. Gajbhie, M. Yelayutham. 1999. Soil Series of Maharashtra. National Bureau of Soil Survey and Land Use Planning. Nagpur. pp. 7-371
- [9] Dhruva Narayana, V. V., G. Sastry, U. S. Patnaik. 1997. Watershed Management. Indian Council of Agricultural Research. New Delhi. pp.49, 57.
- [10] Dhruva Narayana, V. V., 1999. Soil and Water Conservation Research in India, Indian Council of Agricultural Research. New Delhi. pp. 138.
- [11] Hudson, N. W.. 1993. Field measurement of soil erosion and runoff. FAO Soil Bulletin, Vol- 68, pp. 60, 110
- [12] Jerke, N. 1999. Complete Reference Visual Basic 6. Tata McGraw-Hill Publishing Company Ltd. New Delhi.. pp. 122-148
- [13] Michael, A. M., T. P. Ojha. 1999. Principles of Agricultural Engineering, Vol-II. Jain Brothers. New Delhi. pp. 500, 507, 692, 725, 707, 708
- [14] Michael, A. M.. 2000. Irrigation Theory and Practices. Vikas Publishing House Pvt. Ltd.. New Delhi. pp. 510
- [15] Petroutsos, E. 1998. Mastering Visual Basic 6. BPB Publications. New Delhi. pp.75-80.
- [16] Rob, P. and E. Semaan. 2001. Databases. Tata McGraw-Hill Publishing Company Ltd. New Delhi. pp. 103-185
- [17] Schwab, G. O., D. D. Fangmeier, W. J. Elliot and R. K. Frevert. 1993. Soil and Water Conservation Engineering. John Wiley & Sons, Inc. pp. 135, 166.
- [18] Shrivastava 2001. Invesment Decision Model for Drip Irrigation System. Version 1.0.
- [19] Singh G., C. Venkataraman, G. Shastry and B. P. Joshi. 1999. Manual of Soil and Water Conservation Design. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi. pp. 30, 88-95, 121-128, 145-149.
- [20] Subramanya, K.. 2002. Engineering Hydrology. Tata McGraw-Hill Publication Company Ltd.. New Delhi. 235
- [21] Tideman, E. M.. 2003. Watershed Management Guideline for Indian Conditions. Omega Science Publishers, New Delhi. 82.