
International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

1

Hybrid Modular Approach for Anomaly Detection

ABSTARCT
The traditional approach for detecting novel attacks in
network traffic is to model the normal frequency of session IP
addresses and server port usage and to signal unusual
combinations of these attributes as suspicious. Rather than

just modeling user behavior, recent systems model network
protocols from the data link through the application layer in
order to detect attacks that exploit vulnerabilities in the
implementation of these protocols. We describe modular
approach for network anomaly detection. Our system analyses
the network traffic at three different possible levels (packet,
flow, protocol) with the help of three different modules. Total
anomaly score is computed from the anomaly scores of the
three modules using weighted attribute model. We detect 147

of 185 attacks in the DARPA off-line intrusion detection
evaluation data set [1] at 10 false alarms per day (total 100
false alarms), after training on one week of attack-free traffic.
We investigate the performance of the system when attack
free training data is not available.

Keywords: Intrusion Detection System, Traffic, Attacks

1. INTRODUCTION
An intrusion detection system (IDS) monitors network traffic,
operating system events, or the file system to detect
unauthorized attempts to access a system. IDS’s are classified
as Network IDS, which monitors traffic to and from the host,
or host based IDS, which monitors the state of the host,
depending on the source of data it monitors. The two most
common detection techniques are signature detection, which

looks for characteristics of known attacks, and anomaly
detection, which looks for deviations from normal behavior,
signaling a possibly novel attack.

In this paper, we focus on network anomaly detection. Most
network anomaly systems such as ADAM [2], NIDES [3],
and SPADE [4] monitor most anomalous attributes like IP
addresses, ports, and TCP state. This catches user misbehavior,
such as attempting to access a password protected service

(because the source address is unusual) or probing a
nonexistent service. However, this misses attacks on public
servers or the TCP/IP stack that might otherwise be detected
because of anomalies in other parts of the protocol. PHAD [5],
NETAD [6] monitors the entire data link, network, and
transport layer, without any preconceptions about which fields
might be useful. Our system monitors all header fields of
network, transport layers and part of application data at

different possible levels: packet level, flow level, protocol
level using three different modules. It uses weighted attribute
model to compute the total anomaly score from the anomaly
scores of all possible attributes. We evaluate our system on
the DARPA IDS evaluation data set [1], which simulates a
local network under attack, to investigate its performance.

The rest of the paper is organized as fallows. In section 2, we
discuss related work in anomaly based network intrusion
detection. In section 3, we describe modular approach for
network traffic anomaly detection. In section 4, we brief the
1999 DARPA off-line IDS evaluation process. In section 5,
we test our system on the 1999 DARPA data set. In section 6
we summarize.

2. RELATED WORK
Early work in anomaly detection was host based. Forrest et.al
[7] demonstrated that the system call sequences for processing
attack packets deviate significantly from the normal pattern of

system calls. Forrest detected these attacks by training an n-
gram model (n=3 to 6) as the system ran normally. In [8],
utilizing statistical characteristics of n-gram model is
described. More recent work has focused on better models,
such as state machines [9].

Network intrusion detection is typically rule based. Systems
like SNORT [10] and BRO [11] use hand written rules to
detect signatures of known attacks, such as specific string in

the application payload, or suspicious behavior, such as server
requests to unused ports. When a new type of attack is
detected, new rules must be added to these systems. Anomaly
detection systems such as SPADE [4], ADAM [2], and
NIDES [3] learn a statistical model of normal network traffic,
and flag deviations from this model. Models are usually based
on the distribution of source and destination addresses and
ports per transaction (TCP connections, and sometimes UDP
and ICMP packets). But they differ in the attributes, they

model. These systems use frequency-based models, in which
the probability of an event is estimated by its average
frequency during training.

NIDES, monitors ports and addresses. SPADE, a SNORT
plug-in, monitors addresses and ports of inbound TCP SYN
packets. By default, it models only the destination (server)
address and port. ADAM combines an anomaly detector
trained on attack-free traffic with a classifier trained on traffic

containing known, labeled attacks. In addition to addresses
and ports (as SPAD does), it also monitors subnets, TCP state
flags. Sessions which do not match any learned category
(normal or known attack) are flagged as anomalous (novel
attack).

PHAD [5], ALAD [12], LERAD [13], NETAD [6] differ in
the attributes that they monitor. PHAD (Packet Header
Anomaly Detector) has 34 attributes, corresponding to the

Ethernet, IP, TCP, UDP, and ICMP packet header fields. It
builds a single model of all network traffic, incoming or
outgoing. ALAD (Application Layer Anomaly Detector)
models incoming server TCP requests: source and destination
addresses and ports, opening and closing TCP flags, and the
list of commands (the first word on each line) in the

A.Laxmi Kanth
Associate Professor,

M.Tech (IT)
Sri Indu College of Engineering
& Technology, Sheriguda, IBP.

Suresh Yadav
Assistant Professor,

(M.Tech),B.Tech, MBA
Sri Indu College of

Engineering &
Technology, Sheriguda, IBP.

M.Sridhar
Associate Professor,

M.Tech (CSE)
Sri Indu College of Engineering
& Technology, Sheriguda, IBP.

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

2

application payload. Depending on the attribute, it builds
separate models for each target host, port number (service), or
host/port combination. Both of them uses time based
modeling of the attributes. LERAD (LEarning Rules for
Anomaly Detection) also models TCP connections, but

samples the training data to suggest large subsets to model.
For example, if it samples two HTTP port requests to the
same host, then it might suggest a rule that all requests to this
host must be HTTP, and it builds a port model for this host.
NETAD models 48 attributes, consisting of the first 48 bytes
of the packet starting with the IP header. Each byte is treated
as one attribute. It also considers frequency of events along
with time-based models.

PHAD, ALAD, and NETAD were tested on the 1999 DARPA
off-line intrusion detection evaluation data set [1], by training
on one week of attack free traffic (inside sniffer, week 3) and
testing on two weeks of traffic (weeks 4 and 5) containing 185
detectable instances of 58 attacks. At a threshold allowing 100
false alarms, PHAD detects 54 attack instances, ALAD
detects 60, or 70 when the results were merged with PHAD,
LERAD detects 114 and NETAD detects 132.

3. MODULAR APPROACH FOR

NETWORK ANOMALY DETECTION
We believe that most of the network based attacks can be
detected by analyzing the network traffic at Packet level (e.g.
Land), Flow level (e.g. udpstorm) and Protocol level (e.g.
SYN flood). Our proposed system analyzes the network
traffic at these levels with three different modules, Integrity
check, Route statistic and Connecting/Connected/Termination

modules. The overall architecture of our proposed system is
shown in figure 3.1. These three modules analyze the network
traffic simultaneously and assign anomaly score to the packets
individually. Decision making/Response module calculates
the total anomaly score of each packet after collecting the
anomaly score of the packet from each module and raises
anomalies for those packets, whose anomaly score exceeds a
threshold limit. Reordering/de-fragmentation module

assembles the fragmented packets and sends them to the
Connecting/Connected/Termination, which assumes the same.

3.1. Integrity Check Module
This module detects anomalies in network packets at byte
level. It assigns anomaly score only to the most interesting
packets, after filtering out the uninteresting traffic. As most of
the attacks are initiated against a target server or operating
system, it is usually sufficient to examine only the first few
packets of incoming server requests. Hence it filters out all

non IP packets, the entire out going traffic, traffic related to
the TCP connections initiated from internal network to outside
the network, packets to high numbered ports, and packets not
in the near start of the TCP connection.

Figure 3.1: architecture of NIDS

This module models 48 attributes, consisting of the first 48

bytes of the packet starting with the IP header. If the packet is
less than 48 bytes long, then the extra attributes are set to 0.
During training period this module records all the values for
each attribute that occur at least once. During testing period it
uses these recorded values to assign anomaly score to the
packets using the anomaly score function explained in section
3.6. Then it sends the anomaly score value to the decision
making/response module for further processing.

3.2. Route Statistic Module
Route statistic module observes behavior on the monitoring
network and adaptively learns what is normal for routes

between any pair of nodes. This observed behavior will be
reported as anomalous if it deviates significantly from the
expected behavior. This module models all the header fields
of IP layer at byte level. Each byte is treated as a nominal
attribute with 256 possible values. And also monitors some
conditional attributes. Major attributes modeled by this
module are:

P(TTL | src IP, dest IP)
P(TOS | src IP, dest IP)
P(IP flags | src IP, dest IP)

P(dest IP): Probability of packets to a

particular node

P(src IP):Probability of packets from a particular
node

P(src IP, dest IP):Probability of packets between
two given nodes

P(dest IP, dest port) :Probability of packets to a
particular port of the node.

P(src IP, dest IP, dest port) :Probability of packets
to a port on any node from a particular node

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

3

During the training period, this module calculates the values
for the above attributes and records the statistics of these
attributes. During the testing period, this module observes the
values of the above mentioned attributes and assigns anomaly
score accordingly using the anomaly score function explained

in the section 3.6. Then it sends the anomaly score value to
the decision making/response module for further processing.

3.3. Fragmentation reassembly / reordering

module
This module reassembles the fragmented packets and sends
them in the right order to the next module, as the next module
assumes the same. Our system uses traffic normalizer [14] to
remove the ambiguities in the network traffic. Hence there
won’t be any ambiguities in the fragment reassembly and
reordering process. Thus this fragmentation reassembly and
reordering process is unambiguous.

3.4. Connecting / Connected / Termination

module
Every TCP session has to go through three stages connection
establishment, connection maintenance and connection
termination in that order. This module maintains the
transitions of the TCP connections. Specification of the TCP

state machine, as observed on a gateway connecting an
organization’s internal network to the Internet is given in the
figure 3.2[15]. One of these components comes into picture
dynamically according to the stage of the session at that time.
Every valid TCP session has to go through these components
in that order. During the process these components look for
abnormal transitions. If any abnormality occurred it will be
reported with some anomaly score.

This module models various attributes which correspond to
common fields of the packet at Network (IP), and Transport
(TCP) layer, and part of application layer at byte level. It
models 48 attributes; consisting of the first 48 bytes of the
packet starting with the IP header. Each byte is treated as a
nominal attribute with 256 possible values. This module
models all the 48 attributes for every transition separately.
This also models the attributes and transitions separately for

various application layer protocols like HTTP, SMTP, FTP
and telnet to detect anomalies in those protocols also.

During training period, this module records all the values for
all possible attributes to form the normal behavior of all the
transitions for the above attributes. During testing period, this
compares the observed attribute values with the recorded
values for abnormalities and assigns anomaly score
accordingly. Then it sends the anomaly score value to the

decision making/response module for further processing.

3.5. Decision making/response module

This module receives the anomaly score from all the
components and computes the total anomaly score of every

packet. It reports anomaly if the total anomaly score of a
packet crosses the threshold value. The threshold value can be
specified by the security administrator. Total anomaly score
of the packet is calculated using the weighted model, in which
the modules will be assigned weights according to their
detection rate. The module, which contributes more for true
positives, is assigned more weight and the module, which
contributes more for false alarms, is assigned less weight, so

that the detection rate is improved with this model for the
same false alarm rate. We investigated all the three modules
for their detection rates and then we assigned weights to them.

Hence the total anomaly score is (W1*A1 + W2*A2 +
W3*A3)/ (W1+W2+W3).

3.6 Anomaly Score
Time based modeling of attributes was first used in PHAD. It
assigns the score t*n/r to anomalous attributes, where t is the
time since the attribute was last anomalous (in training or
testing), n is the number of training instances, and r is the
number of allowed values (up to 256). NETAD made

Figure 3.2: TCP state transition diagram

three improvements to the above anomaly score. First, n is set
back to zero when an anomaly occurred during training.
Second improvement is to decrease the weight of rules when r
is near the maximum of 256. Third is that it considers the
frequency of normal (not anomalous) events. Thus the
NETAD anomaly score for an attribute is t*na(1 - r/256) /r +
ti/(fi + r/256). where na is the number of training packets from
the last anomaly to the end of the training period, ti is the time
(packet count in the modeled subset) since the value i (0-255)

was last observed (in either training or testing), and fi is the
frequency in training, the number of times i was observed
among training packets.

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

4

Though NETAD considers the frequency of normal events it
ignores the frequency of anomalous events. If a value does not
occur at least once during training period, it is treated as
anomalous value. NETAD assigns maximum score, through
first component t*na(1 - r/256) /r, to all further occurrences of

that value during testing period, ignoring its frequency. Our
system considers the frequency of the anomalous values
during testing period. We add another factor to the NETAD
anomaly score, Ti/(Fi+r/256), where Ti is the time(packet
count) since the value i(0-256) was last observed during
testing, and Fi is the frequency in testing, the number of times
i was observed among the packets occurred till that time from
the beginning of testing period. This model assigns highest

score for values that occur rarely (small Fi) and lowest score
for values that occur frequently (large Fi). Thus it reduces the
anomaly score for normal values that have not occurred at
least once during training period, but occur frequently during
testing period. Thus the anomaly score S of an attribute is
given by

S = t*na(1- r/256) /r+ ti/(fi+ r/256)+Ti/(Fi+r/256).

A criticism of PHAD and NETAD is that they do not have
any preconceptions about which fields might be useful, and
hence they give equal weight to all the attributes. This causes
more false alarms to be generated because of uninteresting
fields. To correct this we introduced weighted attribute model,
in which we assign weights to the attributes based on their

anomalous behavior. So that most anomalous attributes, like
source IP address and TCP flags, get more weight and
uninteresting attributes get less weight. We assign zero weight
to the TTL field (simulation artifact). This reduces the false
alarms score and increases the correct alarms score, so that
more number of detections are possible at a given false alarm
rate. Thus the anomaly score for a packet is WjSj, Where
Wj and Sj are the weight and anomaly score of jth attribute

respectively.

4. THE 1999 DARPA OFF-LINE IDS

EVALUATION
In 1999, DARPA sponsored a project at Lincoln Labs to
evaluate intrusion detection systems [1]. They set up a
simulated local area network with a variety of different hosts

and a simulated Internet connection and attacked it with a
variety of published exploits. A number of intrusion detection
systems were evaluated on their ability to detect these attacks
given the network traffic (inside and outside the gateway),
daily file system dumps, audit logs, and BSM (Solaris system
call) logs in two phases. During the first phase, participants
were given 3 weeks of data to develop their systems that
included both attack free periods and labeled attacks (time,
victim IP address, and description of the attack). During the

second phase, about six months later, the participants were
given 2 weeks of new data sets with unlabeled attacks, some
of them new, and were rated by the number of detections as a
function of false alarm rate. After the evaluation, the data sets
and results were made available to other researchers in
intrusion detection. Table 4.1 shows the official results of the
top 4 systems in the original evaluation.

Table 4.1: Top results of the 1999 DARPA IDS evaluation

at 10 false alarms per day

System In-Spec Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)

Dmine 41/102 (40%)
Forensics 15/27 (55%)

The systems were evaluated on the percentage of

attacks detected out of those they were designed to

detect. None were designed to detect all attacks.

Lippmann reports in [1] that 77 of the 201 attack

instances were poorly detected, in that no system

detected more than half of the instances of that type.

Our system examines only the inside network traffic

logs because the inside data contains the evidence of

attacks both from inside and outside the network,

although we miss outside attacks against the router.

Although there are 201 labeled attacks, the inside

traffic is missing for one day (week 4, day 2)

containing 12 attacks, leaving 189. There is also one

unlabeled attack (apache2) and there are five

external attacks (one queso and four snmpget) against

the router which are not visible from inside the local

network. This leaves 185 detectable attacks, of which

68 were poorly detected.

5. EXPERIMENTAL RESULTS
We trained our system on week 3 (7 days of attack free traffic)
of the inside tcpdump files provided by DARPA [1], then
tested the system on weeks 4 and 5 of the inside tcpdump files.
We did not use week 2 (labeled attacks) because we do not

look for any attack specific features. We used the same
evaluation criteria for our system as was used in the original
evaluation, counting an attack as detected if the there is at
least one alarm within 60 seconds any portion of the attack,
but counting all the false alarms separately. If there is more
than one alarm identifying the same target within a 60 second
period, then only the highest scoring alarm is evaluated and
the others are discarded. This technique can be used to reduce

the false alarm rate of any IDS, because multiple detections of
the same attack are counted only once, but each false alarm
would be counted separately.

We zeroed out the TTL (time to live) field value, which we
believe to be simulation artifacts. TTL is an 8-bit counter
decremented each time an IP packet is routed in order to
expire packets to avoid infinite routing loops. Although small
TTL values might be used to elude an IDS by expiring the

packet between the IDS and the target [16], this was not the
case because the observed values were large, usually 126 or
253. Such artifacts are unfortunate, but probably inevitable,
given the difficulty of simulating the Internet [17]. A likely
explanation for these artifacts is that the machine used to
simulate the attacks was a different real distance from the
inside sniffer than the machines used to simulate the
background traffic.

 Our evaluation of the system at 10 False alarms per

day detects 147 of 185 detectable attack instances (80%). We
avoid comparison of our system performance with the
performance of the original participants. This would be
biased in our favor as we had access to the test data, even
though we did not use it to train the system or write attack-
specific techniques, simply having this data available to test
our system helps us.

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

5

5.1 Effects of the scoring Function
Table 5.1 shows the results of using various anomaly score
functions to evaluate our system. It shows the number of
detections by our system at various false alarm rates ranging
from 20 to 5000. The combined scoring function (7) detects
the most attacks at 100 false alarms, but all of the three
components (2 or 4 or 6) do well by themselves. Function (4)
gives better results than the model that considers only novel

events. Function (6) gives best result especially at low false
alarm rates.

It shows that the improvement, modeling frequency of
anomalous events (Ti/(Fi+r/256)), to the anomaly score
function of NETAD described in section 3.6, reduces the
score of false alarms so that the detection rate is improved for
a given false alarm rate. This component gives best result at
very low false alarm rate. This indicates that addition of this

factor improves the anomaly score of true positives and
decreases the anomaly score of false alarms.

Scoring Function 20 50 100 500 5000

Σ Wj*(t*na)
/r

61 92 119 148 152

Σ Wj*(t*na)

*(1 - r/256)
/r

66 110 126 149 152

Σ Wj*
ti/(fi + 1)

54 81 97 130 158

Σ Wj*t

i/(fi + r/256)
94 124 131 145 156

Σ Wj*

Ti/(Fi + 1)
89 103 106 128 154

Σ Wj*Ti

/(Fi + r/256)
96 106 115 138 155

Our Model:

ΣWj*

(t*na/r+ti/

(fi+r/256)+
Ti/(Fi +
r/256))

88 119 147 152 154

Table 5.1: Attacks detected at 20 to 5000 false alarms

using various anomaly scoring functions.

5.2. Detections by Category
Table 5.2 lists the number of detections (at 100 false alarms)
for each category of attack described by kendall [18]. Our
system performs well on probe, DOS, and R2L attacks. Like
most other network intrusion detection systems, it performs
poorly on U2R attacks. Detecting such attacks requires the
IDS to interpret user commands, which might be entered
locally or hidden by using a secure shell. Our system detects
most of these attacks by anomalous source address.

The category poorly detected includes the 77 (68 detectable)
instances of attack types for which none of the original 18
evaluated systems in 1999 were able to detect more than half
of the instances. Our system detects these at almost the same
rate as other attacks, indicating that there is not a lot of
overlap between the attacks detected by our system and the
systems developed by other techniques (signature, host based,
etc.). This suggests that integrating our system with existing

systems improves the overall detection rate.

Attack Category Detected at 100 False

Alarms
Probe 32/36 (89%)
Denial of Service (DOS) 50/63 (79%)

Remote to Local (R2L) 45/49 (90%)
User to Root (U2R) 19/33 (55%)
Data 1/4 (25%)
Total 147/185 (78%)
Poorly Detected in 1999 46/68 (68%)

Table 5.2: Attacks detected by category.

5.3. Analysis of detected attacks
Table 5.3 lists the attacks detected by each module of the
proposed system at 100 false alarms, when they evaluated
separately followed by the total number of detections by the

entire system. Detections field gives the number of detections
by the module. Attack types detected field contains the
number of attack types for which at least one instance is
detected by that module. Most of the attacks are detected by
more than one module. Hence the sum of the detections by
individual modules is more than the number of detections by
the system

Among the three modules Connecting/Connected/Termination

module detects more attacks. This is because this module
models the attributes for all the transitions of the TCP state
transition diagram and also models the application layer
protocols separately. Route statistic module detects more
attacks if TTL value is not assigned to zero, because of the
attribute P(TTL | src IP, dst IP).

Module Det

ecti

ons

Attack types detected

Integrity
check

39 16 -- Probe: insidesniffer,
*ipsweep, mscan, portsweep,
satan; DoS: *arppoison, pod,
smurf, syslogd, teardrop,
udpstorm; R2L: framespoofer,

*netbus, netcat_setup,ppmacro;
U2R:ffbconfig;

Route
Statistic

33 15 -- Probe: insidesniffer,
*ipsweep, *queso, *portsweep,
mscan, satan; DoS: pod, smurf,
Neptune, teardrop, mailbomb;
R2L: named, guesstelnet, ncftp;
U2R: ffbconfig;

Connecting/
Connected/T
ermination

121 49 -- Probe: insidesniffer,
*ls_domain, mscan, ntinfoscan,
*portsweep, *queso, *resetscan,
satan; DoS: apach2, *arppoison,
back, crachiis, *dosnuke, land,
mailbomb, Neptune, processtable,
syslogd, *tcpreset, *warezclient,
warezmaster; R2L: dict,

ftpwrite,guessftp, guesspop,
guesstelenet, guest, imap, named,
*ncftp, *netbus, *netcat, phf,
ppmacro, sendmail, *sshtrojan,
xlock, xsnoop; U2R: anypw,
casesen, eject, fdformat,
ffbconfig, *perl, ps, *sechole,
*squlattack, *xterm, yaga.

Entire

system

147

Table 5.3: Number of attack types detected by

each module at 100 false alarms

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

6

Five of 58 attack types are not detected by our system.
Httptunnel is a backdoor which disguises its communication
with the attacker as web client requests. Our system misses
this because it does not monitor outgoing traffic or incoming
client responses. Selfping and ntfsdos generate no traffic

directly, but could theoretically be detected because they
reboot the target, interrupting TCP connections. Snmpget is an
external router attack, not visible on the inside sniffer.
Loadmodule is U2R, thus hard to detect.

5.4 Effects of attacks in Training
DARPA provided training (contains no attacks) and test
(contains some attacks) data explicitly. But it might not be
possible to have explicit training and test data in real network
settings. We just have network traffic, which could contain
unknown attacks at any point of time. To study the
performance of our system in real network settings, we

evaluated our system for two cases. In first case we assumed
that the rate of attacks is low (compared to the volume of
normal traffic) and ran our system in the training mode for all
the three weeks. Second case is the more realistic case where
attacks might occur at any point of time. For this we ran our
system in the training mode during the attack period (weeks 4-
5) without using attack free data (week 3).

Week

3

Weeks

4-5
20 50 100 500 5000

Normal Train Test 88 119 147 152 154

Case1 Train Train 72 99 108 132 154

Case2
Not
used

Train 58 89 102 122 152

Table 5.4: Attacks detected at 20 to 5000 false alarms

when our system is left in training mode.

Table 5.4 shows the results for both the cases described above.
If we run the system in training mode during attack period
(weeks 4-5), then the anomalies present in the traffic will be
added to the model and further instances of the same or
similar attacks might be missed. There are 58 types of attacks
present in the DARAPA data set. If all the instances of these
attacks have the identical signatures, then we should not

expect to detect more than one instance of each. But our
system can detect 108 instances (at 100 false alarms) when it
is left in training mode for all three weeks, and 102 instances
for the second and more realistic case, which indicates that
there are subtle differences between instances of the same
type.

6. CONCLUSION
We described a network anomaly detection system that
analyses network traffic at three different levels (packet, flow,
protocol) with three different modules. We considered
frequency of anomalous events to reduce the weight of the

further occurrences of that event. It uses weighted attribute
model to improve the detection rate for a given false alarm
rate. We investigated all the attributes and assigned weights to
the attributes according to their anomalous behavior. This
reduces the anomaly score of false alarms generated by
uninteresting fields and improves the score of true positives.

Our system performs well on the DARPA IDS evaluation data
set, detecting 80% of the total attacks. It detects those attacks

that were poorly detected in the original evaluation at 70%.
None of the original systems detected more than half of the

poorly detected attacks. This indicates, Integrating our system
with the systems participated in the original evaluation might
improve the detection rate considerably.

We must caution that the data provided by DARPA is
synthetic. Although great care was taken to make the DARPA

background traffic realistic, artifacts due to simulation errors
(such as the TTL field) or overly clean background traffic
might make attacks easier to detect. Furthermore, we have
assumed that attack free traffic is available for training. This
would not be true in a real environment. We have evaluated
the system in training mode on the attack data (weeks 4,5)
with out using attack free data to train the system and found
that there is a 30% decrease in the detection rate.

REFERENCES
[1] Lippmann, R., et al., "The 1999 DARPA Off-Line

Intrusion Detection Evaluation", Computer Networks
34(4) 579-595, 2000.

[2] Barbará, D., N. Wu, S. Jajodia, "Detecting Novel Network
Intrusions using Bayes Estimators", First SIAM
International Conference on Data Mining, 2001.

[3] Anderson, D. et. al., "Detecting unusual program behavior
using the statistical component of the Next-generation
Intrusion Detection Expert System (NIDES)", Computer
Science Laboratory SRI-CSL 95-06 May 1995.

[4] SPADE, Silicon Defense,
http://www.silicondefense.com/software/spice/

[5] Mahoney, M., P. K. Chan, "PHAD: Packet Header
Anomaly Detection for Identifying Hostile Network
Traffic", Florida Tech. technical report 2001-04,
http://cs.fit.edu/~tr/

[6] M. Mahoney, "Network Traffic Anomaly Detection Based
on Packet Bytes", Proc. ACM-SAC, 346-350, 2003.

[7] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, "A Sense of Self for Unix Processes",

Proceedings of IEEE Symposium on Computer Security
and Privacy, 1996.

[8] L Zhuowei, A Das and S Nandi, "Utilizing Statistical
Characteristics of N-grams for Intrusion Detection",
International Conference on Cyberworlds, Singapore,
December 2003.

[9] Sekar, R., M. Bendre, D. Dhurjati, P. Bollineni, "A Fast
Automaton-based Method for Detecting Anomalous
Program Behaviors". Proceedings of the 2001 IEEE
symposium on Security and Privacy.

[10] Roesch, Martin, "Snort - Lightweight Intrusion Detection
for Networks", Proc. USENIX Lisa '99, Seattle: Nov. 7-
12, 1999.

[11] Paxson, Vern, "Bro: A System for Detecting Network

Intruders in Real-Time", Lawrence Berkeley National
Laboratory Proceedings, 7'th USENIX Security
Symposium, Jan. 26-29, 1998.

[12] Mahoney, M., P. K. Chan, "Learning Models of Network
Traffic for Detecting Novel Attacks", Florida Tech.
technical report 2002-08, http://cs.fit.edu/~tr/

[13] Mahoney, M., P. K. Chan, "Learning Nonstationary
Models of Normal Network Traffic for Detecting Novel
Attacks ", Edmonton, Alberta: Proc. SIGKDD, 376-385,
2002.

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.8, February 2011

7

[14] Handley, M., C. Kreibich and V. Paxson, "Network
Intrusion Detection: Evasion, Traffic Normalization, and
End-to-End Protocol Semantics", Proc. USENIX
Security Symposium, 2001.

[15] Sekar, R., A.Gupta, J.Frullo, T.Shanbhag, A.Tiwari,
H.Yang and S.Zhou, Specification-based Anomaly

Detection: A New Approach for Detecting Network
Intrusions. CCS’02, Washington, USA, Nov. 18-22,
2002.

[16] Ptacek, Thomas H., and Timothy N. Newsham,
"Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection", January, 1998,
http://www.robertgraham.com/mirror/Ptacek-Newsham-
Evasion-98.html

[17] Floyd, S. and V. Paxson, "Difficulties in Simulating the
Internet." IEEE/ACM Transactions on Networking Vol.
9, no. 4, pp. 392-403, Aug. 2001.
http://www.icir.org/vern/papers.html.

[18] Kendall, Kristopher, "A Database of Computer Attacks
for the Evaluation of Intrusion Detection Systems",
Masters Thesis, MIT, 1999.

AUTHORS PROFILE

A.Lxxmi Kanth Associate Professor, M.Tech Information
Technology, with 11 years of teaching experience.

Mr. M. Sridhar, Assistant Professor, B.E Computer
science ,M.Tech (CSE) has 6 years of experience in
teaching and the areas of interest are Data Mining,
Databases, Advanced Data Structure, OOPS through
JAVA.

Mr. Suresh Yadav , Assistant Professor, B.Tech. (Computer
science & Engg.), MBA (E-Business) ,M.Tech (CSE)
has 6 years of experience in teaching and the areas of
interest are Data Mining, Datawarehousing, Artificial
Intelligence, Databases, Network Security.

