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Hybrid Modular Approach for Anomaly Detection 
 
 
 
 
 
 

ABSTARCT 
The traditional approach for detecting novel attacks in 
network traffic is to model the normal frequency of session IP 
addresses and server port usage and to signal unusual 
combinations of these attributes as suspicious. Rather than 

just modeling user behavior, recent systems model network 
protocols from the data link through the application layer in 
order to detect attacks that exploit vulnerabilities in the 
implementation of these protocols. We describe modular 
approach for network anomaly detection. Our system analyses 
the network traffic at three different possible levels (packet, 
flow, protocol) with the help of three different modules. Total 
anomaly score is computed from the anomaly scores of the 
three modules using weighted attribute model. We detect 147 

of 185 attacks in the DARPA off-line intrusion detection 
evaluation data set [1] at 10 false alarms per day (total 100 
false alarms), after training on one week of attack-free traffic. 
We investigate the performance of the system when attack 
free training data is not available.  

Keywords: Intrusion Detection System, Traffic, Attacks 

 

1. INTRODUCTION 
An intrusion detection system (IDS) monitors network traffic, 
operating system events, or the file system to detect 
unauthorized attempts to access a system. IDS’s are classified 
as Network IDS, which monitors traffic to and from the host, 
or host based IDS, which monitors the state of the host, 
depending on the source of data it monitors. The two most 
common detection techniques are signature detection, which 

looks for characteristics of known attacks, and anomaly 
detection, which looks for deviations from normal behavior, 
signaling a possibly novel attack. 

In this paper, we focus on network anomaly detection. Most 
network anomaly systems such as ADAM [2], NIDES [3], 
and SPADE [4] monitor most anomalous attributes like IP 
addresses, ports, and TCP state. This catches user misbehavior, 
such as attempting to access a password protected service 

(because the source address is unusual) or probing a 
nonexistent service. However, this misses attacks on public 
servers or the TCP/IP stack that might otherwise be detected 
because of anomalies in other parts of the protocol. PHAD [5], 
NETAD [6] monitors the entire data link, network, and 
transport layer, without any preconceptions about which fields 
might be useful. Our system monitors all header fields of 
network, transport layers and part of application data at 

different possible levels: packet level, flow level, protocol 
level using three different modules. It uses weighted attribute 
model to compute the total anomaly score from the anomaly 
scores of all possible attributes.  We evaluate our system on 
the DARPA IDS evaluation data set [1], which simulates a 
local network under attack, to investigate its performance. 

The rest of the paper is organized as fallows. In section 2, we 
discuss related work in anomaly based network intrusion 
detection. In section 3, we describe modular approach for 
network traffic anomaly detection. In section 4, we brief the 
1999 DARPA off-line IDS evaluation process. In section 5, 
we test our system on the 1999 DARPA data set. In section 6 
we summarize.  

 

2. RELATED WORK 
Early work in anomaly detection was host based. Forrest et.al 
[7] demonstrated that the system call sequences for processing 
attack packets deviate significantly from the normal pattern of 

system calls. Forrest detected these attacks by training an n-
gram model (n=3 to 6) as the system ran normally. In [8], 
utilizing statistical characteristics of n-gram model is 
described. More recent work has focused on better models, 
such as state machines [9]. 

Network intrusion detection is typically rule based. Systems 
like SNORT [10] and BRO [11] use hand written rules to 
detect signatures of known attacks, such as specific string in 

the application payload, or suspicious behavior, such as server 
requests to unused ports. When a new type of attack is 
detected, new rules must be added to these systems.  Anomaly 
detection systems such as SPADE [4], ADAM [2], and 
NIDES [3] learn a statistical model of normal network traffic, 
and flag deviations from this model. Models are usually based 
on the distribution of source and destination addresses and 
ports per transaction (TCP connections, and sometimes UDP 
and ICMP packets). But they differ in the attributes, they 

model. These systems use frequency-based models, in which 
the probability of an event is estimated by its average 
frequency during training. 

NIDES, monitors ports and addresses. SPADE, a SNORT 
plug-in, monitors addresses and ports of inbound TCP SYN 
packets. By default, it models only the destination (server) 
address and port. ADAM combines an anomaly detector 
trained on attack-free traffic with a classifier trained on traffic 

containing known, labeled attacks. In addition to addresses 
and ports (as SPAD does), it also monitors subnets, TCP state 
flags. Sessions which do not match any learned category 
(normal or known attack) are flagged as anomalous (novel 
attack). 

PHAD [5], ALAD [12], LERAD [13], NETAD [6] differ in 
the attributes that they monitor. PHAD (Packet Header 
Anomaly Detector) has 34 attributes, corresponding to the 

Ethernet, IP, TCP, UDP, and ICMP packet header fields. It 
builds a single model of all network traffic, incoming or 
outgoing. ALAD (Application Layer Anomaly Detector) 
models incoming server TCP requests: source and destination 
addresses and ports, opening and closing TCP flags, and the 
list of commands (the first word on each line) in the 
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application payload. Depending on the attribute, it builds 
separate models for each target host, port number (service), or 
host/port combination. Both of them uses time based 
modeling of the attributes. LERAD (LEarning Rules for 
Anomaly Detection) also models TCP connections, but 

samples the training data to suggest large subsets to model. 
For example, if it samples two HTTP port requests to the 
same host, then it might suggest a rule that all requests to this 
host must be HTTP, and it builds a port model for this host. 
NETAD models 48 attributes, consisting of the first 48 bytes 
of the packet starting with the IP header. Each byte is treated 
as one attribute. It also considers frequency of events along 
with time-based models.  

PHAD, ALAD, and NETAD were tested on the 1999 DARPA 
off-line intrusion detection evaluation data set [1], by training 
on one week of attack free traffic (inside sniffer, week 3) and 
testing on two weeks of traffic (weeks 4 and 5) containing 185 
detectable instances of 58 attacks. At a threshold allowing 100 
false alarms, PHAD detects 54 attack instances, ALAD 
detects 60, or 70 when the results were merged with PHAD, 
LERAD detects 114 and NETAD detects 132. 

 

3. MODULAR APPROACH FOR 

NETWORK ANOMALY DETECTION 
We believe that most of the network based attacks can be 
detected by analyzing the network traffic at Packet level (e.g. 
Land), Flow level (e.g. udpstorm) and Protocol level (e.g. 
SYN flood). Our proposed system analyzes the network 
traffic at these levels with three different modules, Integrity 
check, Route statistic and Connecting/Connected/Termination 

modules. The overall architecture of our proposed system is 
shown in figure 3.1. These three modules analyze the network 
traffic simultaneously and assign anomaly score to the packets 
individually. Decision making/Response module calculates 
the total anomaly score of each packet after collecting the 
anomaly score of the packet from each module and raises 
anomalies for those packets, whose anomaly score exceeds a 
threshold limit. Reordering/de-fragmentation module 

assembles the fragmented packets and sends them to the 
Connecting/Connected/Termination, which assumes the same. 

 

3.1. Integrity Check Module 
This module detects anomalies in network packets at byte 
level. It assigns anomaly score only to the most interesting 
packets, after filtering out the uninteresting traffic. As most of 
the attacks are initiated against a target server or operating 
system, it is usually sufficient to examine only the first few 
packets of incoming server requests. Hence it filters out all 

non IP packets, the entire out going traffic, traffic related to 
the TCP connections initiated from internal network to outside 
the network, packets to high numbered ports, and packets not 
in the near start of the TCP connection. 

 
Figure 3.1:  architecture of NIDS 

 
This module models 48 attributes, consisting of the first 48 

bytes of the packet starting with the IP header. If the packet is 
less than 48 bytes long, then the extra attributes are set to 0. 
During training period this module records all the values for 
each attribute that occur at least once. During testing period it 
uses these recorded values to assign anomaly score to the 
packets using the anomaly score function explained in section 
3.6. Then it sends the anomaly score value to the decision 
making/response module for further processing.  

3.2. Route Statistic Module 
Route statistic module observes behavior on the monitoring 
network and adaptively learns what is normal for routes 

between any pair of nodes. This observed behavior will be 
reported as anomalous if it deviates significantly from the 
expected behavior. This module models all the header fields 
of IP layer at byte level. Each byte is treated as a nominal 
attribute with 256 possible values. And also monitors some 
conditional attributes. Major attributes modeled by this 
module are: 

 
P(TTL | src IP, dest IP) 
P(TOS | src IP, dest IP)   
P(IP flags | src IP, dest IP) 
   
P(dest IP): Probability of packets to a              

particular node 
 

P(src IP):Probability of packets from a particular 
node 

 
P(src IP, dest IP):Probability of packets between 
two given nodes  

 
P(dest IP, dest port) :Probability of packets to a 
particular port of the node. 

 

P(src IP, dest IP, dest port) :Probability of packets 
to a port on any node from a particular node  
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During the training period, this module calculates the values 
for the above attributes and records the statistics of these 
attributes. During the testing period, this module observes the 
values of the above mentioned attributes and assigns anomaly 
score accordingly using the anomaly score function explained 

in the section 3.6. Then it sends the anomaly score value to 
the decision making/response module for further processing.  

 

3.3. Fragmentation reassembly / reordering 

module 
This module reassembles the fragmented packets and sends 
them in the right order to the next module, as the next module 
assumes the same. Our system uses traffic normalizer [14] to 
remove the ambiguities in the network traffic. Hence there 
won’t be any ambiguities in the fragment reassembly and 
reordering process. Thus this fragmentation reassembly and 
reordering process is unambiguous.  

 

3.4. Connecting / Connected / Termination 

module 
Every TCP session has to go through three stages connection 
establishment, connection maintenance and connection 
termination in that order. This module maintains the 
transitions of the TCP connections. Specification of the TCP 

state machine, as observed on a gateway connecting an 
organization’s internal network to the Internet is given in the 
figure 3.2[15]. One of these components comes into picture 
dynamically according to the stage of the session at that time. 
Every valid TCP session has to go through these components 
in that order. During the process these components look for 
abnormal transitions. If any abnormality occurred it will be 
reported with some anomaly score.  

This module models various attributes which correspond to 
common fields of the packet at Network (IP), and Transport 
(TCP) layer, and part of application layer at byte level. It 
models 48 attributes; consisting of the first 48 bytes of the 
packet starting with the IP header. Each byte is treated as a 
nominal attribute with 256 possible values. This module 
models all the 48 attributes for every transition separately. 
This also models the attributes and transitions separately for 

various application layer protocols like HTTP, SMTP, FTP 
and telnet to detect anomalies in those protocols also. 

During training period, this module records all the values for 
all possible attributes to form the normal behavior of all the 
transitions for the above attributes. During testing period, this 
compares the observed attribute values with the recorded 
values for abnormalities and assigns anomaly score 
accordingly. Then it sends the anomaly score value to the 

decision making/response module for further processing.  

3.5. Decision making/response module 

This module receives the anomaly score from all the 
components and computes the total anomaly score of every 

packet. It reports anomaly if the total anomaly score of a 
packet crosses the threshold value. The threshold value can be 
specified by the security administrator. Total anomaly score 
of the packet is calculated using the weighted model, in which 
the modules will be assigned weights according to their 
detection rate. The module, which contributes more for true 
positives, is assigned more weight and the module, which 
contributes more for false alarms, is assigned less weight, so 

that the detection rate is improved with this model for the 
same false alarm rate. We investigated all the three modules 
for their detection rates and then we assigned weights to them. 

Hence the total anomaly score is (W1*A1 + W2*A2 + 
W3*A3)/ (W1+W2+W3).  

3.6 Anomaly Score 
Time based modeling of attributes was first used in PHAD. It 
assigns the score t*n/r to anomalous attributes, where t is the 
time since the attribute was last anomalous (in training or 
testing), n is the number of training instances, and r is the 
number of allowed values (up to 256). NETAD made 

 

 
Figure 3.2: TCP state transition diagram 
 

three improvements to the above anomaly score. First, n is set 
back to zero when an anomaly occurred during training. 
Second improvement is to decrease the weight of rules when r 
is near the maximum of 256. Third is that it considers the 
frequency of normal (not anomalous) events. Thus the 
NETAD anomaly score for an attribute is t*na(1 - r/256) /r + 
ti/(fi + r/256). where na is the number of training packets from 
the last anomaly to the end of the training period, ti is the time 
(packet count in the modeled subset) since the value i (0-255) 

was last observed (in either training or testing), and fi is the 
frequency in training, the number of times i was observed 
among training packets.  
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Though NETAD considers the frequency of normal events it 
ignores the frequency of anomalous events. If a value does not 
occur at least once during training period, it is treated as 
anomalous value. NETAD assigns maximum score, through 
first component t*na(1 - r/256) /r, to all further occurrences of 

that value during testing period, ignoring its frequency. Our 
system considers the frequency of the anomalous values 
during testing period. We add another factor to the NETAD 
anomaly score, Ti/(Fi+r/256), where Ti is the time(packet 
count) since the value i(0-256) was last observed during 
testing, and Fi is the frequency in testing, the number of times 
i was observed among the packets occurred till that time from 
the beginning of testing period. This model assigns highest 

score for values that occur rarely (small Fi) and lowest score 
for values that occur frequently (large Fi). Thus it reduces the 
anomaly score for normal values that have not occurred at 
least once during training period, but occur frequently during 
testing period. Thus the anomaly score S of an attribute is 
given by 

 
S = t*na(1- r/256) /r+ ti/(fi+ r/256)+Ti/(Fi+r/256). 

 
A criticism of PHAD and NETAD is that they do not have 
any preconceptions about which fields might be useful, and 
hence they give equal weight to all the attributes. This causes 
more false alarms to be generated because of uninteresting 
fields. To correct this we introduced weighted attribute model, 
in which we assign weights to the attributes based on their 

anomalous behavior. So that most anomalous attributes, like 
source IP address and TCP flags, get more weight and 
uninteresting attributes get less weight. We assign zero weight 
to the TTL field (simulation artifact). This reduces the false 
alarms score and increases the correct alarms score, so that 
more number of detections are possible at a given false alarm 
rate. Thus the anomaly score for a packet is WjSj, Where 
Wj and Sj are the weight and anomaly score of jth attribute 

respectively. 

 

4. THE 1999 DARPA OFF-LINE IDS 

EVALUATION 
In 1999, DARPA sponsored a project at Lincoln Labs to 
evaluate intrusion detection systems [1]. They set up a 
simulated local area network with a variety of different hosts 

and a simulated Internet connection and attacked it with a 
variety of published exploits. A number of intrusion detection 
systems were evaluated on their ability to detect these attacks 
given the network traffic (inside and outside the gateway), 
daily file system dumps, audit logs, and BSM (Solaris system 
call) logs in two phases. During the first phase, participants 
were given 3 weeks of data to develop their systems that 
included both attack free periods and labeled attacks (time, 
victim IP address, and description of the attack). During the 

second phase, about six months later, the participants were 
given 2 weeks of new data sets with unlabeled attacks, some 
of them new, and were rated by the number of detections as a 
function of false alarm rate. After the evaluation, the data sets 
and results were made available to other researchers in 
intrusion detection. Table 4.1 shows the official results of the 
top 4 systems in the original evaluation. 

Table 4.1: Top results of the 1999 DARPA IDS evaluation 

at 10 false alarms per day 

System  In-Spec Detections 
Expert 1  85/169 (50%) 
Expert 2  81/173 (47%) 

Dmine  41/102 (40%) 
Forensics  15/27 (55%) 

The systems were evaluated on the percentage of 

attacks detected out of those they were designed to 

detect. None were designed to detect all attacks. 

Lippmann reports in [1] that 77 of the 201 attack 

instances were poorly detected, in that no system 

detected more than half of the instances of that type. 

 

Our system examines only the inside network traffic 

logs because the inside data contains the evidence of 

attacks both from inside and outside the network, 

although we miss outside attacks against the router. 

Although there are 201 labeled attacks, the inside 

traffic is missing for one day (week 4, day 2) 

containing 12 attacks, leaving 189. There is also one 

unlabeled attack (apache2) and there are five 

external attacks (one queso and four snmpget) against 

the router which are not visible from inside the local 

network. This leaves 185 detectable attacks, of which 

68 were poorly detected. 

 

5. EXPERIMENTAL RESULTS 
We trained our system on week 3 (7 days of attack free traffic) 
of the inside tcpdump files provided by DARPA [1], then 
tested the system on weeks 4 and 5 of the inside tcpdump files. 
We did not use week 2 (labeled attacks) because we do not 

look for any attack specific features. We used the same 
evaluation criteria for our system as was used in the original 
evaluation, counting an attack as detected if the there is at 
least one alarm within 60 seconds any portion of the attack, 
but counting all the false alarms separately. If there is more 
than one alarm identifying the same target within a 60 second 
period, then only the highest scoring alarm is evaluated and 
the others are discarded. This technique can be used to reduce 

the false alarm rate of any IDS, because multiple detections of 
the same attack are counted only once, but each false alarm 
would be counted separately. 

We zeroed out the TTL (time to live) field value, which we 
believe to be simulation artifacts. TTL is an 8-bit counter 
decremented each time an IP packet is routed in order to 
expire packets to avoid infinite routing loops. Although small 
TTL values might be used to elude an IDS by expiring the 

packet between the IDS and the target [16], this was not the 
case because the observed values were large, usually 126 or 
253. Such artifacts are unfortunate, but probably inevitable, 
given the difficulty of simulating the Internet [17]. A likely 
explanation for these artifacts is that the machine used to 
simulate the attacks was a different real distance from the 
inside sniffer than the machines used to simulate the 
background traffic. 

 Our evaluation of the system at 10 False alarms per 

day detects 147 of 185 detectable attack instances (80%). We 
avoid comparison of our system performance with the 
performance of the original participants.  This would be 
biased in our favor as we had access to the test data, even 
though we did not use it to train the system or write attack-
specific techniques, simply having this data available to test 
our system helps us.  
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5.1 Effects of the scoring Function  
Table 5.1 shows the results of using various anomaly score 
functions to evaluate our system. It shows the number of 
detections by our system at various false alarm rates ranging 
from 20 to 5000. The combined scoring function (7) detects 
the most attacks at 100 false alarms, but all of the three 
components (2 or 4 or 6) do well by themselves. Function (4) 
gives better results than the model that considers only novel 

events. Function (6) gives best result especially at low false 
alarm rates. 

It shows that the improvement, modeling frequency of 
anomalous events (Ti/(Fi+r/256)), to the anomaly score 
function of NETAD described in section 3.6, reduces the 
score of false alarms so that the detection rate is improved for 
a given false alarm rate. This component gives best result at 
very low false alarm rate. This indicates that addition of this 

factor improves the anomaly score of true positives and 
decreases the anomaly score of false alarms. 

Scoring Function 20 50 100 500 5000 

Σ Wj*(t*na) 
/r 

61 92 119 148 152 

Σ Wj*(t*na) 

*(1 - r/256) 
/r 

66 110 126 149 152 

Σ Wj* 
ti/(fi + 1) 

54 81 97 130 158 

Σ Wj*t 

i/(fi + r/256) 
94 124 131 145 156 

Σ Wj* 

Ti/(Fi + 1) 
89 103 106 128 154 

Σ Wj*Ti 

/(Fi + r/256) 
96 106 115 138 155 

Our Model: 

ΣWj* 

(t*na/r+ti/ 

(fi+r/256)+ 
Ti/(Fi + 
r/256)) 

88 119 147 152 154 

 

Table 5.1: Attacks detected at 20 to 5000 false alarms 

using various anomaly scoring functions. 

 

5.2. Detections by Category 
Table 5.2 lists the number of detections (at 100 false alarms) 
for each category of attack described by kendall [18]. Our 
system performs well on probe, DOS, and R2L attacks. Like 
most other network intrusion detection systems, it performs 
poorly on U2R attacks. Detecting such attacks requires the 
IDS to interpret user commands, which might be entered 
locally or hidden by using a secure shell. Our system detects 
most of these attacks by anomalous source address.  

The category poorly detected includes the 77 (68 detectable) 
instances of attack types for which none of the original 18 
evaluated systems in 1999 were able to detect more than half 
of the instances. Our system detects these at almost the same 
rate as other attacks, indicating that there is not a lot of 
overlap between the attacks detected by our system and the 
systems developed by other techniques (signature, host based, 
etc.). This suggests that integrating our system with existing 

systems improves the overall detection rate. 

Attack Category Detected at 100 False 

Alarms 
Probe  32/36 (89%) 
Denial of Service (DOS) 50/63 (79%) 

Remote to Local (R2L) 45/49 (90%) 
User to Root (U2R) 19/33 (55%) 
Data 1/4 (25%) 
Total  147/185 (78%) 
Poorly Detected in 1999  46/68 (68%) 

 
Table 5.2: Attacks detected by category. 

 
5.3. Analysis of detected attacks 
Table 5.3 lists the attacks detected by each module of the 
proposed system at 100 false alarms, when they evaluated 
separately followed by the total number of detections by the 

entire system. Detections field gives the number of detections 
by the module. Attack types detected field contains the 
number of attack types for which at least one instance is 
detected by that module. Most of the attacks are detected by 
more than one module. Hence the sum of the detections by 
individual modules is more than the number of detections by 
the system  

Among the three modules Connecting/Connected/Termination 

module detects more attacks. This is because this module 
models the attributes for all the transitions of the TCP state 
transition diagram and also models the application layer 
protocols separately. Route statistic module detects more 
attacks if TTL value is not assigned to zero, because of the 
attribute P(TTL | src IP, dst IP).   

 

Module Det

ecti

ons 

Attack types detected 

Integrity 
check 

39 16 -- Probe: insidesniffer, 
*ipsweep, mscan, portsweep, 
satan; DoS: *arppoison, pod, 
smurf, syslogd, teardrop, 
udpstorm; R2L: framespoofer, 

*netbus, netcat_setup,ppmacro; 
U2R:ffbconfig; 

Route 
Statistic 

33 15 -- Probe: insidesniffer, 
*ipsweep, *queso, *portsweep, 
mscan, satan; DoS: pod, smurf, 
Neptune, teardrop, mailbomb; 
R2L: named, guesstelnet, ncftp; 
U2R: ffbconfig; 

Connecting/
Connected/T
ermination 

121 49 -- Probe: insidesniffer, 
*ls_domain, mscan, ntinfoscan, 
*portsweep, *queso, *resetscan, 
satan; DoS: apach2, *arppoison, 
back, crachiis, *dosnuke, land, 
mailbomb, Neptune, processtable, 
syslogd, *tcpreset, *warezclient, 
warezmaster; R2L: dict, 

ftpwrite,guessftp, guesspop, 
guesstelenet, guest, imap, named, 
*ncftp, *netbus, *netcat, phf, 
ppmacro, sendmail, *sshtrojan, 
xlock, xsnoop; U2R: anypw, 
casesen, eject, fdformat, 
ffbconfig, *perl, ps, *sechole, 
*squlattack, *xterm, yaga. 

Entire 

system 

147  

 
Table 5.3: Number of attack types detected by 

each module at 100 false alarms 
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Five of 58 attack types are not detected by our system. 
Httptunnel is a backdoor which disguises its communication 
with the attacker as web client requests. Our system misses 
this because it does not monitor outgoing traffic or incoming 
client responses. Selfping and ntfsdos generate no traffic 

directly, but could theoretically be detected because they 
reboot the target, interrupting TCP connections. Snmpget is an 
external router attack, not visible on the inside sniffer. 
Loadmodule is U2R, thus hard to detect. 

5.4 Effects of attacks in Training 
DARPA provided training (contains no attacks) and test 
(contains some attacks) data explicitly. But it might not be 
possible to have explicit training and test data in real network 
settings. We just have network traffic, which could contain 
unknown attacks at any point of time. To study the 
performance of our system in real network settings, we 

evaluated our system for two cases. In first case we assumed 
that the rate of attacks is low (compared to the volume of 
normal traffic) and ran our system in the training mode for all 
the three weeks. Second case is the more realistic case where 
attacks might occur at any point of time. For this we ran our 
system in the training mode during the attack period (weeks 4-
5) without using attack free data (week 3).  

 

 
Week 

3 

Weeks 

4-5 
20 50 100 500 5000 

Normal Train Test 88 119 147 152 154 

Case1 Train Train 72 99 108 132 154 

Case2 
Not 
used 

Train 58 89 102 122 152 

 
Table 5.4: Attacks detected at 20 to 5000 false alarms 

when our system is left in training mode. 

 
Table 5.4 shows the results for both the cases described above. 
If we run the system in training mode during attack period 
(weeks 4-5), then the anomalies present in the traffic will be 
added to the model and further instances of  the same or 
similar attacks might be missed. There are 58 types of attacks 
present in the DARAPA data set. If all the instances of these 
attacks have the identical signatures, then we should not 

expect to detect more than one instance of each. But our 
system can detect 108 instances (at 100 false alarms) when it 
is left in training mode for all three weeks, and 102 instances 
for the second and more realistic case, which indicates that 
there are subtle differences between instances of the same 
type.   

 

6. CONCLUSION 
We described a network anomaly detection system that 
analyses network traffic at three different levels (packet, flow, 
protocol) with three different modules. We considered 
frequency of anomalous events to reduce the weight of the 

further occurrences of that event. It uses weighted attribute 
model to improve the detection rate for a given false alarm 
rate. We investigated all the attributes and assigned weights to 
the attributes according to their anomalous behavior. This 
reduces the anomaly score of false alarms generated by 
uninteresting fields and improves the score of true positives. 

Our system performs well on the DARPA IDS evaluation data 
set, detecting 80% of the total attacks. It detects those attacks 

that were poorly detected in the original evaluation at 70%. 
None of the original systems detected more than half of the 

poorly detected attacks. This indicates, Integrating our system 
with the systems participated in the original evaluation might 
improve the detection rate considerably. 

We must caution that the data provided by DARPA is 
synthetic. Although great care was taken to make the DARPA 

background traffic realistic, artifacts due to simulation errors 
(such as the TTL field) or overly clean background traffic 
might make attacks easier to detect. Furthermore, we have 
assumed that attack free traffic is available for training. This 
would not be true in a real environment. We have evaluated 
the system in training mode on the attack data (weeks 4,5) 
with out using attack free data to train the system and found 
that there is a 30% decrease in the detection rate. 

 
REFERENCES 
[1] Lippmann, R., et al., "The 1999 DARPA Off-Line 

Intrusion Detection Evaluation", Computer Networks 
34(4) 579-595, 2000. 

[2] Barbará, D., N. Wu, S. Jajodia, "Detecting Novel Network 
Intrusions using Bayes Estimators", First SIAM 
International Conference on Data Mining, 2001. 

[3] Anderson, D. et. al., "Detecting unusual program behavior 
using the statistical component of the Next-generation 
Intrusion Detection Expert System (NIDES)", Computer 
Science Laboratory SRI-CSL 95-06 May 1995. 

[4] SPADE, Silicon Defense, 
http://www.silicondefense.com/software/spice/ 

[5] Mahoney, M., P. K. Chan, "PHAD: Packet Header 
Anomaly Detection for Identifying Hostile Network 
Traffic", Florida Tech. technical report 2001-04, 
http://cs.fit.edu/~tr/ 

[6] M. Mahoney, "Network Traffic Anomaly Detection Based 
on Packet Bytes", Proc. ACM-SAC, 346-350, 2003. 

[7] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. 
Longstaff, "A Sense of Self for Unix Processes", 

Proceedings of IEEE Symposium on Computer Security 
and Privacy, 1996. 

[8] L Zhuowei, A Das and S Nandi, "Utilizing Statistical 
Characteristics of N-grams for Intrusion Detection", 
International Conference on Cyberworlds, Singapore, 
December 2003.  

[9] Sekar, R., M. Bendre, D. Dhurjati, P. Bollineni, "A Fast 
Automaton-based Method for Detecting Anomalous 
Program Behaviors". Proceedings of the 2001 IEEE 
symposium on Security and Privacy. 

[10] Roesch, Martin, "Snort - Lightweight Intrusion Detection 
for Networks", Proc. USENIX Lisa '99, Seattle: Nov. 7-
12, 1999. 

[11] Paxson, Vern, "Bro: A System for Detecting Network 

Intruders in Real-Time", Lawrence Berkeley National 
Laboratory Proceedings, 7'th USENIX Security 
Symposium, Jan. 26-29, 1998. 

[12] Mahoney, M., P. K. Chan, "Learning Models of Network 
Traffic for Detecting Novel Attacks", Florida Tech. 
technical report 2002-08, http://cs.fit.edu/~tr/ 

[13] Mahoney, M., P. K. Chan, "Learning Nonstationary 
Models of Normal Network Traffic for Detecting Novel 
Attacks ", Edmonton, Alberta: Proc. SIGKDD, 376-385, 
2002. 



International Journal of Computer Applications (0975 – 8887) 
Volume 14– No.8, February 2011 

7 

[14] Handley, M., C. Kreibich and V. Paxson, "Network 
Intrusion Detection: Evasion, Traffic Normalization, and 
End-to-End Protocol Semantics", Proc. USENIX 
Security Symposium, 2001. 

[15] Sekar, R., A.Gupta, J.Frullo, T.Shanbhag, A.Tiwari, 
H.Yang and S.Zhou, Specification-based Anomaly 

Detection: A New Approach for Detecting Network 
Intrusions. CCS’02, Washington, USA, Nov. 18-22, 
2002. 

[16] Ptacek, Thomas H., and Timothy N. Newsham, 
"Insertion, Evasion, and Denial of Service: Eluding 
Network Intrusion Detection", January, 1998, 
http://www.robertgraham.com/mirror/Ptacek-Newsham-
Evasion-98.html 

[17] Floyd, S. and V. Paxson, "Difficulties in Simulating the 
Internet." IEEE/ACM Transactions on Networking Vol. 
9, no. 4, pp. 392-403, Aug. 2001. 
http://www.icir.org/vern/papers.html. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[18] Kendall, Kristopher, "A Database of Computer Attacks 
for the Evaluation of Intrusion Detection Systems", 
Masters Thesis, MIT, 1999. 

AUTHORS PROFILE 

A.Lxxmi Kanth Associate   Professor, M.Tech Information 
Technology, with 11 years of teaching experience. 

Mr. M. Sridhar, Assistant Professor, B.E Computer 
science ,M.Tech  (CSE) has 6 years of experience in 
teaching and the areas of interest are Data Mining, 
Databases, Advanced Data Structure, OOPS through 
JAVA. 

Mr. Suresh Yadav , Assistant Professor, B.Tech. (Computer 
science & Engg.), MBA (E-Business) ,M.Tech  (CSE) 
has 6 years of experience in teaching and the areas of 
interest are Data Mining,  Datawarehousing, Artificial 
Intelligence, Databases, Network Security. 

 

 


