
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.8, February 2011

18

Recognition of Distorted CAD Objects using Neural
Networks

ABSTRACT
The uses of features have been considered to be the technology

which bridges the gap between Computer aided design (CAD) and

Computer aided manufacturing (CAM) in the CIMS (Computer

Integrated manufacturing systems).Active research in the last two

decades has resulted in a number of recognition techniques like

rule based, graph matching, volume decomposition, hint based,
neural network, etc. This paper presents the development of

distorted CAD objects recognition system. A well-known multi-

layer Perceptron (MLP) neural network with backpropagation

learning algorithm is chosen for its fast processing time and its

good performance for feature recognition problems. Learning

systems that learn from previous experiences and/or provided
examples of appropriate behaviors, allow the people to specify

what the systems should do for each case, not how systems should

act for each step. The recognition system is programmed in C++.

Keywords: CAD, recoginition, artificial neural networs,

backpropagation, CAM.

1. CAD FEATURE RECOGNITION
Despite availability of advanced manufacturing and automation

technology the link, between CAD and CAM systems, is still not

as integrated as desired. The process planning stage, which

consists of the explanation of design drawings, is seen as a

hindrance in the flow of information between CAD and CAM. An

intelligent interface between CAD and CAPP (Computer Aided
Process Planning) systems is imperative because the CAPP

systems depend on correct data obtained from CAD systems to

perform precise process planning. Feature recognition techniques

provide such a connection between CAD and CAPP. However,

CAD and CAPP systems form different databases. While CAD

databases are usually geometry-based, consisting of geometric
primitives such as points, lines and arcs, CAPP systems are

feature-based such as faces, cylinders, grooves or pockets. It could

be said that the CAPP systems describe in terms of manufacturing

features, whereas CAD describes parts by their solid model or

design features [8].One of the solutions for these problems

between CAD and CAM is the automatic feature recognition
technique. Miscellaneous techniques including graph-based and

hint based such as cell division, cavity volume, convex hull and

lamina slicing have been used in automatic feature recognition.

There have been many previous attempts to recognize form

features for manufacturing purposes, which can be broadly

categorized into three areas: Rule-based, Graph based and Neural

Network-based systems. One typical example of a rule-based

system was developed by Meeran and Pratt using PROLOG. The

input to the view orthographic drawings in DXF format. However,

the system was limited to prismatic parts and limited by its rules

base [3],[4]. Madurai and Lin developed a rule-based system
using the expert system approaches for automatic extraction and

recognition of part features directly from CAD data for system is

three rotational part features. Geometric and topological data of

the part in IGES (Initial Graphics Exchange Specifications)

format are read by a feature extraction data-compactor, a pre-

processor of the system. Manufacturing features are generated by

production rules written in LISP. They demonstrated the

functioning of the system by two illustrative examples [7]. One
important type of a feature recognition method is graph-based

recognition, which recognizes features by matching a feature

graph to the appropriate subgraph, in a graph representation of the

part. This method has advantages such as being applicable to

many domains not just machining, allowing the user to add new

feature types without changing the codes, being suitable for
incremental feature modelling, and being able to recognize

isolated features effectively. The disadvantage of this method is

that feature interaction and multiple interpretations of features can

not be handled well [2]. Dimov [1] proposed a new hybrid method

that facilitates the deployment of AFR systems in different

application domains. In particular, the method includes two main

processing stages: learning and feature recognition. During the

learning stage, knowledge acquisition techniques are applied for

generating feature-recognition rules and feature hints

automatically from training data. Then, these hints and rule bases

are utilized in the feature-recognition stage to analyze boundary
representation (B-Rep) part models and identify their feature-

based internal structure. The proposed AFR method is

implemented within a prototype feature-recognition system and its

capabilities are verified on two benchmarking parts. But like

others this technique is also unable to recognize distorted objects.

In our work Neural network is used in feature recognition because

of their capability of learning from examples. The most important

advantage of using a neural network is the high possibility of

recognizing features. As it is not definite in recognizing some

features in the case of rule-based and graph-based systems, the

neural network-based systems are able to recognize features that
are not certain means distorted sketches.

2. INTRODUCTION TO NEURAL

NETWORK
Artificial Neural Network (ANN) is an information-processing

paradigm inspired by the way the brain processes information.

ANNs are collections of mathematical models that emulate some

of the observed properties of biological nervous systems and draw

on the analogies of adaptive biological learning. An ANN is
composed of a large number of highly interconnected processing

elements that are analogous to neurons and are tied together with

weighted connections that are analogous to synapses. Learning in

biological systems involves adjustments to the synaptic

connections that exist between the neurons. This is true of ANNs

as well. Learning typically occurs by example through training or

exposure to a truth table set of input/output data where the

training algorithm iteratively adjusts the connection weights

(Synapses). These connection weights store the knowledge

necessary to solve specific problems. The advantages of ANNs lie

Navdeep Kumar

Mechanical Engineering Dept.,
Thapar University, India

Pankaj Garg

Abraham Consultancy Services Pvt.Ltd.,
India

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.8, February 2011

19

in their resilience against distortions in the input data and their

capability of learning. They are often good at solving problems

that do not have an algorithmic solution or for which an

algorithmic solution is too complex to be found. The basic unit of

any neural network is the neuron (processor). Each neuron is able

to sum many inputs, whether these inputs are from a database or

from other neurons, with each input modified by an adjustable

weight as shown in figure 1. The sum of these weighted inputs is

added to an adjustable threshold for the neuron and then passed
through a modifying (transfer) function that determines the final

output. Neurons are arranged in several layers called input,

hidden, and output layers .Simply put, the input layer is similar to

a matrix of independent variables in a regression while the output

layer is the dependent variable. The hidden layer is the series of

relationships calculated in the network’s training process.

 Figure.1: Neuron processing

The idea behind this network is to map CAD object input vectors

to CAD object output vectors .Figure 2 shows the typical layout of

such a network as it relates to our task of classifying CAD images.

In this process mapping occurs by assigning weights to each of

the edges. These weights can initially be set to random values, and

the neural network will automatically make adjustments to them

based on a set of training data. This is the process of the

feedforward backpropagation mechanism. Known inputs are fed

into the neurons at the input layer, which are then activated and
pass the activation information to the hidden layers, which pass

their ctivations to other optional hidden layers, and then ultimately

the output layer. At this point, the resulting output at the output

layer is compared to the desired output. The amount of error at

each neuron is then propagated backwards through the network,

whereby adjustments to the weights are made accordingly.

Figure. 2: Main structure of network

3. BACKPROPAGATION ALGORITHM
Back-propagation algorithm is a method of adjusting the output of

a multi-layered neural network to produce a desired state for a

given input, by first checking the input and computing the

required output for that input, then comparing the current output
to the required output and adjusting the connection weights to

reduce the discrepancy between the required output and the

current output, and then repeating this process of adjustment for

the next level down in the system and for each lower level of the

system in turn down to the lowest level, thus causing the system
to learn to produce the required output. The network consists of

three distinct layers of units, where each of these units can take on a

real numbered value between 0 and 1. The INPUT LAYER, where

sets of data are presented to the network, is connected by

bi-directional weighted connections to the HIDDEN LAYER which

is itself connected by bi-directional weighted connections to the

OUTPUT LAYER. All the weights in the network are modifiable,

and the network learns to produce the correct input-output mapping

by modifying these weights. The backpropagation network is an

example of supervised learning, the network is repeatedly presented

with sample inputs to the input layer, and the desired activation of

the output layer for that sample input is compared with the actual
activation of the output layer, and the network learns by adjusting its

weights until it has found a set of weights that produce the correct

output for every sample input.[9] For example, if we were trying to

solve the XOR (exclusive or problem) our training inputs and target

outputs would be as in Figure 3.Considering a feedforward network

with N input(i) units, L hidden(j) units and W output(k) units, the

backpropagation training cycle consists of two distinct phases:

3.1 Forward pass (Refer figure 4):

(A) One of the set of p training input patterns is applied to the input

layer.

xp = (xp1, xp2,... xpn) which may be a binary or real-numbered

vector.

(B) The activations of units in the hidden layer are calculated by

taking their net input (the sum of the activations of the input layer

units they are connected to multiply by their respective connection

weights) and passing it through a transfer function.

1

n

j ji i

i

net w x
=

=∑ ---- (1.1)

Figure. 3: Training Phase

i) net input to hidden layer unit j

i.e. take the value of each of the n input units connected to it and

multiply it by the respective connection weight between them.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.8, February 2011

20

ii) output (activation) of hidden layer unit j

()
j j

oh net= ∫ ------(1.2)

i.e. take net input of unit j and pass it through a transfer function

(C) The activations of the hidden layer units calculated in (B) are

then used in updating the activation of the output units (or unit in the
case of XOR), the activation of the output units is calculated by

taking their net input (the sum of the activations of the hidden layer

units they are connected to multiplied by their respective connection

weights) and passing it through the same transfer function.

i) net input to output unit k

1

L

k kj j

j

net w oh
=

=∑ ---- (1.3)

 ii) output of output unit k

Figure 4: Forward Pass

()
j k

oo net= ∫ ------(1.4)

3.2 Backward pass (Refer figures 5 and 6):
(A) The difference between the actual activation of each output unit

and the desired target activation (dk) for that unit is found, and this

difference is used to generate an error signal for each output unit. A
quantity called delta is then calculated for all of the output units.

i) error signal for each output unit is difference between its

actual output ook and its desired output dk

()
k k

d oo− ---- (1.5)

ii) delta term for each output unit is equal to its error signal

multiplied by the output of that unit multiplied by (1 - its output).

() (1)k k k k ko d oo oo ooδ = − − -- (1.6)

(B) The error signals for the hidden layer units are then calculated by

taking the sum of the deltas of the output units a particular hidden

unit connects to multiplied by the weight that connects the hidden
and output unit. The deltas for each of the hidden layer units are then

calculated.

i) error signal for each hidden unit j

1

W

k kj

k

o w
=

δ∑ ….. (1.7)

ii) delta term for each hidden unit j is equal to its

 error signal multiplied by its output, multiplied by (1 - its output).

1

()(1)
W

j j j k kj

k

h oh oh o w
=

δ = − δ∑ -----(1.8)

Figure. 5: Backward Pass

(C) The weight error derivatives for each weight between the

hidden and output units are calculated by taking the delta of each

output unit and multiplying it by the activation of the hidden unit it

connects to. These weight error derivatives are then used to change

the weights between the hidden and output layers.

()
jk k j

wed o oh= δ ---- (1.9)

i.e. to calculate the weight error derivative between hidden unit j and

output unit k take the delta term of output unit k and multiply it by

the output (activation) of hidden unit j

(D) The weight error derivatives for each weight between the input

unit i and hidden unit j are calculated by taking the delta of each

hidden unit and multiplying it by the activation of the input unit it
connects to (i.e. that input pattern xi). These weight error derivatives

are then used to change the weights between the input and hidden

layers.

()ij j iwed h x= δ ---- (1.10)

To change the actual weights themselves, a learning rate parameter n

is used, which controls the amount the weights are updated during

each backpropagation cycle. The weights at a time (t + 1) between

the hidden and output layers are set using the weights at a time and

the weight error derivatives between the hidden and output layers

using the following equation.

(1) () ()
jk jk jk

w t w t wed+ = + • …….. (1.11)

In a similar way the weights are changed between the input and
hidden units

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.8, February 2011

21

(1) () ()ij ij ijw t w t wed+ = + • --- (1.12)

Using this method, each unit in the network receives an error

signal that describes its relative contribution to the total error
between the actual output and the target output. Based on the error

signal received, the weights connecting the units in different

layers are updated. These two passes are repeated many times for
different input patterns and their targets, until

 Fig. 6: Weight Modification

the error between the actual output of the network and its target

output is acceptably small for all of the members of the set of

training inputs .This form of training can be applied to much

larger networks than the XOR network to solve much more
complex problems, but the basic two-pass cycle remains the same.

As the network trains, units in the hidden layer organize

themselves such that different units learn to recognize different

features of the total input space. For example, if a network were

trained to respond to a pixel image of the letter 'T', one unit might

develop as a feature detector for the vertical bar on the top of the

'T'. After training, when presented with an arbitrary new input

pattern which is noisy or incomplete, the units in the hidden layer

will respond with an active output if the new input contains a

pattern that resembles the feature the individual units learned to

recognize during training (for example our unit may still respond
to the vertical bar on the top of the 'T' if a pixel were missing).

Conversely, hidden-layer units have a tendency to inhibit their

outputs if the input pattern does not contain a feature they were

trained to recognize (if for example a 'C' were input). These

networks tend to develop internal relationships between units so

as to organize the training data into classes of patterns (these
classes may not be evident to a human observer but can

sometimes be detected by applying clustering algorithms to the

weights and activations of the units in the network), in this way

they develop an internal representation that enables them to

generate the desired outputs when given the training inputs, this

same internal representation can be applied to inputs that were not

used during training, the BPN will classify these new inputs

according to the features they share with the training inputs, i.e.

these networks have the ability to generalize.

4. WORKING OF DEVELOPED

RECOGNITION SYSTEM
The network used for recognition system learns a predefined set

of CAD objects as input-output example pairs by using a two-

phase propagate-adapt cycle. After a CAD object as input pattern
has been passed as a stimulus to the first layer of network units, it

is propagated through each upper layer until an output is

generated. This output pattern is then compared to the desired

output (In our case it is same as input CAD object) and an error

signal is computed for each output unit. The error signals are then

transmitted backward from the output layer to each node in the

intermediate layer that contributes directly to the output.

However, each unit in the Intermediate layer receives only a

portion of the total error signal, based roughly on the relative

contribution of the unit made to the original output. This process

repeats, layer by layer, until each node in the network has

received an error signal that describes its relative contribution to

the total error. Based on the error signal received, connection

weights are then updated by each unit to cause the network to
converge toward a state that allows all the training patterns to be

encoded. The significance of this process is that, as the network

trains, the nodes in the intermediate layers organize themselves

such that different nodes learn to recognize different CAD objects

of the total input space. After training, in the testing phase when

presented with an arbitrary CAD object as input pattern that is

noisy or incomplete, the units in the hidden layers of the network

will respond with an active output if the new input contains a

pattern that resembles the CAD object pattern the individual units

learned to recognize during training. Conversely, hidden-layer

units have a tendency to inhibit their outputs if the input CAD
object pattern does not contain the feature that they were trained

to recognize. As the signals propagate through the different layers

in the network, the activity CAD object pattern present at each

upper layer can be thought of as a CAD object pattern with

features that can be recognized by units in the subsequent layer.

The output CAD object pattern generated can be thought of as a
feature map that provides an indication of the presence or absence

of many different feature combinations at the input object. The

total effect of this behavior is that the BPN provides an effective

means of allowing a computer system to examine CAD object

patterns that may be incomplete or noisy, and to recognize subtle

patterns from the partial input. Using C++ programming tool, a
system is developed based on Backpropagation Algorithm to

recognize the distorted CAD .In the training phase it demands an

input file from user & then by using the input CAD objects it

completes its cycle based on algorithm. During the testing phase,

when we pass distorted CAD objects it corrects CAD objects

output according to its learned knowledge during training
phase. As shown in figure.7 for distorted CAD objects line

and rectangle the system gives accurate output of objects on the

right side.

 Figure.7: Recognition system

5. CONCLUSION

The significance of this research is in the development of a

package for distorted CAD object recognition. It can be concluded

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.8, February 2011

22

that neural networks play significant role in feature recognition

system which is the tool to bridge the gap between CAD and

CAM in the Computer Integrated manufacturing Environment.

Therefore, by integrating the concept of artificial neural networks

in CAD\CAM field, we can think to develop intelligent

CAD\CAM systems which will be highly interactive.

6. REFERENCES
[1] Dimov, S.-S.; Brousseau, E.-B.: A hybrid method for feature

recognition in computer-aided design models, Proceedings

of the I MECH E Part B Journal of Engineering

Manufacture, 221(1), 79-96

[2] Gao, S.; Shah, J.J.: “Automatic recognition of interacting

machining features based on minimalcondition subgraph”,

Computer Aided Design, 30(9), 727-739 , 1998

[3] Kim, Chongsu.: A representation formalism for feature-based

design, Computer-Aided Design, 28(6), 451-460 , 1996.

[4] Meeran, S.; Pratt, M.J.: “Automated recognition from 2D

drawings”, Computer Aided Design, 25, 7-17, 1993

[5] Rishal, Abu.; Masine, M.-D.: Attribute based feature

recognition for machining features, Journal Technology,

46(A), 87-103, 2007.

[6] Shah, J.J.; Mantyla, M.: “Parametric and feature based

CAD/CAM”, John Wiley & Sons, New York, 1995.

[7] Srinivasakumar, S.M.; Lin, L.: “Rule-based automatic part

feature extraction and recognition form CAD data”,
Computers & Industrial Engineering, 22(1), 49-62 , 1992

[8] Yakup, Yildiz.: Development of a Feature Based CAM

System for Rotational Parts ,G.U. Journal of Science 19(1),

35-40 , 2006.

[9] Zurada, M.J.: Introduction to Artificial Neural System,

Jacbio Publishing House, Delhi 2008.

