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ABSTRACT 
The uses of features have been considered to be the technology 

which bridges the gap between Computer aided design (CAD) and 

Computer aided manufacturing (CAM) in the CIMS (Computer 

Integrated manufacturing systems).Active research in the last two  

decades  has resulted in  a number  of recognition techniques  like 

rule based, graph matching, volume decomposition, hint based, 
neural network, etc. This paper presents the development of 

distorted CAD objects recognition system. A well-known multi-

layer Perceptron (MLP) neural network with backpropagation 

learning algorithm is chosen for its fast processing time and its 

good performance for feature recognition problems. Learning 

systems that learn from previous experiences and/or provided 
examples of appropriate behaviors, allow the people to specify 

what the systems should do for each case, not how systems should 

act for each step. The recognition system is programmed in C++. 
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1. CAD FEATURE RECOGNITION   
Despite availability of advanced manufacturing and automation 

technology the link, between CAD and CAM systems, is still not 

as integrated as desired. The process planning stage, which 

consists of the explanation of design drawings, is seen as a 

hindrance in the flow of information between CAD and CAM. An 

intelligent interface between CAD and CAPP (Computer Aided 
Process Planning) systems is imperative because the CAPP 

systems depend on correct data obtained from CAD systems to 

perform precise process planning. Feature recognition techniques 

provide such a connection between CAD and CAPP. However, 

CAD and CAPP systems form different databases. While CAD 

databases are usually geometry-based, consisting of geometric 
primitives such as points, lines and arcs, CAPP systems are 

feature-based such as faces, cylinders, grooves or pockets. It could 

be said that the CAPP systems describe in terms of manufacturing 

features, whereas CAD describes parts by their solid model or 

design features [8].One of the solutions for these problems 

between CAD and CAM is the automatic feature recognition 
technique. Miscellaneous techniques including graph-based and 

hint based such as cell division, cavity volume, convex hull and 

lamina slicing have been used in automatic feature recognition. 

There have been many previous attempts to recognize form 

features for manufacturing purposes, which can be broadly 

categorized into three areas: Rule-based, Graph based and Neural 

Network-based systems. One typical example of a rule-based 

system was developed by Meeran and Pratt using PROLOG. The 

input to the view orthographic drawings in DXF format. However, 

the system was limited to prismatic parts and limited by its rules 

base [3],[4]. Madurai and Lin developed a rule-based system 
using the expert system approaches for automatic extraction and 

recognition of part features directly from CAD data for system is 

three rotational part features. Geometric and topological data of 

the part in IGES (Initial Graphics Exchange Specifications) 

format are read by a feature extraction data-compactor, a pre-

processor of the system. Manufacturing features are generated by 

production rules written in LISP. They demonstrated the 

functioning of the system by two illustrative examples [7]. One 
important type of a feature recognition method is graph-based 

recognition, which recognizes features by matching a feature 

graph to the appropriate subgraph, in a graph representation of the 

part. This method has advantages such as being applicable to 

many domains not just machining, allowing the user to add new 

feature types without changing the codes, being suitable for 
incremental feature modelling, and being able to recognize 

isolated features effectively. The disadvantage of this method is 

that feature interaction and multiple interpretations of features can 

not be handled well [2]. Dimov [1] proposed a new hybrid method 

that facilitates the deployment of AFR systems in different 

application domains. In particular, the method includes two main 

processing stages: learning and feature recognition. During the 

learning stage, knowledge acquisition techniques are applied for 

generating feature-recognition rules and feature hints 

automatically from training data. Then, these hints and rule bases 

are utilized in the feature-recognition stage to analyze boundary 
representation (B-Rep) part models and identify their feature-

based internal structure. The proposed AFR method is 

implemented within a prototype feature-recognition system and its 

capabilities are verified on two benchmarking parts. But like 

others this technique is also unable to recognize distorted objects.  

 
In our work Neural network is used in feature recognition because 

of their capability of learning from examples. The most important 

advantage of using a neural network is the high possibility of 

recognizing features. As it is not definite in recognizing some 

features in the case of rule-based and graph-based systems, the 

neural network-based systems are able to recognize features that 
are not certain means distorted sketches.  

 

2. INTRODUCTION TO NEURAL 

NETWORK  
Artificial Neural Network (ANN) is an information-processing 

paradigm inspired by the way the brain processes information. 

ANNs are collections of mathematical models that emulate some 

of the observed properties of biological nervous systems and draw 

on the analogies of adaptive biological learning. An ANN is 
composed of a large number of highly interconnected processing 

elements that are analogous to neurons and are tied together with 

weighted connections that are analogous to synapses. Learning in 

biological systems involves adjustments to the synaptic 

connections that exist between the neurons. This is true of ANNs 

as well. Learning typically occurs by example through training or 

exposure to a truth table set of input/output data where the 

training algorithm iteratively adjusts the connection weights 

(Synapses). These connection weights store the knowledge 

necessary to solve specific problems. The advantages of ANNs lie 
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in their resilience against distortions in the input data and their 

capability of learning. They are often good at solving problems 

that do not have an algorithmic solution or for which an 

algorithmic solution is too complex to be found. The basic unit of 

any neural network is the neuron (processor). Each neuron is able 

to sum many inputs, whether these inputs are from a database or 

from other neurons, with each input modified by an adjustable 

weight as shown in figure 1. The sum of these weighted inputs is 

added to an adjustable threshold for the neuron and then passed 
through a modifying (transfer) function that determines the final 

output. Neurons are arranged in several layers called input, 

hidden, and output layers .Simply put, the input layer is similar to 

a matrix of independent variables in a regression while the output 

layer is the dependent variable. The hidden layer is the series of 

relationships calculated in the network’s training process.  

 

 

 Figure.1: Neuron processing   

The idea behind this network is to map CAD object input vectors 

to CAD object output vectors .Figure 2 shows the typical layout of 

such a network as it relates to our task of classifying CAD images. 

In this process mapping occurs by assigning weights to each of 

the edges. These weights can initially be set to random values, and 

the neural network will automatically make adjustments to them 

based on a set of training data. This is the process of the 

feedforward backpropagation mechanism. Known inputs are fed 

into the neurons at the input layer, which are then activated and 
pass the activation information to the hidden layers, which pass 

their ctivations to other optional hidden layers, and then ultimately 

the output layer. At this point, the resulting output at the output 

layer is compared to the desired output. The amount of error at 

each neuron is then propagated backwards through the network, 

whereby adjustments to the weights are made accordingly. 

 

Figure. 2: Main structure of network 

3. BACKPROPAGATION ALGORITHM  
Back-propagation algorithm is a method of adjusting the output of 

a multi-layered neural network to produce a desired state for a 

given input, by first checking the input and computing the 

required output for that input, then comparing the current output 
to the required output and adjusting the connection weights to 

reduce the discrepancy between the required output and the 

current output, and then repeating this process of adjustment for 

the next level down in the system and for each lower level of the 

system in turn down to the lowest level, thus causing the system 
to learn to produce the required output. The network consists of 

three distinct layers of units, where each of these units can take on a 

real numbered value between 0 and 1. The INPUT LAYER, where 

sets of data are presented to the network, is connected by 

bi-directional weighted connections to the HIDDEN LAYER which 

is itself connected by   bi-directional weighted connections to the 

OUTPUT LAYER. All the weights in the network are modifiable, 

and the network learns to produce the correct input-output mapping 

by modifying these weights. The backpropagation network is an 

example of supervised learning, the network is repeatedly presented 

with sample inputs to the input layer, and the desired activation of 

the output layer for that sample input is compared with the actual 
activation of the output layer, and the network learns by adjusting its 

weights until it has found a set of weights that produce the correct 

output for every sample input.[9] For example, if we were trying to 

solve the XOR (exclusive or problem) our training inputs and target 

outputs would be as in Figure 3.Considering a feedforward network 

with N input(i) units, L hidden(j) units and W output(k) units, the 

backpropagation training cycle consists of two distinct phases: 

 

3.1 Forward pass (Refer figure 4): 
 
(A) One of the set of p training input patterns is applied to the input 

layer. 

  

xp   = ( xp1, xp2,... xpn ) which may be a binary or real-numbered 

vector. 
      

(B) The activations of units in the hidden layer are calculated by 

taking their net input (the sum of the activations of the input layer 

units they are connected to multiply by their respective connection 

weights) and passing it through a transfer function.  

1

n

j ji i

i

net w x
=

=∑         ---- (1.1) 

  
 

Figure. 3: Training Phase  

 

i) net input to hidden layer unit j 

i.e. take the value of each of the n input units connected to it and 

multiply it by the respective connection weight between them. 
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ii) output (activation) of hidden layer unit j 

 

( )
j j

oh net= ∫     ------(1.2)  

 
i.e. take net input of unit j and pass it through a transfer function 

 

(C) The activations of the hidden layer units calculated in (B) are 

then used in updating the activation of the output units (or unit in the 
case of XOR), the activation of the output units is calculated by 

taking their net input (the sum of the activations of the hidden layer 

units they are connected to multiplied by their respective connection 

weights) and passing it through the same transfer function. 

 
i) net input to output unit k 

 

 

1

L

k kj j

j

net w oh
=

=∑       ---- (1.3) 

 
       ii) output of output unit k 

 

 
 

Figure 4: Forward Pass 

 

 

( )
j k

oo net= ∫          ------( 1.4 ) 

 

3.2 Backward pass (Refer figures 5 and 6):  
(A) The difference between the actual activation of each output unit 

and the desired target activation (dk) for that unit is found, and this 

difference is used to generate an error signal for each output unit. A 
quantity called delta is then calculated for all of the output units. 

 

i) error signal for each output unit is difference between its 

actual output ook and its desired output dk 

 

( )
k k

d oo−     ---- (1.5)  

 
ii) delta term for each output unit is equal to its error signal 

multiplied by the output of that unit multiplied by (1 - its output). 

 

( ) (1 )k k k k ko d oo oo ooδ = − −         -- (1.6) 

 

(B) The error signals for the hidden layer units are then calculated by 

taking the sum of the deltas of the output units a particular hidden 

unit connects to multiplied by the weight that connects the hidden 
and output unit. The deltas for each of the hidden layer units are then 

calculated. 

i) error signal for each hidden unit j 

 

1

W

k kj

k

o w
=

δ∑         ….. (1.7 ) 

 

ii) delta term for each hidden unit j is equal to its 

 error signal multiplied by its output, multiplied by (1 - its output).     

 

  

1

( )(1 )
W

j j j k kj

k

h oh oh o w
=

δ = − δ∑   -----(1.8 )               

                                                                                     

 
 

Figure. 5: Backward Pass 

 
(C) The weight error derivatives for each weight between the 

hidden and output units are calculated by taking the delta of each 

output unit and multiplying it by the activation of the hidden unit it 

connects to. These weight error derivatives are then used to change 

the weights between the hidden and output layers. 
 

( )
jk k j

wed o oh= δ    ---- (1.9 )  

 
i.e. to calculate the weight error derivative between hidden unit j and 

output unit k take the delta term of output unit k and multiply it by 

the output (activation) of hidden unit j  

  
(D) The weight error derivatives for each weight between the input 

unit i and hidden unit j are calculated by taking the delta of each 

hidden unit and multiplying it by the activation of the input unit it 
connects to (i.e. that input pattern xi). These weight error derivatives 

are then used to change the weights between the input and hidden 

layers.  

 

( )ij j iwed h x= δ      ---- (1.10)  

To change the actual weights themselves, a learning rate parameter n 

is used, which controls the amount the weights are updated during 

each backpropagation cycle. The weights at a time (t + 1) between 

the hidden and output layers are set using the weights at a time and 

the weight error derivatives between the hidden and output layers 

using the following equation. 

( 1) ( ) ( )
jk jk jk

w t w t wed+ = + •       …….. (1.11) 

 
In a similar way the weights are changed between the  input and  
hidden units 
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( 1) ( ) ( )ij ij ijw t w t wed+ = + •    --- (1.12) 

 
Using this method, each unit in the network receives an error 

signal that describes its relative contribution to the total error 
between the actual output and the target output. Based on the error 

signal received, the weights connecting the units in different 

layers are updated. These two passes are repeated many times for 
different input patterns and their targets, until 

 
 

          Fig. 6: Weight Modification 

 

the error between the actual output of the network and its target 

output is acceptably small for all of the members of the set of 

training inputs .This form of training can be applied to much 

larger networks than the XOR network to solve much more 
complex problems, but the basic two-pass cycle remains the same. 

As the network trains, units in the hidden layer organize 

themselves such that different units learn to recognize different 

features of the total input space. For example, if a network were 

trained to respond to a pixel image of the letter 'T', one unit might 

develop as a feature detector for the vertical bar on the top of the 

'T'. After training, when presented with an arbitrary new input 

pattern which is noisy or incomplete, the units in the hidden layer 

will respond with an active output if the new input contains a 

pattern that resembles the feature the individual units learned to 

recognize during training (for example our unit may still respond 
to the vertical bar on the top of the 'T' if a pixel were missing). 

Conversely, hidden-layer units have a tendency to inhibit their 

outputs if the input pattern does not contain a feature they were 

trained to recognize (if for example a 'C' were input). These 

networks tend to develop internal relationships between units so 

as to organize the training data into classes of patterns (these 
classes may not be evident to a human observer but can 

sometimes be detected by applying clustering algorithms to the 

weights and activations of the units in the network), in this way 

they develop an internal representation that enables them to 

generate the desired outputs when given the training inputs, this 

same internal representation can be applied to inputs that were not 

used during training, the BPN will classify these new inputs 

according to the features they share with the training inputs, i.e. 

these networks have the ability to generalize. 

 

4. WORKING OF DEVELOPED 

RECOGNITION SYSTEM 
The network used for recognition system learns a predefined set 

of CAD objects as input-output example pairs by using a two- 

phase propagate-adapt cycle. After a CAD object as input pattern 
has been passed as a stimulus to the first layer of network units, it 

is propagated through each upper layer until an output is 

generated. This output pattern is then compared to the desired 

output (In our case it is same as input CAD object) and an error 

signal is computed for each output unit. The error signals are then 

transmitted backward from the output layer to each node in the 

intermediate layer that contributes directly to the output. 

However, each unit in the Intermediate layer receives only a 

portion of the total error signal, based roughly on the relative 

contribution of the unit made to the original output. This process 

repeats, layer by layer, until each node in the network has 

received an error signal that describes its relative contribution to 

the total error. Based on the error signal received, connection 

weights are then updated by each unit to cause the network to 
converge toward a state that allows all the training patterns to be 

encoded.  The significance of this process is that, as the network 

trains, the nodes in the intermediate layers organize themselves 

such that different nodes learn to recognize different CAD objects 

of the total input space. After training, in the testing phase when 

presented with an arbitrary CAD object as input pattern that is 

noisy or incomplete, the units in the hidden layers of the network 

will respond with an active output if the new input contains a 

pattern that resembles the CAD object pattern the individual units 

learned to recognize during training. Conversely, hidden-layer 

units have a tendency to inhibit their outputs if the input CAD 
object pattern does not contain the feature that they were trained 

to recognize. As the signals propagate through the different layers 

in the network, the activity CAD object pattern present at each 

upper layer can be thought of as a CAD object pattern with 

features that can be recognized by units in the subsequent layer. 

The output CAD object pattern generated can be thought of as a 
feature map that provides an indication of the presence or absence 

of many different feature combinations at the input object. The 

total effect of this behavior is that the BPN provides an effective 

means of allowing a computer system to examine CAD object 

patterns that may be incomplete or noisy, and to recognize subtle 

patterns from the partial input. Using C++ programming tool, a 
system is developed based on Backpropagation Algorithm to 

recognize the distorted CAD .In the training phase it demands an 

input file from user & then by using the input CAD objects it 

completes its cycle based on algorithm. During the testing phase, 

when we pass distorted CAD objects it corrects CAD objects 

output according to its learned knowledge during training 
phase. As shown in figure.7 for distorted CAD objects line 

and rectangle the system gives accurate output of objects on the 

right side.  
 

 

       Figure.7: Recognition system 

 

5. CONCLUSION  

The significance of this research is in the development of a 

package for distorted CAD object recognition. It can be concluded 
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that neural networks play significant role in feature recognition 

system which is the tool to bridge the gap between CAD and 

CAM in the Computer Integrated manufacturing Environment. 

Therefore, by integrating the concept of artificial neural networks 

in CAD\CAM field, we can think to develop intelligent 

CAD\CAM systems which will be highly interactive.  

 

6. REFERENCES  
[1] Dimov, S.-S.; Brousseau, E.-B.: A hybrid method for feature 

recognition in computer-aided design models,  Proceedings 

of the I MECH E Part B Journal of Engineering 

Manufacture, 221(1), 79-96  

[2]  Gao, S.; Shah, J.J.: “Automatic recognition of interacting 

machining features based on minimalcondition subgraph”, 

Computer Aided Design, 30(9), 727-739 , 1998 

[3] Kim, Chongsu.: A representation formalism for feature-based 

design, Computer-Aided Design, 28(6), 451-460 , 1996. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4]  Meeran, S.; Pratt, M.J.: “Automated recognition from 2D 

drawings”, Computer Aided Design, 25, 7-17, 1993 

[5] Rishal, Abu.; Masine, M.-D.:  Attribute based feature 

recognition for machining features, Journal Technology,   

46(A), 87-103, 2007.  

[6] Shah, J.J.; Mantyla, M.: “Parametric and feature based 

CAD/CAM”, John Wiley & Sons, New York, 1995. 

[7] Srinivasakumar, S.M.; Lin, L.: “Rule-based automatic part 

feature extraction and recognition form CAD data”, 
Computers & Industrial Engineering, 22(1), 49-62 , 1992  

[8] Yakup, Yildiz.: Development of a Feature Based CAM 

System for Rotational Parts ,G.U. Journal of Science 19(1), 

35-40 , 2006.  

[9]   Zurada, M.J.: Introduction to Artificial Neural System, 

Jacbio Publishing House, Delhi 2008. 

 

 

 
 
 
 


