
International Journal of Computer Applications (0975 – 8887)
Volume 15– No.1, February 2011

35

Soft Computing Approach for Digital Circuit Layout

based on Graph Partitioning

Maninder Kaur
Assistant Professor,

School of Mathematics and
Computer Applications,

Thapar University, Patiala.

 Kawaljeet Singh
Director,

University Computer Center,
Punjabi University, Patiala

ABSTRACT

Soft computing based approaches are increasingly being used to

solve different NP complete problems, the development of

efficient parallel algorithms for digital circuit partitioning,

circuit testing, logic minimization and simulation etc. is

currently a field of increasing research activity. This paper

describes evolutionary based approach for solving circuit-

partitioning problem. That implies dividing a circuit into non-

overlapping sub circuits while minimizing the number of cuts

after the division and balancing the load associated to each one.

The paper shows the effective partitioning for achieving peak

chip performance and reducing the cost and time of the design

and manufacturing process.

Keywords

Soft computing, VLSI circuits, Circuit partitioning, Genetic
algorithms, simulated annealing

1. INTRODUCTION
The main objects in VLSI design are placements of rectangles

and lines, and the basic problems in physical design deal with

arrangements of these rectangles on circuit layout. The

relationship between these objects, such as overlap and distance,

are very critical in development of physical design algorithms.

Graphs are a well-developed tool used to study relationships

between the objects. Naturally, graphs are used to model many

VLSI physical design problems and they play a very important

role in almost all VLSI design algorithms. In this paper, we

introduce various graphs that are used in modeling of physical

design problems [1]. The process of digital circuit design can be

thought as a sequence of the various steps: The outcome of the

first step, high level synthesis, is usually a high level description

of the circuit function and is expressed using high level language

that describes the RTL that implements digital circuit behavior.

The second step, logic synthesis optimization, performs an

optimization on the result of the first step targeted to area

minimization, power dissipation minimization and speed

optimization. Subsequently the circuit is simulated and its

operation is verified (simulation verification). Last but not least

before manufacturing is the step of layout synthesis (placement

and routing) which we examine in this work. This step is usually

performed in four sub steps:

 System partitioning: the system circuitry is partitioned

in circuits that usually perform a distinct function.

 Floor planning: the chip is partitioned in “rooms”

called blocks similarly to architectural design and each
block is assigned to a part determined in the first step.

 Placement: the placement of standard cell units inside

each individual block area of the floor planning is
determined.

 Routing: all connections (inter block and intra block)

are routed so as to minimize the wire length and the
number of routing metal levels.

Efficient designing of any complex system necessitates
decomposition of the same into a set of smaller subsystem.

Subsequently, each subsystem can be designed independently
and simultaneously to speed up the design process. The process
of decomposition is called partitioning. It plays a key role in the
design of a computer system in general, and VLSI chips in
particular. A computer system is comprised of tens of millions
of transistors. It is partitioned into several smaller
modules/blocks for facilitation of the design process. Each block
has terminals located at the periphery that are used to connect
the blocks. A VLSI system is partitioned at several levels due to

its complexity. At the highest level, it is partitioned into a set of
sub systems whereby each subsystem can be designed and
fabricated independently on a single PCB. The circuit
partitioning problem arises in many VLSI applications [1].

At any level of partitioning, the input to the partitioning

algorithm is a set of components and a net list. The output is a
set of sub circuits which when connected, function as the
original circuit. In addition to maintaining the original
functionality, partitioning process optimizes certain parameters
subject to certain constraints [16]. The constraints for the
partitioning problem include area constraints and terminal
constraints. The objective function for a partitioning problem
includes the minimization of the number of nets that cross the

partition boundaries. Partitioning efficiency can be enhanced
within three broad parameters.

 The system must be decomposed carefully so that the

original functionality of the system remains intact.

 An interface specification is generated during the

decomposition, which is used to connect all the subsystems.
The system decomposition should ensure minimization of
the interface interconnection between any two subsystems.

International Journal of Computer Applications (0975 – 8887)
Volume 15– No.1, February 2011

36

 Finally, the decomposition process should be simple and

efficient so that the time required for the decomposition is a
small fraction of the total design time.

2. RELATED WORK TO PARTITION

PROBLEM
A number of heuristic techniques are there to generate

approximate solutions to the partitioning problem. A
constructive partitioning heuristic starts from a seed component.
Then other components are selected and added to the partial
solution until a complete solution is obtained. An iterative
heuristic receives two things as inputs, one, the description of
the problem instance, and two, an initial solution to the problem.
The iterative heuristic attempts to modify the given solution so
as to improve the cost function. Usually the constructive
algorithms are deterministic while iterative algorithms may be

deterministic or stochastic. Some of the classical approaches
used to generate solutions to the partitioning problem are

 The Kernighan-Lin algorithm

 Genetic algorithm

 Simulated annealing

 Tabu Search

The most basic approaches to the partitioning problem treat

the circuit as a graph. This is true for the first, and most famous
partitioning algorithm, called the Kernighan-Lin algorithm [2].
This algorithm was originally designed for graph partitioning
rather than circuit partitioning, so to apply the algorithm, one
must first convert the circuit into a graph. The initial partition is
generated at random. Then the two sub circuits S1, and S2 are
created. If the circuit has n gates, the first n/2 are assigned to S1,
and the rest are assigned to S2. Because the gates in a circuit

description appear in what is essentially a random order, the
initial partition appears to be random. A solution is acceptable
only if both sub circuits contain the same number of gates. It is
assumed that the number of gates is even. The algorithm can be
tweaked to handle an odd number of gates. The goodness of a
solution is equal to the number of graph edges that are cut.
Suppose the edge (V, W) exists in the graph derived from the
circuit. (V and W represent the gates.) There are two
possibilities. V and W can be in different sub circuits, or they

can be in the same sub circuit. If V and W are in different sub
circuits, we say that the edge (V, W) is cut. Otherwise we say
that (V, W) is uncut. The technique for generating new solutions
from old solutions is to select a subset of gates from S1 and a
subset of gates from S2 and swap them. To maintain
acceptability, we always select two subsets of the same size.

Genetic algorithms (GA) were developed by John Holland
[3] and since then have been used in various fields of
engineering. GA has been used quite successfully for
combinatorial problems that are NP-complete. More recently
GA has been used for solving some VLSI problems [4 - 7]. A
genetic algorithm is a randomized parallel search method
modeled on natural selection and genetics [8]. In contrast to

more standards search algorithms, GA bases their progress on
the performance of a population of candidate solutions, rather
than on a single candidate solution. The motivation behind this
is that by simultaneously searching many areas of the design

space the risk of getting stuck at local optima is greatly reduced.
GA are probabilistic in nature and start off with a population of
randomly generated candidates and evolve toward better
solutions by applying genetic operators, modeled on the natural
genetic process.

Simulated annealing [10] belongs to the class of non-
deterministic algorithms. Kirkpatrik, Gelatt and Vecchi first
introduced this heuristic in 1983. Simulated Annealing (SA) is a
general iterative improvement algorithm that can be used for
many different purposes. In partitioning, SA starts with a
random partition. A new state is computed by selecting a gate at
random from each of the two subsets, and swapping them. As
before, the swap remains tentative, until the quality of the new

partitioning is computed. The number of nets cut is the measure
of goodness. If the new state is better than the old state, it is
accepted and the swap is made permanent. If the new state is
worse than the old state, it might be accepted and it might not.

Tabu search is another well-known heuristic approach that
has been applied to a number of optimization problems. It was
introduced by Glover. The Tabu heuristic combines the recent
history of the optimization with iterative improvement to seek

feasible solutions. A list of the r most recent moves is kept (with
r a constant that is determined at the start of the optimization),
where a move is defined in terms of the neighborhood operator
[8]. The list is called the Tabu list (from “taboo”) and indicates
the moves that cannot be made (these moves have been
prohibited). An aspiration criterion can be used to temporarily
release a move from its Tabu status. Stopping criteria for the
algorithm are also required and this may be a (fixed) maximum

number of moves after which the search routine will terminate.
The Tabu heuristic requires careful implementation as cycling
behavior (where the algorithm repeats the same set of vertex
moves over and over) must be avoided.

3. PROBLEM FORMULATION
The partitioning problem can be expressed more naturally in

graph theoretic terms. A graph G=(V, E) representing a
partitioning problem can be constructed as follows. Let V={v1,
v2…vn} be a set of vertices and E={e1, e2…em} be a set of edges.
Each vertex represents a component. There is edge joining the
vertices whenever the components corresponding to these
vertices are to be connected. Thus, each edge is a subset of the

vertex set i.e., ei V, i=1,2…m. Let edge represents a function

which when called with first vertex of edge, returns the second
vertex of edge. The modeling of partitioning problem into

graphs allows us to represent the circuit-partitioning problem
completely as a graph-partitioning problem. The partitioning
problem is to partition V into V1, V2…Vk, where

 Vi Vj = , i j (1)

 Vi = V (2)

 These partitions can be obtained by first efficiently
partitioning the graph into two parts and then recursively
applying the same approach. Partition is also referred to as a cut.
The cost of partition is called the cut size, which is the number
of edges crossing the cut. However, at the chip level, the
partitioning algorithms usually have interconnections between

partitions as an objective function. The number of
interconnections at any level of partitioning has to be
minimized.

International Journal of Computer Applications (0975 – 8887)
Volume 15– No.1, February 2011

37

 Reducing the interconnections not only reduces the delay
but also reduces the interface between the partitions making it
easier for independent design and fabrication. A large number of
interconnections increase the design area as well as complicates
the task of placement and routing algorithms. Minimization of

the number of interconnections between partitions is called the
min cut problem. The minimization of the cut is a very
important objective function for partitioning algorithms for any
level or any style of design. This function can be stated as:

ij

k

j

k

i

c
11

 , (i j) is minimized (3)

The cij represent the crossing edge from node i to node j
crossing a partition. The min cut problem is NP complete, it
follows that general partitioning problem is also NP complete
[19]. The circuit bi-partitioning optimization is focused on
finding an acceptable solution cut-set cost. The cut-set cost is

the number of inter-partition connects, which if not selected
carefully, will immensely degrade the overall solution quality

4. THE PROPOSED METHOD SCACP
As the general partitioning problem is NP complete, various
heuristic algorithms for partitioning have been developed
[2,15,16] .Kernighan and Lin [2] proposed a graph bisection
algorithm for a graph having the time complexity of O (n3),
which is considered too high even for moderate size problems.
However the similar bisecting approach can be used much more
effectively by applying the SCA computation to circuit
partitioning problem. This paper presents such an approach,

which makes use of SCA computing to solve the instance of
partitioning problem. The advantage of the proposed method is
that output values are computed and stored parallel. The
presented approach makes use of soft computing method [17]
for computing the solution that has the obvious advantage that
the SCA strands used in the process are reusable.

To solve the instance of Partitioning problem with G= (V, E)

(|v| = n) start with 2n identical single stranded SCA memory

strands each with 2n bit regions. The first n bit regions will

represent the presence/absence of vertex in the first partition and

the rest n bit regions will represent the presence/absence of an

edge crossing the partition.

Fig 1: Bit regions of a SCA Strand.

The algorithm begins with an initialization phase during
which each individual in the population is defined by a

uniformly distributed random point in the solution space. Each
iteration of the SCA begins evaluating the fitness of the current
generation. The application of crossover and mutation to the
individuals creates a new generation of offspring. Solution
representation. Let K be the number of sub circuits into which
the circuit with graph G is divided, and let n (n=|P|) be the
number of logic gates of the original circuit; then each solution
is represented by an array S of n elements as S=A1, A2, A3, ,

An. with Ai in [1,....,K] where the Ai element in array S
represents the subcircuit to which the logic gate i belongs to.
Initial solution. Let N be the population size, the algorithm has
been run using two different initial solutions, s1 or s2. They
have been obtained using fast algorithms that assign n/K

strongly connected nodes to each partition.

 Partitioning is done in which the circuit graph is traversed in
a depth-first way starting from the inputs, obtains the initial
solution s1. The fitness function is obtained directly from the
cost function. Selection criteria. After evaluating all the
population with the fitness function, the individuals of the next
generation will be chosen by a proportional criterion, called
roulette proportional criterion, which will guarantee that the

best individuals of the current generation have more possibilities
of passing to the next one.

In the SCA proposed here, the operators are based in moves
of gates between neighborhood partitions. The variants are
deterministic, pseudo-random and random. When the current
generation is equal to this input, the algorithm finishes. Other
condition to finish the evolutionary process occurs when the
solutions don’t improvement. Thus, when the solutions in the

last N generations are very similar (almost n improvement
results) the algorithm finishes. Parameter N depends of the
circuit, because in a large circuit there are more possibilities of
escaping from a local minimum than in a smaller one.

5. SIMULATION RESULTS
The experiment has been performed by taking the different sets
of graphs for different values of n (number of nodes) and v (set
of edges). The results are plotted between the number of nodes
n, which specify a search space of size 2n (along x-axis) and total
number of iterations taken to find the required partition (along y-
axis). Comparison has been made between Kernighan-Lin,
Simulated Annealing, Genetic Algorithm and SCA based
approach. SCA notations are developed utilizing the properties
of massive parallelism and replications. The corresponding

results are shown in Table 1.

 The Kernighan-Lin (K-L) algorithm starts with a random
initial partition and then uses pair wise swapping of vertices
between partitions with a complexity O (n3). In simulated
annealing we try to search the required partitions from a given
starting configuration. In genetic algorithm we have used
crossover, mutation and population for finding the partition.
Three different graphs have been plotted between Kernighan-

Lin, simulated annealing, genetic algorithm and SCA based
approach for different sets of values of n and edges v.

Table. 1: Comparison among the proposed algorithm and other

partitioning techniques

Partitioning

Algorithms

K-L SA GA SCACP

Decomposition

Time(s)

25 19 15 10

Iterations 89 76 45 22

International Journal of Computer Applications (0975 – 8887)
Volume 15– No.1, February 2011

38

Per Iteration

Time(s)

0.5353 0.4231 0.2153 0.999

 Partitioning size = 8 cuts.
 Decomposition Time: Time taken to prepare the

partition for each of the different partitioning
algorithms.

 Number of Iterations: Number of iterations to
convergence taken by CPU.

 Iteration times: Average time for a single iteration

Fig 2: Shows the number of processors of different partitioning

Algorithms.

The performance and efficiency of the proposed algorithm in
comparison with other deterministic algorithms is done by
simulation. The results shows that proposed SCA based
algorithm gives better performance measure in terms of CPU
efficiency compared to other algorithms.

0

500

1000

1500

2000

2500

c432 c499 c880 c1355 c3540 c5315

Benchmark Circuits

N
o

.
o

f
C

u
ts

Min Cuts

Max Cuts

Fig 3: Shows the number of cuts on different Benchmark circuits

 If both the row i and the column i of the edges are not

cut, then assign vector elements xi and bi to the
processor assigned vertices from row i and column i
graphs shown in Figure 2.

 If the row i edge is cut and the column i edge is not

cut, then assign vector elements xi and bi to the
processor assigned vertices from column i edge.

 If the row i edge is not cut and the column i edge is

cut, then assign vector elements xi and bi to the
processor assigned vertices from row i edge.

 If both the row i edge and the column i edge are cut,

then let Ri denote the set of processors that contain
row i edge elements and let Ci denote the set of
processors that contain column i edge elements.

Table 2: Benchmarks ISCAS ’85

Circuit Nodes No. of

Gates

Partition

Area

Min

Cuts

Max

Cuts

c432 15 153 1232 29 289

c499 21 170 2346 45 376

c880 26 357 5542 58 578

c1355 48 514 7754 68 679

c3540 69 1647 9887 78 1023

c5315 93 1723 10234 94 2056

The simulation work was carried out by writing a program in
C++ and running on a SUN Ultra SPARC-III processor under

the Sun Blade workstation architecture. The program has been
written with approximately 3,500 lines of code. To evaluate the
SCACP, several experiments are performed on different circuits.
In order to allow readers to more easily evaluate the results, the
SCACP is compared with other existing methods.

The circuits used to evaluate the performance of the
algorithms proposed here are the ISCAS´85 that are common
benchmark circuits as shown in Table 3 and Figure 3 in the
context of test pattern generation, application where the circuit
partitioning problem appears

6. CONCLUSION AND FUTURE SCOPE
The results show that the proposed SCA algorithm is able to
partition the circuit graph taking less no. of iterations as
compared to other available approaches. Exhaustive search is
clearly not feasible because complexity grows exponentially as
the search space increases. Simulated Annealing on the other
hand is effective in parallel environment. Genetic Algorithm is
takes large amount of CPU time and also numbers of iterations
are more. In these situations SCA algorithms provide the better

International Journal of Computer Applications (0975 – 8887)
Volume 15– No.1, February 2011

39

solution by taking the help of massive parallelism and
recombination properties of SCA.

SCA computing like much of today’s cutting-edge research
is multidisciplinary. It involves mathematics, biology and
computer science. In many papers, [20] and [21] it is stressed

that high levels of collaboration between academic disciplines
will be essential to gear up the progress in SCA computing.
Many of the search problems in computer science are unsolvable
not theoretically but because of astronomical resources required
for their solution. SCA Algorithms can be applied to these
problems. They can be used to extract statistics such as mean,
median, minimum element from an unsorted data that can be
used to speed up algorithms for NP problems. It can also be used

to speed up the search for keys to crypt systems such as DES,
PGP etc. The main disadvantage of these algorithms is the lack
of hardware support and measurement difficulties.

7. REFERENCES
[1] Alpert, C.J., Kahng, A., (1995). “Recent Developments in

Netlist Partitioning: A survey”, in Integration: the VLSI
Journal, 19, 1-18.

[2] Kernighan, B.W., Lin S., (1970), “An Efficient Heuristic
Procedure for Partitioning Graphs", the Bell Sys. Tech.
Journal, 291-307.

[3] Holland, J., (1975), “Adaptation in Natural and Artificial
Systems”, Ann Arbor: University of Michigan Press.

[4] Cohoon, J., Paris, W., (1987). “Genetic Placement,” IEEE

Transactions on Computer-Aided Design, 6, 956-964.

[5] Louis, S., Rawlins, G., (1991), “Using genetic algorithms
to design structures. Technical Report”, Indiana University,
Bloomington, IN 47405.

[6] Vemuri, R. M., Vemuri, R.R.,(1990), “Genetic-synthesis:
Performance-driven logic synthesis using genetic
evolution”, Proc. First Great Lakes Symposium on VLSI,
Kalamazoo, MI, 312-317.

[7] Shahookar, K., Mazumdar, P., (1990), “A Genetic

Approach to Standard Cell Placement Using Meta-Genetic
Parameter Optimization”, IEEE Transactions on Computer-
Aided Design, 9, 500-511.

[8] Goldberg, D., (1989), “Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading”, MA,
Addison-Wesley.

[9] Vignaux, G.A., Michalewicz, Z., (1991), “A genetic
algorithm for the linear transportation problem”, IEEE
Trans. SMC, 21(2), 445-452.

[10] Kirkpatrick, S., Gelatt, C.D., Jr, Vecchi, M.P., (1983).
“Optimization by Simulated Annealing”, Science, 220,
671-680.

[11] Adleman, L., (1994), “Molecular computation of solutions
to combinatorial problems”, Science New series, 266,1021-
1024.

[12] Lipton, R., (1995), “DNA solution of hard computational
problems”, Science, 268, 542-545.

[13] Adleman, L., Rothemund, P., Roweis, S., Winfree, E.,
(1996), “On Applying Molecular Computation to the Data
Encryption Standard”, 2nd DIMACS workshop on SCA

based computers, Princeton. 28-48.

[14] Lipton, R., (1996), “Speeding up Computations via
Molecular Biology”, 1st DIMACS workshop on SCA based
computers. Princeton, 27, 67-74

[15] Shin, H., Kim, C., (1993), “A simple yet effective
technique for Partitioning", IEEE Trans. VLSI Systems, 1/3.

[16] Fiducia, C.M., and Mattheyses, R.M., (1982),”A linear time
heuristic for improving network partitioning”, in Proc

ACM/IEEE Design Automation, 175-181.

[17] Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.,
Goodman, M., Rothemund, P., Adleman, L., (1998), “A
Sticker-Based Model for SCA Computation”, Journal of
Computational Biology, 4, 615-629.

[18] Zhang, Y. J., Shi, Y. B. , Zhou, S. Q,(2008), “Partitioning
algorithm for innovation graph state estimation”, Journal of
Harbin Engineering University 29(11), 1166-1171.

[19] Garey, M.R., Johnson, D.S., (1979), “Computers and
Interactability: A Guide to the Theory of NP-
Completeness”, W.H. Freeman & Company, San Francisco.

[20] Adleman, L., (1996), “On Constructing a Molecular
Computer. 1st DIMACS workshop on SCA based
computers”, Princeton, In DIMACS series, 27, 1-21.

[21] Robertson, M., Ellington, A., (1997), “New directions in
nucleic acid computing: Selected ribosome’s that can

implement re-write values”, 3rd DIMACS workshop on
DNA based computers, 69-73.

