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ABSTRACT 

Soft computing based approaches are increasingly being used to 

solve different NP complete problems, the development of 

efficient parallel algorithms for digital circuit partitioning, 

circuit testing, logic minimization and simulation etc. is 

currently a field of increasing research activity. This paper 

describes evolutionary based approach for solving circuit-

partitioning problem. That implies dividing a circuit into non-

overlapping sub circuits while minimizing the number of cuts 

after the division and balancing the load associated to each one. 

The paper shows the effective partitioning for achieving peak 

chip performance and reducing the cost and time of the design 

and manufacturing process.  
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1. INTRODUCTION 
The main objects in VLSI design are placements of rectangles 

and lines, and the basic problems in physical design deal with 

arrangements of these rectangles on circuit layout. The 

relationship between these objects, such as overlap and distance, 

are very critical in development of physical design algorithms. 

Graphs are a well-developed tool used to study relationships 

between the objects. Naturally, graphs are used to model many 

VLSI physical design problems and they play a very important 

role in almost all VLSI design algorithms. In this paper, we 

introduce various graphs that are used in modeling of physical 

design problems [1]. The process of digital circuit design can be 

thought as a sequence of the various steps: The outcome of the 

first step, high level synthesis, is usually a high level description 

of the circuit function and is expressed using high level language 

that describes the RTL that implements digital circuit behavior. 

The second step, logic synthesis optimization, performs an 

optimization on the result of the first step targeted to area 

minimization, power dissipation minimization and speed 

optimization. Subsequently the circuit is simulated and its 

operation is verified (simulation verification). Last but not least 

before manufacturing is the step of layout synthesis (placement 

and routing) which we examine in this work. This step is usually 

performed in four sub steps: 

 System partitioning: the system circuitry is partitioned 

in circuits that usually perform a distinct function. 

 Floor planning: the chip is partitioned in “rooms” 

called blocks similarly to architectural design and each 
block is assigned to a part determined in the first step. 

 Placement: the placement of standard cell units inside 

each individual block area of the floor planning is 
determined. 

 Routing: all connections (inter block and intra block) 

are routed so as to minimize the wire length and the 
number of routing metal levels. 

Efficient designing of any complex system necessitates 
decomposition of the same into a set of smaller subsystem. 

Subsequently, each subsystem can be designed independently 
and simultaneously to speed up the design process. The process 
of decomposition is called partitioning. It plays a key role in the 
design of a computer system in general, and VLSI chips in 
particular. A computer system is comprised of tens of millions 
of transistors. It is partitioned into several smaller 
modules/blocks for facilitation of the design process. Each block 
has terminals located at the periphery that are used to connect 
the blocks. A VLSI system is partitioned at several levels due to 

its complexity. At the highest level, it is partitioned into a set of 
sub systems whereby each subsystem can be designed and 
fabricated independently on a single PCB. The circuit 
partitioning problem arises in many VLSI applications [1].  

At any level of partitioning, the input to the partitioning 

algorithm is a set of components and a net list. The output is a 
set of sub circuits which when connected, function as the 
original circuit. In addition to maintaining the original 
functionality, partitioning process optimizes certain parameters 
subject to certain constraints [16]. The constraints for the 
partitioning problem include area constraints and terminal 
constraints. The objective function for a partitioning problem 
includes the minimization of the number of nets that cross the 

partition boundaries. Partitioning efficiency can be enhanced 
within three broad parameters.  

 The system must be decomposed carefully so that the 

original functionality of the system remains intact.  

 An interface specification is generated during the 

decomposition, which is used to connect all the subsystems. 
The system decomposition should ensure minimization of 
the interface interconnection between any two subsystems.  
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 Finally, the decomposition process should be simple and 

efficient so that the time required for the decomposition is a 
small fraction of the total design time. 

2. RELATED WORK TO PARTITION 

PROBLEM 
A number of heuristic techniques are there to generate 

approximate solutions to the partitioning problem. A 
constructive partitioning heuristic starts from a seed component. 
Then other components are selected and added to the partial 
solution until a complete solution is obtained. An iterative 
heuristic receives two things as inputs, one, the description of 
the problem instance, and two, an initial solution to the problem. 
The iterative heuristic attempts to modify the given solution so 
as to improve the cost function. Usually the constructive 
algorithms are deterministic while iterative algorithms may be 

deterministic or stochastic. Some of the classical approaches 
used to generate solutions to the partitioning problem are  

 The Kernighan-Lin algorithm 

 Genetic algorithm 

 Simulated annealing 

 Tabu Search 

The most basic approaches to the partitioning problem treat 

the circuit as a graph. This is true for the first, and most famous 
partitioning algorithm, called the Kernighan-Lin algorithm [2]. 
This algorithm was originally designed for graph partitioning 
rather than circuit partitioning, so to apply the algorithm, one 
must first convert the circuit into a graph.  The initial partition is 
generated at random. Then the two sub circuits S1, and S2 are 
created. If the circuit has n gates, the first n/2 are assigned to S1, 
and the rest are assigned to S2. Because the gates in a circuit 

description appear in what is essentially a random order, the 
initial partition appears to be random.  A solution is acceptable 
only if both sub circuits contain the same number of gates. It is 
assumed that the number of gates is even. The algorithm can be 
tweaked to handle an odd number of gates.  The goodness of a 
solution is equal to the number of graph edges that are cut. 
Suppose the edge (V, W) exists in the graph derived from the 
circuit. (V and W represent the gates.) There are two 
possibilities. V and W can be in different sub circuits, or they 

can be in the same sub circuit. If V and W are in different sub 
circuits, we say that the edge (V, W) is cut. Otherwise we say 
that (V, W) is uncut. The technique for generating new solutions 
from old solutions is to select a subset of gates from S1 and a 
subset of gates from S2 and swap them. To maintain 
acceptability, we always select two subsets of the same size. 

Genetic algorithms (GA) were developed by John Holland 
[3] and since then have been used in various fields of 
engineering. GA has been used quite successfully for 
combinatorial problems that are NP-complete. More recently 
GA has been used for solving some VLSI problems [4 - 7]. A 
genetic algorithm is a randomized parallel search method 
modeled on natural selection and genetics [8]. In contrast to 

more standards search algorithms, GA bases their progress on 
the performance of a population of candidate solutions, rather 
than on a single candidate solution. The motivation behind this 
is that by simultaneously searching many areas of the design 

space the risk of getting stuck at local optima is greatly reduced. 
GA are probabilistic in nature and start off with a population of 
randomly generated candidates and evolve toward better 
solutions by applying genetic operators, modeled on the natural 
genetic process.  

Simulated annealing [10] belongs to the class of non-
deterministic algorithms. Kirkpatrik, Gelatt and Vecchi first 
introduced this heuristic in 1983. Simulated Annealing (SA) is a 
general iterative improvement algorithm that can be used for 
many different purposes. In partitioning, SA starts with a 
random partition. A new state is computed by selecting a gate at 
random from each of the two subsets, and swapping them. As 
before, the swap remains tentative, until the quality of the new 

partitioning is computed. The number of nets cut is the measure 
of goodness. If the new state is better than the old state, it is 
accepted and the swap is made permanent. If the new state is 
worse than the old state, it might be accepted and it might not.  

Tabu search is another well-known heuristic approach that 
has been applied to a number of optimization problems. It was 
introduced by Glover. The Tabu heuristic combines the recent 
history of the optimization with iterative improvement to seek 

feasible solutions. A list of the r most recent moves is kept (with 
r a constant that is determined at the start of the optimization), 
where a move is defined in terms of the neighborhood operator 
[8]. The list is called the Tabu list (from “taboo”) and indicates 
the moves that cannot be made (these moves have been 
prohibited). An aspiration criterion can be used to temporarily 
release a move from its Tabu status. Stopping criteria for the 
algorithm are also required and this may be a (fixed) maximum 

number of moves after which the search routine will terminate. 
The Tabu heuristic requires careful implementation as cycling 
behavior (where the algorithm repeats the same set of vertex 
moves over and over) must be avoided. 

3. PROBLEM FORMULATION 
The partitioning problem can be expressed more naturally in 

graph theoretic terms. A graph G=(V, E) representing a 
partitioning problem can be constructed as follows. Let V={v1, 
v2…vn} be a set of vertices and E={e1, e2…em} be a set of edges. 
Each vertex represents a component. There is edge joining the 
vertices whenever the components corresponding to these 
vertices are to be connected. Thus, each edge is a subset of the 

vertex set i.e., ei  V, i=1,2…m. Let edge represents a function 

which when called with first vertex of edge, returns the second 
vertex of edge. The modeling of partitioning problem into 

graphs allows us to represent the circuit-partitioning problem 
completely as a graph-partitioning problem. The partitioning 
problem is to partition V into V1, V2…Vk, where 

                                   Vi  Vj = ,    i j                             (1) 

                                            Vi = V                                    (2) 

 These partitions can be obtained by first efficiently 
partitioning the graph into two parts and then recursively 
applying the same approach. Partition is also referred to as a cut. 
The cost of partition is called the cut size, which is the number 
of edges crossing the cut. However, at the chip level, the 
partitioning algorithms usually have interconnections between 

partitions as an objective function.  The number of 
interconnections at any level of partitioning has to be 
minimized.  
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 Reducing the interconnections not only reduces the delay 
but also reduces the interface between the partitions making it 
easier for independent design and fabrication. A large number of 
interconnections increase the design area as well as complicates 
the task of placement and routing algorithms. Minimization of 

the number of interconnections between partitions is called the 
min cut problem. The minimization of the cut is a very 
important objective function for partitioning algorithms for any 
level or any style of design. This function can be stated as:                             

ij

k

j

k

i

c
11

  ,   (i j)   is minimized                (3) 

The cij represent the crossing edge from node i to node j 
crossing a partition. The min cut problem is NP complete, it 
follows that general partitioning problem is also NP complete 
[19]. The circuit bi-partitioning optimization is focused on 
finding an acceptable solution cut-set cost. The cut-set cost is 

the number of inter-partition connects, which if not selected 
carefully, will immensely degrade the overall solution quality 

4. THE PROPOSED METHOD SCACP 
As the general partitioning problem is NP complete, various 
heuristic algorithms for partitioning have been developed 
[2,15,16] .Kernighan and Lin [2] proposed a graph bisection 
algorithm for a graph having the time complexity of O (n3), 
which is considered too high even for moderate size problems. 
However the similar bisecting approach can be used much more 
effectively by applying the SCA computation to circuit 
partitioning problem. This paper presents such an approach, 

which makes use of SCA computing to solve the instance of 
partitioning problem. The advantage of the proposed method is 
that output values are computed and stored parallel. The 
presented approach makes use of soft computing method [17] 
for computing the solution that has the obvious advantage that 
the SCA strands used in the process are reusable.  

To solve the instance of Partitioning problem with G= (V, E)  

(|v| = n) start with 2n identical single stranded SCA memory 

strands each with 2n bit regions. The first n bit regions will 

represent the presence/absence of vertex in the first partition and 

the rest n bit regions will represent the presence/absence of an 

edge crossing the partition. 

 

Fig 1:  Bit regions of a SCA Strand. 

The algorithm begins with an initialization phase during 
which each individual in the population is defined by a 

uniformly distributed random point in the solution space. Each 
iteration of the SCA begins evaluating the fitness of the current 
generation. The application of crossover and mutation to the 
individuals creates a new generation of offspring. Solution 
representation. Let K be the number of sub circuits into which 
the circuit with graph G is divided, and let n (n=|P|) be the 
number of logic gates of the original circuit; then each solution 
is represented by an array S of n elements as S=A1, A2, A3, .... , 

An. with Ai in [1,....,K] where the Ai element in array S 
represents the subcircuit to which the logic gate i belongs to. 
Initial solution. Let N be the population size, the algorithm has 
been run using two different initial solutions, s1 or s2. They 
have been obtained using fast algorithms that assign n/K 

strongly connected nodes to each partition. 

 Partitioning is done in which the circuit graph is traversed in 
a depth-first way starting from the inputs, obtains the initial 
solution s1. The fitness function is obtained directly from the 
cost function. Selection criteria. After evaluating all the 
population with the fitness function, the individuals of the next 
generation will be chosen by a proportional criterion, called 
roulette proportional criterion, which will guarantee that the 

best individuals of the current generation have more possibilities 
of passing to the next one.  

In the SCA proposed here, the operators are based in moves 
of gates between neighborhood partitions. The variants are 
deterministic, pseudo-random and random. When the current 
generation is equal to this input, the algorithm finishes. Other 
condition to finish the evolutionary process occurs when the 
solutions don’t improvement. Thus, when the solutions in the 

last N generations are very similar (almost n improvement 
results) the algorithm finishes. Parameter N depends of the 
circuit, because in a large circuit there are more possibilities of 
escaping from a local minimum than in a smaller one. 

5. SIMULATION RESULTS 
The experiment has been performed by taking the different sets 
of graphs for different values of n (number of nodes) and v (set 
of edges). The results are plotted between the number of nodes 
n, which specify a search space of size 2n (along x-axis) and total 
number of iterations taken to find the required partition (along y-
axis). Comparison has been made between Kernighan-Lin, 
Simulated Annealing, Genetic Algorithm and SCA based 
approach. SCA notations are developed utilizing the properties 
of massive parallelism and replications. The corresponding 

results are shown in Table 1.  

 The Kernighan-Lin (K-L) algorithm starts with a random 
initial partition and then uses pair wise swapping of vertices 
between partitions with a complexity O (n3). In simulated 
annealing we try to search the required partitions from a given 
starting configuration. In genetic algorithm we have used 
crossover, mutation and population for finding the partition. 
Three different graphs have been plotted between Kernighan-

Lin, simulated annealing, genetic algorithm and SCA based 
approach for different sets of values of n and edges v.  

 

Table. 1: Comparison among the proposed algorithm and other 

partitioning techniques 

Partitioning 

Algorithms 

K-L SA GA SCACP 

Decomposition 

Time(s) 

25 19 15 10 

Iterations 89 76 45 22 
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Per Iteration 

Time(s) 

0.5353 0.4231 0.2153 0.999 

 

 Partitioning size = 8 cuts. 
 Decomposition Time: Time taken to prepare the 

partition for each of the different partitioning 
algorithms. 

 Number of Iterations: Number of iterations to 
convergence taken by CPU. 

 Iteration times: Average time for a single iteration 
 

 

Fig 2: Shows the number of processors of different partitioning 

Algorithms. 

The performance and efficiency of the proposed algorithm in 
comparison with other deterministic algorithms is done by 
simulation. The results shows that proposed SCA based 
algorithm gives better performance measure in terms of CPU 
efficiency compared to other algorithms. 
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Fig 3: Shows the number of cuts on different Benchmark circuits 

 

 If both the row i and the column i of the edges are not 

cut, then assign vector elements xi and bi to the 
processor assigned vertices from row i and column i 
graphs shown in Figure 2. 

 If the row i edge is cut and the column i edge is not 

cut, then assign vector elements xi and bi to the 
processor assigned vertices from column i edge. 

 If the row i edge is not cut and the column i edge is 

cut, then assign vector elements xi and bi to the 
processor assigned vertices from row i edge. 

 If both the row i edge and the column i edge are cut, 

then let Ri denote the set of processors that contain 
row i edge elements and let Ci denote the set of 
processors that contain column i edge elements.  

 
Table 2: Benchmarks ISCAS ’85 

Circuit Nodes No. of 

Gates 

Partition 

Area 

Min 

Cuts 

Max 

Cuts 

c432 15 153 1232 29 289 

c499 21 170 2346 45 376 

c880 26 357 5542 58 578 

c1355 48 514 7754 68 679 

c3540 69 1647 9887 78 1023 

c5315 93 1723 10234 94 2056 

 

The simulation work was carried out by writing a program in 
C++ and running on a SUN Ultra SPARC-III processor under 

the Sun Blade workstation architecture. The program has been 
written with approximately 3,500 lines of code. To evaluate the 
SCACP, several experiments are performed on different circuits. 
In order to allow readers to more easily evaluate the results, the 
SCACP is compared with other existing methods.  

The circuits used to evaluate the performance of the 
algorithms proposed here are the ISCAS´85 that are common 
benchmark circuits as shown in Table 3 and Figure 3 in the 
context of test pattern generation, application where the circuit 
partitioning problem appears 

6. CONCLUSION AND FUTURE SCOPE 
The results show that the proposed SCA algorithm is able to 
partition the circuit graph taking less no. of iterations as 
compared to other available approaches. Exhaustive search is 
clearly not feasible because complexity grows exponentially as 
the search space increases. Simulated Annealing on the other 
hand is effective in parallel environment. Genetic Algorithm is 
takes large amount of CPU time and also numbers of iterations 
are more. In these situations SCA algorithms provide the better 
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solution by taking the help of massive parallelism and 
recombination properties of SCA.  

SCA computing like much of today’s cutting-edge research 
is multidisciplinary. It involves mathematics, biology and 
computer science. In many papers, [20] and [21] it is stressed 

that high levels of collaboration between academic disciplines 
will be essential to gear up the progress in SCA computing. 
Many of the search problems in computer science are unsolvable 
not theoretically but because of astronomical resources required 
for their solution. SCA Algorithms can be applied to these 
problems. They can be used to extract statistics such as mean, 
median, minimum element from an unsorted data that can be 
used to speed up algorithms for NP problems. It can also be used 

to speed up the search for keys to crypt systems such as DES, 
PGP etc. The main disadvantage of these algorithms is the lack 
of hardware support and measurement difficulties. 
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