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ABSTRACT 
Super-resolution (SR) image reconstruction is the process of 
combining several low resolution images into a single higher 
resolution image. There is a driving need for digital images of 
higher resolutions and quality. However, there is a limit to the 
spatial resolution that can be recorded by any digital device. 
Growing interest in super-resolution (SR) restoration of video 

sequences and the closely related problem of construction of 
SR still images from image sequences has led to the 
emergence of several competing SR reconstruction 
methodologies. In this paper, the principle of super-resolution 
image reconstruction and several state-of-the-art SR 
reconstruction methods were introduced. We critique these 
methods and at last, several aspects of super-resolution image 
reconstruction that should be studied further more were put 
forward. 

 
 Key Words: Image Reconstruction, Super Resolution, Finite 
Support, Deconvolution, Denoise. 
 

 1. INTRODUCTION 
Super-resolution, loosely speaking, is the process of 
recovering a high-resolution image from a set of low-
resolution input images. Any given set of source low 
resolution (LR) images only captures a finite amount of 
information from a scene; the goal of SR is to extract the 
independent information from each image in that set and 
combine the information into a single high resolution (HR) 
image. The only requirement is that each LR image must 

contain some information that is unique to that image. This 
means that when these LR images are mapped onto a common 
reference plane their samples must be subpixel shifted from 
samples of other images – otherwise the images would contain 
only redundant information and SR reconstruction would not 
be possible. Most methods in SR are strictly reconstruction 
based; that is, they are based primarily on uniform and non-
uniform sampling theorems and do not attempt to create any 

information not found in the LR images. There are also 
learning SR methods that create new information based on 
generative models. 
 
SR techniques can prove useful in many different 
applications, and these applications can have different 
requirements in terms of both quality and computational 
complexity. The quality may also vary for different methods 
based on characteristics of the input image. The 

implementation complexity may be affected by 
implementation specifics, such as the availability of specific 
optimized libraries. Finally the artifacts caused by poor SR 
performance can be more visually distracting than blurring 
from interpolation. For these and other reasons choosing 
between SR methods is a complex task. 

 
A variety of approaches for solving the super-resolution 

problem have been proposed. Initial attempts worked in the 
frequency domain, typically recovering higher frequency 
components by taking advantage of the shifting and aliasing 
properties of the Fourier transform. Deterministic 
regularization approaches, which work in the spatial domain, 
enable easier inclusion of a priori constraints on the solution 
space (typically with smoothness prior). Stochastic methods 
have received the most attention lately as they generalize the 
deterministic regularization approaches and enable more 

natural inclusion of prior knowledge.  Other approaches 
include non-uniform interpolation, projection onto convex 
sets, iterative back projection, and adaptive filtering. With the 
increased emphasis on stochastic techniques has also come 
increased emphasis on learning priors from from example data 
rather than relying on more heuristically derived information. 
 
The following sections will hopefully serve to elucidate the 

super- resolution problem. We start by introducing  basic 
principle of super resolution image reconstruction , then cover 
various approaches to the super-resolution problem – 
frequency domain techniques, spatial domain techniques 
which covers, non-uniform interpolation, deterministic 
regularization, stochastic methods, projection onto con- vex 
sets, and iterative back projection. Next we cover recent work 
attempting to determine limits to super-resolution techniques. 

Finally, we conclude with a section on potential future 
research directions. 
 

2. PRINCIPLE OF SUPER-RESOLUTION 

IMAGE RECONSTRUCTION 

2.1 Definition of Super Resolution 
Non-coherent transfer function of an optical system is the 

autocorrelation of its pupil function, which means that the 
transfer function is necessarily band-limited. In another way, 
the value of transfer function should be zero when frequency 
determined by diffraction limit is above certain value. 
Apparently, de-convolution can only restore the spectrum of 
object to diffraction limit and cannot surpass it. However, by 
using Fourier transformation, we can get resolution above 
diffraction limit in theory. The restoration technology which is 
trying to restore the information above diffraction limit is 

called Super-resolution  techniques.  And  the  methods  used  
in  these techniques can be called Extrapolation of Band-
limited. Diffraction  limiting  Images  of  space  objects  can  
be  obtain through high-resolution restoration of speckle 
images of these objects. But, with super-resolution 
information, resolution can be improved further by restoration 
and reconstruction of near- diffraction-limit images. 
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2.2 Principle 
Super-resolution image reconstruction is based on the theory 

of Analytic Continuation, which means reconstruction  of  the 
whole analytic function according to its values in certain area. 
Because of diffraction of lights, spectrum distribution of 
certain image is infinite in space and optical system truncates 
its frequency to obtain frequency-truncated image that is finite 
in space. Generally, truncation function cannot be band-
limited, but a diffraction limited optical system’s truncation is 
band- limited,   therefore,   the   reconstruction   of   whole   

spectrum function or just spectrum function above certain 
frequency is possible. 
 
Assume the imaging model: 

     (1) 
 

Where, h( x, y) is the point spread function (PSF), ideal 
image,  g ( x, y) is the original image and n( x, y) is the noise. 
 
Its Fourier transformation is: 

     (2) 
 

Super-resolution reconstruction is to perform 

analytic continuation to ( , )F u v  to extend its support 

domain by using prior information of objects and posterior 
processing technologies, and then get a new PSF 

'( , )H u v . ( , )H u v  also has the extended support domain, 

thus the resolution of image is improved. 
 

 

3. FREQUENCY DOMAIN METHODS 
A major class of SR methods utilize a frequency domain 
formulation of the SR problem. Frequency domain methods 
are based on three fundamental principles: i) the shifting 
property of the Fourier transform (FT), ii) the aliasing 

relationship between the continuous Fourier transform (CFT) 
and the discrete Fourier transform (DFT), iii) the original 
scene is band-limited. These properties allow the formulation 
of a system of equations relating the aliased DFT coefficients 
of the observed images to samples of the CFT of the unknown 
scene. These equations are solved yielding the frequency 
domain coefficients of the original scene, which may then be 
recovered by inverse DFT. Formulation of the system of 

equations requires knowledge of the translational motion 
between frames to sub-pixel accuracy. Each observation 
image must contribute  independent equations, which places 
restrictions on the inter-frame motion that contributes useful 
data.  

 

Denote the continuous scene by ( , )f x y . Global 

translations yield R shifted images, 

( , ) ( , ), 1,2,... .r r rf x y f x x y y r R . The 

CFT of the scene is given by F(u,v) and that of the translations 
by Fr(u, v). The shifted images are impulse sampled to yield 
observed images 

[ , ] ( , )r x r y ry m n f mT x nT y  with 

0,1,2.... 1m M  and 0,1,2.... 1.n N . The R 

corresponding 2D DFT’s are denoted by [ , ]ry k l . The CFT 

of the scene and the DFT’s of the shifted and sampled images 
are related via aliasing,  
 
 

                                   (3) 
 

where 1/
xs xf T  and 1/

ys yf T  are the sampling rates 

in the x and y dimensions respectively and 1/ ( )x yT T . 

The shifting property of the CFT relates spatial domain 
translation to the frequency domain as phase shifting as,  
 

2 ( )
( , ) ( , )r rj x u y v

rF u v e F u v    

     (4) 
 

If  f(x, y) is band-limited, ,u vL L  s.t. ( , ) 0F u v  for 

xu su L f  and 
yu sv L f  . Assuming f(x; y) is band 

limited, we may use (4) to rewrite the alias relationship (3) in 
matrix form as, 
 

Y F         (5) 

 
Y is a R 1 column vector with the rth element being the 

DFT coefficients Yr[k, l] of the observed image [ , ]rY m n .  

is a matrix which relates the DFT of the observation data to 
samples of the unknown CFT of f(x,y) contained in the 

4 1u vL L  vector F. SR reconstruction thus requires finding 

the DFT’s of the R observed images, determining (motion 

estimation), solving the system of equations (5) for F and 

applying the inverse DFT to obtain the reconstructed image. 
Several extensions to the basic Tsai-Huang method have been 
proposed. A LSI blur PSF is included in [17] and the 
equivalent of (5) is solved using a least squares approach to 
mitigate the effects of observation noise and insufficient 
observation data. A computationally efficient recursive least 
squares (RLS) solution for (5) is proposed in [10] and 
extended with a Tikhonov regularization solution method in 

[11] in an attempt to address the ill-posedness of SR inverse 
problem. Robustness to errors in observations as well as 
motivated the use of a total least squares (TLS) approach in 
[1] which is implemented using a recursive algorithm for  
computational efficiency. Techniques based on the 
multichannel sampling theorem [2] have also been considered 
[21].  
 
Though implemented in the spatial domain, the technique is 

fundamentally a frequency domain method relying on the shift 
property of the Fourier transform to model the translation of 
the source imagery. Frequency domain SR methods provide 
the advantages of theoretical simplicity, low computational 
complexity, are highly amenable to parallel  implementation 
due to decoupling of the frequency domain equations (5) and 
exhibit an intuitive de-aliasing SR mechanism. Disadvantages 
include the limitation to global translational motion and space 

invariant degradation models (necessitated by the requirement 
for a Fourier domain analog of the spatial domain motion and 
degradation model) and limited ability for inclusion of spatial 
domain a-priori knowledge for regularization. 

( , ) ( , ) ( , ) ( , )g x y h x y f x y n x y

( , ) ( , ). ( , ) ( , )G u v H u v F u v N u v

[ , ] ,
x yr r s s

p q x y

k l
y k l F pf qf

MT NT
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4. SPATIAL DOMAIN METHODS  
Approaching the super-resolution problem in the frequency 

domain makes a lot of sense because it is relatively simple and 
computationally efficient. However, there are some problems 
with a frequency domain formulation. For one, it restricts the 
inter-frame motion to be translational because the DFT 
assumes uniformly spaced samples. Another disadvantage is 
that prior knowledge that might be used to constrain or 
regularize the super-resolution problem is often difficult to 
express in the frequency domain. Since the super-resolution 

problem is fundamentally ill-posed4, incorporation of prior 
knowledge is essential to achieve good results. A variety of 
techniques exist for the super-resolution problem in the spatial 
domain. These solutions include interpolation, deterministic 
regularized techniques, stochastic methods, iterative back 
projection, and projection onto convex sets among others. The 
primary advantages to working in the spatial domain are 
support for unconstrained motion between frames and ease of 

incorporating prior knowledge into the solution. 
 

 

4.1. Image Interpolation Algorithms  

4.1.1 Bicubic Interpolation 
Given a sampled signal, its continuous counterpart can be 
approximated using some suitable interpolation kernel. 2D 
interpolation is usually accomplished by applying 
successively 1D kernel interpolation on horizontal and vertical 
directions. For uniformly spaced data, the continuous-domain 

signal Y(u,v) can be written as, 
 

         (6) 
 

In this expression, ( , )u v are sampling intervals, h() is 

the interpolation kernel and {y(k,l)} represent the pixel array 
in the Low rsolution(LR) grid. The SR signal is obtained by 
resampling (6) on a finer grid. In [5], the cubic convolution 
kernel is given as, 

 

              (7) 

 

4.1.2 Interpolation of Non-Uniformly 

Spaced Samples 
Registering a set of LR images using motion compensation 
results in a single, dense composite image of non-uniformly 
spaced samples. A SR image may be reconstructed from this 
composite using techniques for reconstruction from non-
uniformly spaced samples. Restoration techniques are 
sometimes applied to compensate for degradations [17]. 
Iterative reconstruction techniques, based on the Landweber 
iteration, have also been applied [12]. Such interpolation 

methods are unfortunately overly simplistic. Since the 
observed data result from severely under sampled, spatially 
averaged areas, the reconstruction step (which typically 
assumes impulse sampling) is incapable of reconstructing 
significantly more frequency content than is present in a 
single LR frame. Degradation models are limited, and no a-

priori constraints are used. There is also question as to the 
optimality of separate merging and restoration steps. 
 

4.1.3  Wavelet-Based Image Interpolation 
Wavelet-based image interpolation methods assume that the 
available image is the coarse approximation (LL0) , that is, 
low-pass filtered subband of an HR image. The interpolation 
methods then first try to recover the missing horizontal (LH0) , 
vertical (HL0 ) and diagonal  (HH0) detail subbands, and then 
obtain the HR image by taking the inverse Discrete Wavelet 

Transform (DWT) of the expanded image. An important 
property of DWT is the persistence property. In fact several 
wavelet-based compression schemes, such as embedded zero 
tree wavelets, employ this property. Temizel and Vlachos [6] 
proposed a wavelet based image interpolation method. They 
used the idea of “persistence”, which implies that the 
magnitudes of wavelet coefficients corresponding to the  same 
spatial location tend to propagate from lower scales to higher 

resolution scales. They extended the “persistence” idea to 
correlation coefficients. First, one goes one scale down, and 
estimates (HL1) by high pass filtering (LL1) horizontally. 
Then, correlation coefficients between (HL1) and its estimate 
are computed. Using these correlation coefficients and 
estimate of (HL0) , exact value of (HL0) is computed. All these 
horizontal and vertical filtering operations are, however, 
implemented without decimation, in other words one stays at 

the resolution level of (LL0) . The (HH0) is not predicted since 
it is judged visually less informative, so that the 
corresponding coefficients in the inverse DWT are filled with 
zeros. 

 

4.1.4 Edge Adaptive Image Interpolation 
The imaging process and the concomitant loss of resolution 
are modeled as low-pass filtering and decimation stages in [7]. 
The low-pass filtering operation modifies the values of the 
pixels near the edges proportionally to the distance between 
pixels and the edge. Therefore the analysis of the low 
resolution pixels should give an idea about the position of the 
edge at sub-pixel level. The one-dimensional case is 
illustrated in Fig.1 

 
 
 
 
 

 
 

 
Fig – 1 : The x pixel, astride an edge, is to be 

interpolated. 
The interpolated value x between the given a, b, c, d 
neighbors become [9]: 
 

(1 )x b c                                           

2

2 2

( ) 1

(( ) ( ) ) 2

k c d

k a b c d
  (8) 

where k is an input parameter and affects the edge sensitivity. 
When edge is in midway between b and c, ab= c-d and 
x=(b+c)/2. When edge is closer to c, then ab< c-d and x takes 
a value closer to b. In 2D, first the missing pixels along the 
rows and the missing pixels along the columns are estimated, 

separately. Then the diagonal pixels are estimated using the 
results of the previous steps and the mean value of the two 
results is taken. 

( , ) ( , ) k k

k l

u u v v
Y u v y k l h h

u v

3 2

3 2

1.5|s| 2.5|s| 1                       0  |s| 1

( ) 0.5|s| 2.5|s| 4|s| 2           1  |s| < 2

0                                                 2  |s| 

h s



International Journal of Computer Applications (0975 – 8887) 
Volume 15– No.2, February 2011 

4 

4.2. Iterated Backprojection 

Given a SR estimate z and the imaging model H, it is 

possible to simulate the LR images 
Y as 

Y H z . Iterated 
backprojection (IBP) procedures update the estimate of the SR 
reconstruction by backprojecting the error between the jth 

simulated LR images Y j  and the observed LR images Y 

via the backprojection operator HBP which apportions “blame” 

to pixels in the SR estimate z j . Typically HBP  

approximates
1H  algebraically, 

   
 
                                                                                           (9) 
 
Equation (9) is iterated until some error criterion dependent on 

Y,  ( )Y j  is minimized. Application of the IBP method may 

be found in [9]. IBP enforces that the SR reconstruction 
match (via the observation equation) the observed data. 
Unfortunately the SR reconstruction is not unique since SR is 
an ill-posed inverse problem. Inclusion of a-priori constraints 
is not easily achieved in the IBP method. 
 

4.3. Stochastic SR Reconstruction Methods 
Stochastic methods (Bayesian in particular) which treat SR 
reconstruction as a statistical estimation problem have rapidly 
gained prominence since they provide a powerful theoretical 
framework for the inclusion of a-priori constraints necessary 
for satisfactory solution of the ill-posed SR inverse problem. 
The observed data Y, noise N and SR image z are assumed 
stochastic. Consider now the stochastic observation equation 

Y = Hz + N. The Maximum 
A-Posteriori (MAP) approach to estimating z seeks the 

estimate MAPz  for which the                 a-posteriori 

probability, Pr |z Y is a maximum.  

Formally, we seek MAPz  as,  

 
  

                            (10) 
The second line is found by applying Bayes’ rule, recognizing 

that 
MAP

z  is independent of Pr{ }Y  and taking logarithms. 

The term log  Pr{Y|z}  is the log-likelihood function and 

Pr{z} is the a-priori density of z. Since Y = Hz + N, the 

likelihood function is determined by the PDF of the noise as 

Pr{Y|z}=f ( )N Y Hz . It is common to utilize 

 Markov random field (MRF) image models as the 
prior term Pr fzg. Under typical assumptions of Gaussian 
noise the prior may be chosen to ensure a convex optimization 
in (5) enabling the use of descent optimization procedures. 
Examples of the application of Bayesian methods to SR 
reconstruction may be found in [15] using a Huber MRF and 

[3,7] with a Gaussian MRF. Maximum likelihood (ML) 
estimation has also been applied to SR reconstruction [18]. 

ML estimation is a special case of MAP estimation (no prior 
term). Since the inclusion of a-priori information is essential 
for the solution of ill-posed inverse problems, MAP 
estimation should be used in preference to ML. A major 
advantage of the Bayesian framework is the direct inclusion of 

a-priori constraints on the solution, often as MRF priors which 
provide a powerful method for image modeling using 
(possibly non-linear) local neighbor interaction. MAP 
estimation with convex priors implies a globally convex 
optimization, ensuring solution existence and uniqueness 
allowing the application of efficient descent optimization 
methods. Simultaneous motion estimation and restoration is 
also possible [7]. The rich area of statistical estimation theory 

is directly applicable to stochastic SR reconstruction methods. 
 

4.4. Set Theoretic Reconstruction Methods 
Set theoretic methods, especially the method of projection 
onto convex sets (POCS), are popular as they are simple, 

utilize the powerful spatial domain observation model, and 
allow convenient inclusion of a priori information. In set 
theoretic methods, the space of SR solution images is 
intersected with a set of (typically convex) constraint sets 
representing desirable SR image characteristics such as 
positivity, bounded energy, fidelity to data, smoothness etc., 
to yield a reduced solution space. POCS refers to an iterative 
procedure which, given any point in the space SR images, 

locates a point which satisfies all the convex constraint sets. 
Convex sets which represent constraints on the solution space 
of z are defined. Data consistency is typically represented by a 

set 0{ :| | }z Y Hz , positivity by     { : 0 }iz z i , 

bounded energy by { :|| || }z z E , compact support 

{ : 0, }iz z i A  and so on. For each convex constraint 

set so defined, a projection operator is determined.  
 

The projection operator P  associated with the 

constraint set C  projects a point in the space of z onto the 

closest point on the surface of C . It can be shown that 

repeated application of the iteration 
( 1) ( )

1 2 3......n n

Kz PP P P z  will result in convergence to a 

solution on the surface of the intersection of the K convex 
constraints sets. Note that this point is in general non-unique 
and is dependent on the initial guess. POCS reconstruction 
methods have been successfully applied to sophisticated 

observation and degradation models [13, 6]. An alternate set 
theoretic SR reconstruction method [19] uses an ellipsoid to 
bound the constraint sets. The centroid of this ellipsoid is 
taken as the SR estimate. Since direct computation of this 
point is infeasible, an iterative solution method is used. The 
advantages of set theoretic SR reconstruction techniques were 
discussed at the beginning of this section. These methods have 
the disadvantages of non-uniqueness of solution, dependence 

of the solution on the initial guess, slow convergence and high 
computational cost. Though the bounding ellipsoid method 
ensures a unique solution, this solution is has no claim to 
optimality. 
 

4.5. Hybrid ML/MAP/POCS Methods 
Work has been undertaken on combined ML/MAP/POCS 
based approaches to SR reconstruction [15, 5]. The desirable 
characteristics of stochastic estimation and POCS are 
combined in a hybrid optimization method. The a-posteriori 





( 1) ( ) ( ( ))

         = ( ) ( ( ))

BP

BP

z j z j H Y Y j

z j H Y H z j

 



arg max [Pr{ | }]

        = arg max [log Pr{ | } log Pr{ }]

MAP z

z

z z Y

Y z z


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density or likelihood function is maximized subject to 
containment of the solution in the intersection of the convex 
constraint sets. 

 

4.6. Optimal and Adaptive Filtering 
Inverse filtering approaches to SR reconstruction have been 
proposed, however these techniques are limited in terms of 
inclusion of a-priori constraints as compared with POCS or 
Bayesian methods and are mentioned only for completeness. 
Techniques based on adaptive filtering, have also seen 

application in SR reconstruction [14, 4]. These methods are in 
effect LMMSE estimators and do not include non-linear a-
priori constraints. 
 

4.7. TikhonovArsenin Regularization 
Due the  illposedness of SR reconstruction, Tikhonov-Arsenin 
regularized SR reconstruction methods have been examined 
[8]. The regularizing functional characteristic of this approach 
are typically special cases of MRF priors in the Bayesian 
framework.  

 

5. SUMMARY AND COMPARISON 
A general comparison of frequency and spatial domain SR reconstructions methods is presented in Table 1. 

 
 Freq. Domain Spat. Domain 

Observation model Frequency domain Spatial domain 

Motion models Global translation Almost unlimited 

SR Mechanism  Limited, LSI LSI or LSV 

Noise model  Limited, SI Very Flexible 

Degradation model  De-aliasing  De-aliasing A-priori info 

SR Mechanism  Low High 

Computation req.  Limited Good 

A-priori info  Limited Excellent 

Regularization Poor Excellent 

App. performance  Limited Wide 

Applicability Good Almost unlimited 

 
Table 1. Frequency vs. spatial domain SR 

Spatial domain SR reconstruction methods, though computationally more expensive, and more complex than their frequency domain 
counterparts, offer important advantages in terms of flexibility. Two powerful classes of spatial domain methods; the Bayesian (MAP) 

approach and the set theoretic POCS methods are compared in Table 2. 

 
 Bayesian (MAP) POCS 

Applicable theory Vast Limited 

A-priori info Prior PDF  
Easy to incorporate, No hard 
constraints 

Convex sets  
Easy to incorporate 
Powerful yet simple 

SR solution MAP estimate  
Unique 

Non-uniqueness 
of constraint sets 

Computation req.  Iterative High 

Convergence Good  Possibly slow 

Optimization  High Iterative 

Complications Non-convex priors Optimization 
under  

Operators 
Defn. of projection 

 
Table 2. MAP vs. POCS SR 

 

6. FUTURE RESEARCH DIRECTIONS 
Three research areas promise improved SR methods: 

Motion Estimation: SR enhancement of arbitrary 

scenes containing global, multiple independent motion, 
occlusions, transparency etc. is a focus of SR research. 
Achieving this is critically dependent on robust, model based, 
sub-pixel accuracy motion estimation and segmentation 
techniques  presently an open research problem. Motion is 
typically estimated from the observed undersampled data  the 
reliability of these estimates should be investigated. 

Simultaneous multi-frame motion estimation should provide 

performance and reliability improvements over common two 
frame techniques. For non-parametric motion models, 
constrained motion estimation methods which ensure 
consistency in motion maps should be used. Regularized 

motion estimation methods should be utilized to resolve the 
ill-posedness of the motion estimation problem. Sparse 
motion maps should be considered. Sparse maps typically 
provide accurate motion estimates in areas of high spatial 
variance  exactly where SR  techniques deliver greatest 
enhancement.  

Reliability measures associated with motion estimates should 
enable weighted reconstruction. Global and local motion 
models, combined with iterative motion estimation, 

identification and segmentation provide a framework for 
general scene SR enhancement. Independent model based 
motion predictors and estimators should be utilized for 
independently moving objects. Simultaneous motion 
estimation and SR reconstruction approaches should yield 
improvements in both motion estimates and SR 
reconstruction. 
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Degradation Models: Accurate degradation 

(observation) models promise improved SR reconstructions. 

Several SR application areas may benefit from improved 
degradation modeling. Only recently has color SR 
reconstruction been addressed [16]. Improved motion 
estimates and reconstructions are possible by utilizing 
correlated information in color bands. Degradation models for 
lossy compression schemes (color subsampling and 
quantization effects) promise improved reconstruction of 
compressed video. Similarly, considering degradations 

inherent in magnetic media recording and playback are 
expected to improve SR reconstructions from low cost 
camcorder data. The response of typical commercial CCD 
arrays departs considerably from the simple integrate and 
sample model prevalent in much of the literature. Modeling of 
sensor geometry, spatio-temporal integration characteristics, 
noise and readout effects promise more realistic observation 
models which are expected to result in SR reconstruction 

performance improvements.  

Restoration Algorithms: MAP and POCS based 

algorithms are very successful and to a degree, 
complimentary. Hybrid MAP/POCS restoration techniques 
will combine the mathematical rigor and uniqueness of 

solution of MAP estimation with the convenient a-priori 
constraints of POCS. The hybrid method is MAP based but 
with constraint projections inserted into the iterative 
maximization of the a-posteriori density in a generalization of 
the constrained MAP optimization of [15]. Simultaneous 
motion estimation and restoration yields improved 
reconstructions since motion estimation and reconstruction are 
interrelated. Separate motion estimation and restoration, as is 

commonly done, is sub-optimal as a result of this 
interdependence. Simultaneous multi-frame SR restoration is 
expected to achieve higher performance since additional 
spatio-temporal constraints on the SR image ensemble may be 
included. This technique has seen limited application in SR 
reconstruction. 
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