
International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

16

Construction of a Minimal Deterministic Finite
Automaton from a Regular Expression

Sanjay Bhargava
Department of Computer Science

Banasthali University
C-62, Sarojini Marg, C-Scheme, Jaipur - 302001

G. N. Purohit
Centre for Mathematical Science

Banasthali University
Banasthali, Rajasthan - 304022

ABSTRACT

This paper describes a method for constructing a minimal

deterministic finite automaton (DFA) from a regular expression.

It is based on a set of graph grammar rules for combining many

graphs (DFA) to obtain another desired graph (DFA). The graph

grammar rules are presented in the form of a parsing algorithm

that converts a regular expression R into a minimal deterministic

finite automaton M such that the language accepted by DFA M

is same as the language described by regular expression R.

The proposed algorithm removes the dependency over the

necessity of lengthy chain of conversion, that is, regular

expression → NFA with ε-transitions → NFA without ε-

transitions → DFA → minimal DFA. Therefore the main

advantage of our minimal DFA construction algorithm is its

minimal intermediate memory requirements and hence, the

reduced time complexity. The proposed algorithm converts a

regular expression of size n in to its minimal equivalent DFA in

O(n.log2n) time. In addition to the above, the time complexity is

further shortened to O(n.logen) for n ≥ 75.

General Terms

Algorithms, Complexity of Algorithm, Regular Expression,

Deterministic Finite Automata (DFA), Minimal DFA.

Keywords

Alphabet, Automaton Construction, Combined State, Union,

Concatenation, Kleene Closure, Minimization, Transition.

1. INTRODUCTION AND BACKGROUND
Regular expressions and finite automata are two dissimilar

representations for regular languages: regular expressions on

one hand generate regular languages while on the other hand

finite automata accept regular languages. It is well known that

each regular expression can be transformed into a

nondeterministic finite automaton (NFA) with or without ε-

transitions, and finally this NFA can be converted into a DFA.

In the literature related to the conversion problem, it has been

found that there exist many different algorithmic approaches for

converting a regular expression into some variant of a finite

automaton; Watson [34] enumerated various algorithmic

approaches for the conversion problem. Algorithmic approaches

to convert a regular expression into some variant of a finite

automaton include:

• The algorithms to convert regular expression into NFA with

or without ε-transitions (see, e.g. [1], [5], [6], [12], [13],

[16], [18], [20], [21], [23], [28], [33], [36] and [37]) and

• The algorithms to convert regular expression into DFA

using intermediate NFAs (as in various studies like [2], [3],

[4], [9], [10], [15], [19], [24], [25], [29], [30], [31], [32] and

[35]).

Daciuk et al. [11] discussed a parsing algorithm to convert a set

of strings into a minimal, deterministic, acyclic finite-state

automaton. Carrasco and Forcada [8] presented another

algorithm to modify any minimal finite-state automaton so that a

string is added to or removed from the language accepted by it.

Recently, Carrasco et al. [7] presented another algorithm that

allowed the incremental addition or removal of unranked order

trees to a minimal frontier-to-root deterministic finite-state tree

automaton. All the above studies had limitations as they

represented only a finite set of strings.

The traditional methods, discussed above, to convert a regular

expression R into a minimal DFA M consist of four phases: (i)

to convert R into a non-deterministic finite automaton (NFA)

with ε-transitions, (ii) to convert the above NFA into an NFA

without ε-transitions, (iii) to convert this NFA (without ε-

transitions) into a DFA, and finally (iv) to minimize this DFA.

This paper presents a parsing algorithm Construct which

converts a regular expression (finite as well as infinite set of

strings) into a minimal DFA using the following two phases,

recursively.

(i) Constructing a DFA (for ε / φ / a single alphabet symbol /

kleene closure of a DFA / union of two DFA / concatenation

of two DFA) by applying the rules for automaton

construction and joining operations of DFA (Cohen [10]),

and

(ii) Minimizing the obtained DFA (Hopcroft and Ullman [19]).

In the proposed algorithm, parsing is performed by (i) obtaining

the information from regular expression in a precise manner and

then (ii) converting this information into DFA using the graph

grammar rules defined for this conversion. Following Johnson et

al. [22], Möhring [27] and Mayr et al. [26], we have prescribed

a set of graph grammar rules for minimization, union,

concatenation, and kleene closure operations over DFA and our

parsing algorithm works as a genuine folder containing all these

rules. Throughout the conversion process, graph operations

needed to join DFA take place using an appropriate graph

grammar rule from this folder.

The contents of this paper are arranged as follows.

Section 2 describes the proposed implementation procedure,

followed by the equivalent algorithm to convert a regular

expression into a minimal DFA in the next section. This section

also depicts the instances of our algorithm’s implementation

initially by graphs and followed by tables. Finally, this section

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

17

ends with an evaluation of the algorithm. Last Section 4 deals

with the conclusions of the present research paper.

2. IMPLEMENTATION PROCEDURE
Following Brzozowski and Cohen [6] and Antimirov [1], the

proposed algorithm Construct first constructs a minimal

DFA (graph) for the deepest positioned element of the given

regular expression. In the next step, Construct combines this

DFA with the DFA based on the surrounding part of deepest

element’s position, to obtain another minimal DFA. The

process of combining DFA is continued till the entire regular

expression is converted into the resultant DFA. The

implementation procedure is described in detail as follows.

Construct first stores the given regular expression R as (R)

in an array X. Therefore the start and end markers of R are

‘(’ and ‘)’ respectively. Then, following Berry and Sethi [3],

Construct obtains the address of innermost parenthesis string

say R1 of R. Construct then scans R1 for some x* ∀ x ∈ Σ ∪

{ε, φ, Mz such that z ≥ 1 (Mz will not exist for R1 and can

exist only for R2 onwards)}, and if any such x* exists,

Construct constructs the minimal DFA for those entire x*

(Construct first constructs an intermediate DFA say I for x,

and then for x*
it obtains the kleene closure DFA of I, and

finally it stores the so obtained DFA in some Li), and

replaces all x* by their equivalent minimal DFA name Li for i

≥ 1 in R1. Construct also stores all those Li’s in XL.

Thereby, in the string R1 all x* are replaced by some Li for i

≥ 1.

Construct again scans R1 for some string s ∀ s ∈ Σ* ∪ {φ} ∪

{Li, Mz for i, z ≥ 1}*, and if any such s exists, Construct

constructs the minimal DFA for all those s recursively

(Construct first constructs a DFA Nj for the 1st character of

string s; then if s contains another character, Construct

concatenates Nj by the DFA of that character and stores the

resultant minimal DFA back in Nj, and this process continues

till the whole s is consumed) and replaces all s by their

equivalent minimal DFA name Nj for j ≥ 1. Construct also

stores all those Nj’s in XN. Hence, in the string R1, all s are

replaced by some Nj for j ≥ 1.

R1 is again scanned for a '+' operator. If a '+' does not exist,

the only Nj value in R1 is stored as M1. However in the

presence of a '+' operator, Construct assumes that it is

between x and y ∀ x, y ∈ {Nj for j ≥ 1}. Construct stores the

left side operand of '+' as M1 and joins this M1 to the right

side operand of '+' using union operation, and stores the

result (minimal DFA) back in M1; then Construct again

searches for the next '+' operator in R1, and if found

Construct again joins M1 to the right side operand of '+'

using union operation, and stores the result (minimal DFA)

back in M1; Construct continues till the entire string R1 is

replaced by M1. Construct also stores M1 in XM.

Construct then replaces the entire (R1) (“(”, followed by

string R1, followed by “)”) by M1. As the innermost left and

right parentheses are removed, Construct has, possibly, a

new innermost parenthesis (the next higher parenthesis after

the parenthesis for R1). Let the innermost parenthesis string

be R2. Construct performs the same operation with R2 as it

had done with R1 to get the next string R3. Continuing like

this, Construct will replace the entire regular expression R

by an equivalent minimal DFA name Mz for z ≥ 1. Finally,

the last Mz is printed and stored as the output M.

In the implementation procedure, inside the regular

expression Construct performed all the replacement

operations by replacing strings Li, Nj, or Mz (for i, j, z ≥ 1)

into the regular expression (as in Ben-David et al. [2]). The

exact values of these Li, Nj, and Mz were stored on XL, XN,

and XM respectively. Whenever Construct replaced anyone

of Li, Nj, or Mz into the regular expression, the

corresponding value of Li, Nj, or Mz was either appended to

the sets XL, XN, or XM respectively (if Li, Nj, or Mz was

new) or was updated in XL, XN, or XM respectively (if Li,

Nj, or Mz was already existing). Similarly if Construct read

anyone of Li, Nj, or Mz inside a regular expression, the

corresponding value of Li, Nj, or Mz was extracted from XL,

XN, or XM respectively, some join operation (union,

concatenation, or kleene closure) was performed over them,

and the resultant value was stored back in XL, XN, or XM

respectively along with storing the same string name into the

regular expression (For example if L3 was DFA for a*, then

‘L3’ was over-written in place of a* in regular expression

and the exact value of L3 was also stored in XL. Similarly, if

we wanted to concatenate N3 followed by DFA for symbol 1,

we first extracted the current value of N3 from XN,

concatenated it with the DFA for symbol 1, stored the

resultant DFA back as N3, stored the value of N3 in XN at the

previous place of N3, and rewrote 'N31' as ‘N3’ inside the

regular expression.).

Following Rytter [28], Construct used a high-speed

processor that performed all the graph operations in almost

insignificant time. Whenever any of the graph grammar

function (Symbol, Union, Concat, Star, and Min) was called

inside the algorithm, the processor was activated and after

activation it performed the following sequence of operations

in a constant and insignificant time:

(i) It obtained the information from array X and used the

function that activated it.

(ii) It executed the associated function (the function that

activated the processor) with the input, as received from

X. If this input was an already stored string name (Li, Nj,

or Mz), then the processor extracted the value of that

string name from XL, XN, or XM and used that extracted

value as input, otherwise the processor used the same

read input.

(iii) It stored the output (Li, Nj, or Mz) of the associated

function by overwriting that output name (Li, Nj, or Mz)

in array X at the place from where the input was taken. It

also stored the full description of Li, Nj, or Mz in XL,

XN, or XM respectively.

3. ALGORITHM
Algorithm Construct takes a regular expression R and a finite

set of alphabet symbols Σ as input and prints the minimal

DFA M as output such that L(M) = L(R). Figure 1 shows the

algorithm Construct.

Algorithm Construct

Input: a regular expression R and a set Σ of alphabet

symbols.

Output: a minimal DFA M such that L (M) = L (R).

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

18

type automata = (Q, Σ, δ, Q[1], F);

M : automata;

begin

 M ← Converter (R, Σ);

 [M stores the output sent by function Converter]
 print M; [output M is printed]

end

Figure 1. Algorithm Construct to print the minimal DFA

equivalent to a regular expression.

Algorithm Construct calls the function Converter, which

maintains all the replace operations in array X (array X

contains R) for converting R into a minimal DFA M. Figure

2 shows the function Converter.

Function Converter (R, Σ)

begin

if R = φ OR R = ‘ε’ OR length(R) = 1 then

 begin

return Symbol(R); [function Symbol returns min. DFA

for φφφφ / ε / reg. exp. of length 1]
 end;

endif;

int n, n1, i, j, z, inner, outer, left_paren, right_paren,

position_star, inter, count;

n ← length(R);

X : array [1..n+2] of Σ ∪ {(,), #, Li, Nj, Mz for i, j, z ≥ 1};

z ← 1; X[1] ← ‘(’;

Store R in array X from 2nd to (n+1)th position; X[n+2] ← ‘)’;

n1 ← n+2;

10 i, j ← 1;

find the innermost bracket in X;

inner ← in such that X[in] contains the left parenthesis of

innermost bracket;

outer ← out such that X[out] contains the right parenthesis of

innermost bracket;

left_paren ← inner; right_paren ← outer;

scan X from X[inner] to X[outer] for all x* where x ∈ Σ ∪ {ε, φ,

Mz for z ≥ 1}

if x* found then for every x* such that X[position_star] = x

if X[position_star] = Mz then Li ← Min(Star(X[position_star]))

else Li ← Min(Star(Symbol(X[position_star])))

 endif;

 X[position_star] ← Li; [X[position_star] stores the

automata name for x*]
store Li in XL; [automata Li for x* is stored in XL]

i ← i +1;

shift the values of X[position_star+2] to X[n1] to 1 position left

in X;

X[n1] ← ‘#’; outer ← outer - 1;

endif;

if no x* found then exit endif;

endscan;

inter ← inner;

15 scan X from X[inter] to X[outer]

count ← inter + 1;

if X[count] ∈ Σ ∪ ε ∪ φ then Nj ← Symbol(X[count]) else Nj ←

X[count]

endif;

X[count] ← Nj; [X[count] stores the automata name Nj]

store Nj in XN; [automata Nj is stored in XN]

count ← count+1;

20 if X[count] ∈ Σ ∪ ε ∪ φ then

Nj ← Min(Concat(Nj, Symbol(X[count])));

X[count-1] ← Nj; store Nj in XN;

shift the values of X[count+1] to X[n1] to 1 position left;

 X[n1] ← ‘#’; outer ← outer-1; go to 20;

endif;

if X[count] ∈ {Li, Mz for i, z ≥ 1} then

Nj ← Min(Concat(Nj, X[count]));

X[count-1] ← Nj; store Nj in XN;

shift the values of X[count+1] to X[n1] to 1 position left;

X[n1] ← ‘#’; outer ← outer-1; go to 20;

endif;

if X[count] = ‘+’ then

j ← j+1; inter ← count; go to 15;

endif;

if X[count] = ‘)’ then

j ← j+1;

endif;

endscan;

scan X from X[inner] to X[outer]

Mz ← X[inner+1]; [Some Nj at X[inner+1] is stored in

name Mz]
X[inner+1] ← Mz; [X[inner+1] stores the automata name Mz]

store Mz in XM; [automata Mz is stored in XM]

30 if X[inner+2] = ‘+’ then

 Mz ← Min(Union(Mz, X[inner+3]));

 X[inner+1] ← Mz;

 store Mz in XM;

 shift the values of X[inner+4] to X[n1] to 2 positions left;

 X[n1-1], X[n1] ← ‘#’; outer ← outer-2;

 go to 30;

 endif;

 if X[inner+2] = ‘)’ then endif;

endscan;

z ← z+1;

shift the values of X[inner+1] to X[n1] to 1 position left;

shift the values of X[outer] to X[n1] to 1 position left;

replace ‘#’ from X[n1+1-(right_paren-left_paren)] to X[n1];

n1 ← n1 – (right_paren-left_paren);

if n1 = 1 then return X[n1] else go to 10 endif;

 [value of X[n1] i.e. Mz is returned]
end function;

Figure 2. Function Converter to convert a regular

expression R into minimal DFA.

Function Converter stores regular expression R in an array

X from 2nd to (n+1)th position, where n = length(R). X[1] and

X[n+2] are initialized as ‘(’ and ‘)’ respectively. Then

Converter constructs the DFA using the following three

phases recursively.

(i) During the first phase, Converter captures the

innermost parenthesis string, say R1. Inside R1, it

replaces all x* (x can be a symbol of Σ, or φ, or ‘ε’, or

an already existing DFA name Mz) by their equivalent

minimal DFA name Li in R1 and also stores these Li’s in

XL.

(ii) During the second phase, Converter again scans R1

from left to right in search of some s ∀ s ∈ Σ* ∪ {φ} ∪

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

19

{Li, Mz for i, z ≥ 1}*, and replaces all such s by their

equivalent minimal DFA name Nj in R1 and also stores

Nj’s in XN.

(iii) During the third phase, Converter again scans R1 for

‘+’ operators, and using ‘union operation of DFA’ it

replaces the whole string R1 by an equivalent DFA name

M1 and also stores M1 in XM.

So, after the first recursion, the entire string R1 is converted

into some M1. Then Converter replaces (R1) by M1 in array

X. It again scans X for an innermost parenthesis string, say

R2. Now, Converter deals with R2 in exactly the same way

as it converted R1 into M1, to get M2. This process continues

until Converter is unable to find an innermost parenthesis, at

which time it comes out from the recursive process, and

sends the last DFA Mz to the calling algorithm. Function

Converter makes use of some other functions depicting graph

grammar rules for various graph operations. These functions

are Shiftleft, Symbol, Union, Concat, and Min. Figure 3

shows the function Shiftleft.

Function Shiftleft (X, d1, d2)

begin

for d = d1 to d2

 begin

 X[d] ← X[d+1];

 end;

X[d2+1] ← ‘#’; return X;

end function; [cell's contents of X are shifted to one

position left from d1 to d2 and last

cell's content is made #]

Figure 3. Function Shiftleft.

Function Shiftleft shifts the contents of X to one position

left, starting from d1, and also places a ‘#’ sign to the last

cell of X. Figure 4 shows the function Symbol.

Function Symbol (a)

begin

if a = ‘ε’ then

begin

 return M ← ({q0, q1}, Σ, {δe({q0, q1}, s) ← {q1} ∀ s ∈ Σ},

q0, {q0});

 end; [returns the minimal DFA for ‘ε’]

endif;

if a = φ then

begin

return M ← ({l0}, Σ, {δφ(l0, s) ← {l0} ∀ s ∈ Σ}, l0, φ);

 end; [returns the minimal DFA for φφφφ where φφφφ contains

only one state q0]
endif;

return M ← ({p0, p1, p2}, Σ, {δa(p0, a) ← {p1}, δa(p0, b) ←

{p2}∀ b ∈ Σ - {a}, {δa({p1, p2}, c) ← {p2} ∀ c ∈ Σ}, p0,

{p1}); [returns the min. DFA for a single

alphabet symbol a]
end function;

Figure 4. Function Symbol obtaining min. DFA for ‘φφφφ’ or ‘ε’

or alphabet symbol of length 1.

Function Symbol converts ε into a minimal DFA; the

minimal DFA contains two states q0 and q1 out of which q0,

the start state, is the only final state and q1 is a non-final

state. There is no transition from q0 enters back to q0, and all

the transitions from q0 and q1, for all alphabet symbols, enter

to state q1.

Function Symbol also converts φ into a minimal DFA; the

minimal DFA contains only one state l0. l0 is the start state

and is also a non-final state, and all the transitions from l0,

for all alphabet symbols, enter back to state l0.

Function Symbol also converts an alphabet symbol ‘a’ into a

minimal DFA; the minimal DFA contains three states p0, p1,

and p2 out of which p0 is the start state and p1 is the only

final state. There is a transition that enters from p0 to p1 on

the alphabet symbol ‘a’, and all other possible transitions

from all the states enter to p2 which is a non-final state.

Figure 5 shows the function Union.

Function Union (Ml(Ql, Σ, δl, l0, Fl), Mr(Qr, Σ, δr, m0, Fr))

begin

l_length ← cardinality(Ql); r_length ← cardinality(Qr);

rename the states of Ql as lu and store corresponding δl for 0 ≤ u

≤ l_length–1;

rename the states of Qr as mv and store corresponding δr for 0 ≤

v ≤ r_length–1;

M ← (Q ← {[lumv] | 0 ≤ u ≤ l_length–1, 0 ≤ v ≤ r_length–1}, Σ,

δunion, [l0m0], F);

F ← φ;

u ← 0;

while (u ≤ l_length–1)

begin

v ← 0;

while (v ≤ r_length–1)

begin

 δunion([lumv], a) ← {[lgmh] | δl(lu, a) = lg and δr(mv, a) =

mh ∀ a ∈ Σ, and g, h ≥ 0};

 if lu ∈ Fl OR mv ∈ Fr then

 F ← F ∪ {[lumv]}

 endif;

 v ← v+1;

end;

u ← u+1;

end;

rename [l0m0] by r0 and rename other states of Q as ru for 1 ≤ u <

l_length x r_length and also rename all these states in F and

store corresponding δunion;

return M ← (Q, Σ, δunion, r0, F);

end function;

Figure 5. Function Union obtaining union of two DFA.

Function Union joins two DFA with respect to the union

operation by combining the states. Union first combines the

start states of the two DFA and then makes this combined

state as the start state of the resultant DFA. Let this

combined state be [l0m0], where l0 and m0 are the start states

of two inputs DFA respectively. The transition from state

[l0m0] for an alphabet symbol ‘a’ enters into state [lgmh]

provided that transition from state l0 for ‘a’ enters into state

lg, and transition from state m0 for ‘a’ enters into state mh in

the respective DFA. Union continues this process of

generating and connecting new states, by means of

transitions, until it has no more new states to connect and all

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

20

the possible transitions enter in to some state. Finally, all

those combined states in this resultant DFA become final,

which have any of their component states as a final state in

the inputs DFA. Figure 6 shows the function Concat.

Function Concat (Ml(Ql, Σ, δl, l0, Fl), Mr(Qr, Σ, δr, m0, Fr))

begin

l_length ← cardinality(Ql); r_length ← cardinality(Qr);

rename the states of Ql as lu and store corresponding δl for 0 ≤ u

≤ l_length–1;

rename the states of Qr as mv and store corresponding δr for 0 ≤

v ≤ r_length–1;

Σ° ← addlast(Σ, ‘#’); [adds # after all the elements of set ΣΣΣΣ

to get ΣΣΣΣ°°°°]

jc, tc, t ← 1, ktemp, jtemp, w : integer;

l, kc : string; a : char;

S : array[variable length] of strings;

if l0 ∈ Fl then

begin

kc ← l0m0; S[jc] ← l0m0;

end

else

begin

kc ← l0; S[jc] ← l0;

end

endif;

a ← first element of Σ°; [combines l0 with m0 if l0 is a

final state]

while (jc > 0)

begin

if length(kc) = 2 then [length(s) gives the length of

 string s i.e. length(l1m2m4) = 6]
begin

l ← δl(kc, a);

end

else

begin

l ← δl(substring(kc, 1, 2), a);

w ← 2;

while (w ≤ length(kc)-1)

begin

l ← append(l, δm(substring(kc, w+1, 2), a));

w ← w+2;

end; [append(a, b) = ab]

end;

δ(kc, a) ← l;

if substring(l, 1, 2) ∈ Fl then

begin

jc ← jc+1;

if m0 in l then remove m0 from l;

δ(kc, a) ← append(l, m0);

S[jc] ← δ(kc, a);

l ← δ(kc, a); [append m0 at the end of l]

end

else

begin

jc ← jc+1; δ(kc, a) ← l; S[jc] ← l;

end;

 rewrite l such that suffixes of states are in non-decreasing

order;

 rewrite l such that it does not contain duplicate occurrence

of states; [l0m1m3m2→→→→ l0m1m2m3, l0m1m1m3→→→→ l0m1m3]

S[jc] ← l; δ(kc, a) ← l;

for ktemp = 1 to jc-1

begin

if S[ktemp] = S[jc] then

begin

jc ← jc-1;

end;

end;

 [does not allow duplicate state names to enter in array S]

t ← t+1;

a ← next element of Σ°;

if a = ‘#’ then

begin

a ← first element of Σ°; ic ← ic+1;

for jtemp = ic to jc

begin

 restore the strings in array S such that length(S[jtemp])

is in non-decreasing order;

end; [if S[1]=l0m0m1 & S[2]=l0m2 they will be

restored as S[1]=l0m2 & S[2]=l0m0m1]

 end

else

begin

t ← t-1;

end;

kc ← S[t];

if t > jc then

begin

exit;

end;

end; [of while (jc >>>> 0)]

F ← φ;

for ktemp = 1 to jc

begin

Q[ktemp] ← S[ktemp];

if mi in S[ktemp] such that mi ∈ Fr then

begin

F ← F ∪ S[ktemp];

end;

end;

rename the states of Q as sc and store corresponding δcon for c ≥

0 and also rename the corresponding states in F;

return M ← (Q, Σ, δcon, s0, F);

end function;

Figure 6. Function Concat obtaining concatenation of two

DFA.

Function Concat joins two DFA, M1 followed by M2, using

the following rule. To construct M1M2, Concat first

constructs that part of M1, which does not contain any final

state of M1. For the remaining construction, whenever

Concat reaches to a final state p of M1, it clubs this final

state p with the start state q of M2 to get a combined state

[pq], and also renames state p as the combined state [pq].

Now Concat obtains the remaining states of M1M2 using the

following rule. If a transition enters into a combined state

[lg] for some alphabet symbol ‘a’, which contains any of its

component states as a final state of M1, Concat clubs this

combined state with the start state q of M2 to get a combined

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

21

state [lgq] (new or already existing), and that transition, for

the same alphabet symbol ‘a’, now enters into this combined

state [lgq]. Then Concat constructs the remaining part of

M1M2 using the same logic which was applied in function

Union for combined states. Finally, all those combined states

in M1M2 become final which have any of their components

as a final state of M2. Figure 7 shows the function Star.

Function Star (M(Q, Σ, δ, q0, F))

begin

length ← cardinality(Q);

rename the states of Q as qi and store corresponding δ for 0 ≤ i ≤

length–1;

Σ° ← addlast(Σ, ‘#’);

is ← 0, k, current, istar, tstar, jstar, ktemp, jtemp, w, clos : integer;

P, S, F', Q : array[variable length] of strings;

q, kstar : string;

a : char;

a ← first element of Σ°;

while (a ≠ ‘#’) [while loop creates states pi for

transition(s) from q0 back to q0]
begin

if δ(q0, a) = q0 then

 begin

 is ← is+1; P[is] ← pis-1; δ'(q0, a) = pis-1;

 end;

a ← next element of Σ°;

end;

∀ a ∈ Σ begin

 if δ(q0, a) = qj, such that j ≠ 0 then

begin

δ'(q0, a) ← qj;

∀ 0 ≤ k ≤ cardinality(P)-1 begin

 δ'(pk, a) ← qj;

 end;

end

 else

begin

if δ(q0, a) = q0 then

begin

∀ 0 ≤ k ≤ cardinality(P)-1 begin

 δ'(pk, a) ← pk;

 end;

end;

end;

 end; [this block creates self transition(s) at pi's

 and other transition(s) for q0 and pi's]

∀ a ∈ Σ begin

 for current = 1 to cardinality(Q)-1

 begin

 δ'(qcurrent, a) ← δ(qcurrent, a);

 end;

 end;

 [remaining transitions for states other than q0 and pi's]
append the states of P and Q, after renaming pi's into qj's where i

≥ 0 and j = cardinality(Q)+i and restore δ' for these qj's;

 [adds states to DFA if there is a transition from q0 to q0]

istar, tstar, jstar ← 1; kstar ← q0; S[jstar] ← q0;

a ← first element of Σ°;

while (jstar > 0)

begin

if length(kstar) = 2 then

 begin

 q ← δ'(kstar, a);

 end

else

begin

q ← δ'(substring(kstar, 1, 2), a);

 w ← 2;

 while (w ≤ length(kstar)-1)

begin

 q ← append(q, δ'(substring(kstar,

w+1, 2), a));

w ← w+2;

end;

end;

δ*(kstar, a) ← q;

if qi in q such that qi ∈ F then

begin

if q0 in q then

begin

remove q0 from q;

q ← append(q, q0);

end

else

begin

q ← append(q, q0);

 [append q0 at the end of q if q contains a final state of F]
end;

end;

jstar ← jstar+1; δ*(kstar, a) ← q; S[jstar] ← q;

 rewrite q such that suffixes of states are in non-

decreasing order; [q0q1q3q2 →→→→ q0q1q2q3]

 rewrite q such that it does not contain duplicate

occurrence of states; [q0q1q1q3 →→→→ q0q1q3]

δ*(kstar, a) ← q;

S[jstar] ← q;

for ktemp = 1 to jstar-1

begin

if S[ktemp] = S[jstar] then

begin

jstar ← jstar-1;

end;

end;

 [does not allow duplicate state names to enter in array S]

tstar ← tstar+1;

a ← next element of Σ°;

if a = ‘#’ then

begin

a ← first element of Σ°;

istar ← istar+1;

for jtemp = istar to jstar

begin

 restore the strings in array S such that

length(S[jtemp]) is in non-decreasing order;

 [if S[1]=q0q2 & S[2]=q1, they will be

restored as S[1]=q1 & S[2]=q0q2]
end;

end

else

begin

tstar ← tstar-1;

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

22

end;

kstar ← S[tstar];

if tstar > jstar then

begin

exit;

end;

end; [of while (jstar >>>> 0)]

F' ← {q0};

for ktemp = 1 to jstar

begin

Q[ktemp] ← S[ktemp];

if qi in S[ktemp] such that qi ∈ F then

begin

F' ← F' ∪ S[ktemp];

end;

end;

rename the states of Q as tclos and store corresponding δclosure for

clos ≥ 0 and also rename the corresponding states in F';

return M ← (Q, Σ, δclosure, t0, F');

end function;

Figure 7. Function Star obtaining kleene closure of a DFA.

Function Star finds the kleene closure of a DFA M using the

following rule. To construct M*, Star first checks if there is

any transition from start state q0, back to q0, and if any such

transition exists, then Star adds new state(s) equal to the

number of such transitions. The nature (in terms of

transitions) of these newly added states is same as that of the

start state q0. So now Star has an intermediate DFA M',

which contains no transition from start state q0, back to q0.

Now to construct M*, Star first constructs that part of M'

which does not contain any final state. For the remaining

construction of M*, whenever Star reaches to a final state p

of M', it clubs this final state with the start state q of M' to

get a combined state [pq] and also renames state p as the

combined state [pq]. Now Star obtains the remaining states

of M* using the following rule. If a transition enters into a

combined state [lg] for some alphabet symbol ‘a’, which

contains any of its components states as a final state of M',

Star clubs this combined state [lg] with the start state q of M'

to get a combined state [lgq] (new or already existing), and

that transition, for the same alphabet symbol ‘a’, now enters

into this combined state. Then Star constructs the remaining

part of M* using the same logic as was applied in function

Union for combined states. All those combined states in M*

become final which have any of their component as a final

state of M'. Finally in M*, Star converts the start state q0 also

to a final state. Figure 8 shows the function Min.

Function Min (M(Q, Σ, δ, q0, F))

begin

Σ° ← addlast(Σ, ‘#’);

kmin, temp, temp1, temp2 : integer;

S, F' : array[variable length] of strings;

find the equivalent states in set Q and store them as combined

states;

store all the states (combined as well as single) of Q in array S

such that all the component states of S[kmin] are equivalent for k

≥ 1, and set S[1] such that it contains q0 as one of its component;

a ← first element of Σ°;

while (a ≠ ‘#’)

begin

for temp = 1 to cardinality(S)

begin

 δmin(S[temp], a) = S[temp1] such that δ(qi, a) = qj such

that qi in S[temp] and qj in S[temp1] for some qi, qj;

end;

a ← next element of Σ°;

end;

F' ← φ;

for temp = 1 to cardinality(S)

begin

if qi in S[temp] such that qi ∈ F then

begin

F' ← F' ∪ S[temp];

end;

end;

rename the states of S as mtemp2 and store corresponding δmin for

0 ≤ temp2 ≤ cardinality(S)-1 and also rename the corresponding

states in F';

return M ← (S, Σ, δmin, m0, F');

end function;

Figure 8. Function Min obtaining minimal DFA equivalent

to the given DFA.

Function Min converts a DFA M into an equivalent DFA

with minimum number of states. Min first finds the

equivalent states of M, and then clubs those equivalent states

to make some combined states (Hopcroft and Ullman, [19]).

All those states which are not equivalent to any other state do

not form any combined state and hence, will be written as

single states. Therefore now Min has, possibly, some

combined states and some single states for minimal DFA

Mmin. The start state of the resultant DFA Mmin is either the

start state q0 of M (if q0 is not equivalent to any other state)

or a combined state containing q0 as one of its component.

Now, Min connects the start state of Mmin to some other state

(combined or single) by means of transitions for all alphabet

symbols, using the transitions of M. Min continues for

connecting the other states also by means of transitions for

all alphabet symbols. Finally, all those states (combined or

single) in Mmin become final if they have anything common

with the set of final states F of M.

3.1 Algorithm Implementation
A detailed demonstration on how the algorithm Construct works

is shown as successive instances of the algorithm’s

implementation using two different representations: firstly by

graphs and secondly by tables.

3.1.1 Using Graphs
To convert a randomly chosen regular expression 01* into a

minimal DFA M, Construct first places 01* in a set of

parenthesis; therefore, the input will look like (01*). Then

Construct scans for the innermost parenthesis and since, in this

case only one parenthesis exists, the same is the innermost.

Thereby, 1* is the substring of regular expression for which

Construct draws an initial DFA L1. Construct constructs L1

using the function Min(Star(Symbol(1))) and the successive

steps of this construction are as shown by Figures 9 - 11.

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

23

Construct still runs in the same parenthesis and finds a DFA N1

equivalent to 0L1 (value of K3 is stored in L1) using the

following sequential construction steps (Figure 12 - 13).

Finally, Construct minimizes the obtained DFA N1 to get

minimal DFA N1 as shown in Figure 14.

Therefore, the regular expression string looks like (N1). Then

Construct stores N1 as M1 and the string will look like (M1).

Finally, Construct replaces (M1) by M1, which is the minimal

DFA for the given regular expression.

In the next section, we’ll present the successive instances of our

algorithm’s implementation over another random regular

expression using table representation.

3.1.2 Using Tables
In this section, the algorithm Construct is applied for

converting a randomly chosen regular expression

((0+1(01*+0*)*1+1)*) into a minimal DFA. Here n = 20, so

Construct initializes an array X of size 22 (20+2). Next, it

places the regular expression into X from 2nd to 21st place

and also assigns X[1] = '(' and X[22] = ')' as shown in table

1. The successive instances of the algorithm’s

implementation are shown by the following sequence of

stages of X in table 1.

Table 1. Array X showing the successive instances of

conversion process of ((0+1(01*+0*)*1+1)*) into DFA M4.

(((0 + 1 (0 1 * + 0 *) * 1 + 1) *))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

The innermost parenthesis is from 7th to 14th positions, and

inside this parenthesis first star is at 10th position, and the

character at (10-1) i.e. 9th position is a 1. So Construct replaces

9th position by L1 (the min. DFA for 1*), shifts all the cell’s

content from 11th position onwards to 1 position left, and finally

replaces the 22nd position by #; next stage of X is

(((0 + 1 (0 L1 + 0 *) * 1 + 1) *)) #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Still in the same innermost parenthesis, which is now from

7th to 13th positions, one more * exists at position 12. So

Construct replaces 11th position by L2 (the min. DFA for 0*),

shifts all the cell’s content from 13th position onwards to 1

position left, and finally replaces the 22nd position by #; next

stage of X is

 (((0 + 1 (0 L1 + L2) * 1 + 1) *)) # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Construct still runs in the same innermost parenthesis, which

is now from 7th to 12th position. It reads the character at 8th

position and replaces it by N1 (the min. DFA for 0); next

stage of X is

K1 = ({q0, q1, q2}, {0, 1}, δδδδ, q0, {q1})

Figure 9. DFA K1 designed using Symbol(1).

1

0, 1

0, 1
0

q1 q0

q2

K2 = ({q0, [q0q1], [q0q1q2], q2}, {0, 1}, δδδδ, q0, {q0, [q0q1], [q0q1q2]})

Figure 10. DFA K2 designed using Star(Symbol(1)).

1

0, 1

0

0

1

0

1

[q0q1]
q0

q2 [q0q1q2]

K3 = ({[q0q1q2], q2}, {0, 1}, δδδδ, [q0q1q2], {[q0q1q2]})

Figure 11. DFA K3 designed using Min(Star(Symbol(1))).

[q0q1q2] q2

0, 1

0

1

N1 = ({p0, p1, p2}, {0, 1}, δδδδ, p0, {p1})

Figure 12. DFA N1 designed using Symbol(0).

0

0, 1

0, 1
1

p1 p0

p2

0

0

1

0

0, 1

1
0, 1

1

p2

p0 [q0q1q2p1

]

[q0q1q2p2]

[q2p2]

Figure 13. DFA N1 designed for N1L1.

N1 = ({p0, p2, [q2p2], [q0q1q2p1], [q0q1q2p2]}, {0, 1}, δδδδ, p0,

{[q0q1q2p1], [q0q1q2p2]})

Figure 14. DFA N1 designed for its minimal version.

N1 = ({p0,[q2p2], [q0q1q2p1p2]}, {0, 1}, δδδδ, p0, {[q0q1q2p1p2]})

0

0, 1

0 1
1

[q0q1q2p1p2]
p0

[q2p2]

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

24

ARRAY X (Contd.)

 (((0 + 1 (N1 L1 + L2) * 1 + 1) *)) # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 7th to 12th positions,

Construct finds a concatenation between 8th and 9th position. So

it replaces the 8th position by N1 (the min. DFA of concatenation

of previous value stored in N1 by L1), shifts all the cell’s content

from 10th position onwards to 1 position left, and finally replaces

the 22nd position by #; next stage of X is

 (((0 + 1 (N1 + L2) * 1 + 1) *)) # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 7th to 11th positions,

Construct reads a + followed by L2, which is at 10th position. So

it replaces 10th position by N2; next stage of X is

(((0 + 1 (N1 + N2) * 1 + 1) *)) # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

All the possible concatenation operations are performed inside

the innermost parenthesis, so now Construct checks the

innermost parenthesis for the union operation. In the same

innermost parenthesis, i.e. from 7th to 11th positions, it reads the

character at 8th position and replaces it by M1 (the DFA N1 is

stored as name M1); next stage of X is

 (((0 + 1 (M1 + N2) * 1 + 1) *)) # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 7th to 11th positions,

Construct finds a union between 8th and 10th position. So it

replaces the 8th position by M1 (the min. DFA of union of

previous value stored in M1 by N2), shifts all the cell’s content

from 11th position onwards to 2 positions left, and finally

replaces each of 21st and 22nd positions by #; next stage of X is

(((0 + 1 (M1) * 1 + 1) *)) # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 7th to 9th positions,

Construct reads a ')' at 9th position. So it removes that innermost

parenthesis, by first shifting 8th position onwards to 1 position

left, and then shifting 9th position onwards to 1 position left, and

each time replacing the 22nd position by #; next stage of X is

(((0 + 1 M1 * 1 + 1) *)) # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

So now Construct has a new innermost parenthesis from 3rd to

12th positions. Construct scans this parenthesis for a *, which

appears at 8th position. It replaces the contents of 7th position by

L1 (the min DFA for M1
*), shifts all the cell’s content from 9th

position onwards to 1 position left, and finally replaces the 22nd

position by #; next stage of X is

(((0 + 1 L1 1 + 1) *)) # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Construct still runs in the same innermost parenthesis, which is

now from 3rd to 11th position. It reads the character at 4th

position and replaces it by N1 (the min. DFA for 0); next stage

of X is

ARRAY X (Contd.)

 (((N1 + 1 L1 1 + 1) *)) # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 3rd to 11th positions,

Construct reads a + followed by a 1, which is at 6th position. So

it replaces 6th position by N2; next stage of X is

(((N1 + N2 L1 1 + 1) *)) # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 3rd to 11th positions,

Construct finds a concatenation between 6th and 7th position. So

it replaces the 6th position by N2 (the min. DFA of concatenation

of previous value stored in N2 by L1), shifts all the cell’s content

from 8th position onwards to 1 position left, and finally replaces

the 22nd position by #; next stage of X is

 (((N1 + N2 1 + 1) *)) # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 3rd to 10th positions,

Construct finds a concatenation between 6th and 7th position. So

it replaces the 6th position by N2 (the min. DFA of concatenation

of previous value stored in N2 by the DFA for symbol 1), shifts

all the cell’s content from 8th position onwards to 1 position left,

and finally replaces the 22nd position by #; next stage of X is

(((N1 + N2 + 1) *)) # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Construct still runs in the same innermost parenthesis, which is

now from 3rd to 9th position. It reads the character at 8th position

and replaces it by N3 (the min. DFA for 1); next stage of X is

(((N1 + N2 + N3) *)) # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

All the possible concatenation operations are performed inside

the innermost parenthesis, so now Construct checks the

innermost parenthesis for the union operation. In the same

innermost parenthesis, i.e. from 3rd to 9th positions, it reads the

character at 4th position and replaces it by M2 (the DFA N1 is

stored as name M2); next stage of X is

(((M2 + N2 + N3) *)) # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 3rd to 9th positions,

Construct finds a union between 4th and 6th positions. So it

replaces the 4th position by M2 (the min. DFA of union of

previous value stored in M2 by N2), shifts all the cell’s content

from 7th position onwards to 2 positions left, and finally replaces

each of the 21st and 22nd positions by #; next stage of X is

 (((M2 + N3) *)) # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 3rd to 7th positions,

Construct finds a union between 4th and 6th positions. So it

replaces the 4th position by M2 (the min. DFA of union of

previous value stored in M2 by N3), shifts all the cell’s content

from 7th position onwards to 2 positions left, and finally replaces

each of the 21st and 22nd positions by #; next stage of X is

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

25

ARRAY X (Contd.)

(((M2) *)) # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 3rd to 5th positions,

Construct reads a ')' at 5th position, so it removes that innermost

parenthesis, by first shifting 4th position onwards to 1 position

left, and then shifting 5th position onwards to 1 position left, and

replacing each time 22nd position by #; next stage of X is

 ((M2 *)) # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

So now a new innermost parenthesis exists from 2nd to 5th

positions. Construct scans this parenthesis for a *, which

appears at 4th position. It replaces the contents of 3rd position by

L1 (the min DFA for M2
*), shifts all the cell’s content from 5th

position onwards to 1 position left, and finally replaces the 22nd

position by #; next stage of X is

 ((L1)) # # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Construct still runs in the same innermost parenthesis, which is

now from 2nd to 4th position. It reads the character at 3rd position

and replaces it by N1 (the DFA L1 is stored as name N1); next

stage of X is

 ((N1)) # # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the absence of any possible concatenation operation,

Construct checks the innermost parenthesis for the union

operation. In the same innermost parenthesis, i.e. from 2nd to 4th

positions, Construct reads the character at 3rd position and

replaces it by M3 (the DFA N1 is stored as name M3); next stage

of X is

 ((M3)) # # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 2nd to 4th positions,

Construct reads a ')' at 4th position, so it removes that innermost

parenthesis, by first shifting 3rd position onwards to 1 position

left, and then shifting 4th position onwards to 1 position left, and

replacing each time 22nd position by #; next stage of X is

(M3) # # # # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Now the innermost parenthesis is from 1st to 3rd position. The

innermost string has no *, so no replacement is possible by an

Li. Next, Construct scans the innermost parenthesis for

concatenation operation. It reads the character at 2nd position

and replaces it by N1 (the DFA M3 is stored as name N1); next

stage of X is

 (N1) # # # # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the absence of any possible concatenation operation,

Construct checks the innermost parenthesis for the union

operation. In the same innermost parenthesis, i.e. from 1st to 3rd

positions, it reads the character at 2nd position and replaces it by

M4 (the DFA N1 is stored as name M4); next stage of X is

ARRAY X (Contd.)

(M4) # # # # # # # # # # # # # # # # # # #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

In the same innermost parenthesis, i.e. from 1st to 3rd positions,

Construct reads a ')' at 3rd position, so it removes that innermost

parenthesis, by first shifting 2nd position onwards to 1 position

left, and then shifting 3rd position onwards to 1 position left, and

replacing each time 22nd position by #; next stage of X is

M4 #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Now, Construct does not find any innermost parenthesis and

thus shows the final output as M4.

3.2 Evaluation of Algorithm
In this section, we obtain the time complexity of the proposed

algorithm Construct. Because of the varied nature of regular

expressions (variable positions of left parenthesis, right

parenthesis, *, +, and concatenation operator), we obtain the

average-case time complexity by applying the algorithm over a

lot of different-sized regular expressions. First of all, the

algorithm Construct is applied over a regular expression

(011)*+10*+(1101*0)* of size 20 and the time taken for this

conversion is obtained as shown below.

Here n = 20, R = (011)*+10*+(1101*0)*.

Therefore array X is ((011)*+10*+(1101*0)*).

The transitions needed to obtain innermost parenthesis=5+4=9.

The transitions needed in search of a ‘*’ operator inside the

innermost parenthesis=4.

The transitions needed in search of a concatenation operator

inside the innermost parenthesis=4.

The transitions needed in search of a ‘+’ operator inside the

innermost parenthesis=2.

Therefore array X is (M1
+10+(1101*0)*).

Continued from the same point after replaced M1, the transitions

needed to obtain the next innermost parenthesis=14+7=21.

The transitions needed in search of a ‘*’ operator inside the

innermost parenthesis=7.

The transitions needed in search of a concatenation operator

inside the innermost parenthesis=6.

The transitions needed in search of a ‘+’ operator inside the

innermost parenthesis=2.

Therefore array X is (M1
+10+M2

*).

Continued from the same point after replaced M2, the transitions

needed to obtain the next innermost parenthesis=2+10=12.

The transitions needed in search of a ‘*’ operator inside the

innermost parenthesis=10.

The transitions needed in search of a concatenation operator

inside the innermost parenthesis=7.

The transitions needed in search of a ‘+’ operator inside the

innermost parenthesis=6.

Therefore array X now contains the resultant DFA M3.

Hence, the total number of transitions required for converting R

into DFA M3 = 9+4+4+2+21+7+6+2+12+10+7+6 = 90.

Next, the algorithm Construct is applied over 150 regular

expressions of 15 different sizes n, and for this, 10 different and

random regular expressions are taken of each size n. Then, the

average time taken in the conversion for each value of n is

obtained and is shown in table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

26

Table 2. Comparison Table between n, n.logen, n.log2n and

time taken by proposed algorithm.

n “n” n.logen n.log2n n2

Average Time

taken by

proposed

algorithm

1 1 0 0 1 1

5 5 8.05 11.61 25 26.2

10 10 23.03 33.22 100 46

15 15 40.62 58.60 225 65.8

20 20 59.92 86.44 400 92.4

25 25 80.47 116.10 625 110.6

30 30 102.04 147.21 900 127.4

35 35 124.44 179.53 1225 148.4

40 40 147.56 212.88 1600 167

45 45 171.30 247.13 2025 190

50 50 195.60 282.19 2500 221

75 75 323.81 467.16 5625 318.6

100 100 460.52 664.39 10000 426.4

150 150 751.60 1084.32 22500 608.2

200 200 1059.66 1528.77 40000 804

As shown in table 2, the proposed algorithm takes a little more

time than n.log2n for 1 ≤ n ≤ 10; it coincides with the time

n.log2n for 10 ≤ n ≤ 20; and then it becomes better by taking less

time than n.log2n for n > 20. In addition, the algorithm’s time

complexity becomes better than n.logen when n ≥ 75. Hence, the

proposed algorithm takes O(n.log2n) time. Besides, for larger

values of n (n ≥ 75) the proposed algorithm becomes more time-

efficient and shows a time complexity of O(n.logen) as shown in

figure 15.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700 "n"

n.loge(n)

n.log2(n)

Average Time taken by

proposed algorithm

Figure 15. Comparison Graph between n, n.logen, n.log2n

and time taken by proposed algorithm.

4. CONCLUSION AND FUTURE WORK
From the basic results of formal language parsing, graph

grammars and automata theory we have derived a simple novel

method to construct a minimal deterministic finite automaton

from a regular expression. We have applied our method to a lot

of regular expressions and obtained the desired and exact results

all the times showing thereby the applicability of our method for

getting the minimal DFA from a regular expression. This

method removes the dependency over the necessity of lengthy

chain of conversion, that is, regular expression → NFA with ε-

transitions → NFA without ε-transitions → DFA → minimal

DFA. Therefore the main advantages of our minimal DFA

construction algorithm are its minimal intermediate memory

requirements and hence, it’s reduced time complexity. This

algorithm converts a regular expression of size n in to its

minimal equivalent DFA in O(n.log2n) time. In addition to this,

the time complexity is further shortened to O(n.logen) for n ≥ 75.

Glushkov [14] presented a method to convert a regular

expression into an ε-free NFA with O(n2) transitions while

Hagenah and Muscholl [17] performed the same conversion

with O(n.log2(n)) transitions. Later, Hromkovic et al. [20] gave

a method for the above conversion where the time complexity

was O(n.log2n) which was the least amongst all the above

methods. However, all the above methods were inadequate as

they converted a regular expression into only an ε-free NFA and

not into minimal DFA. Therefore, additional time was required

to convert ε-free NFA into minimal DFA. Hence, the overall

time complexity for the required conversion was more than

O(n.log2n). However, our method converted a regular expression

into a minimal DFA directly in O(n.log2n) time hence, showing

the supremacy of our method over the above methods.

Furthermore, Rytter [28] presented a method for converting a

regular expression of size n into an NFA in log n time using

(n/log n) parallel processors. As compared to Rytter’s method

[28], our method converted a regular expression of size n into a

DFA in O(n.log2n) steps using a high-speed processor. Thereby,

the number of processors was reduced to 1 by our method.

However, the time complexities were not comparable as the two

methods produced different outputs; Rytter’s method [28]

produced NFA while our method produced minimal DFA.

Hence, results by our algorithm are an improvement over

Rytter’s method [28].

Most researches attempted hitherto are based on the use of

intermediate NFA for the above conversion. However, the

present algorithm uses intermediate DFA in place of NFA, and

still shows a time complexity which is shorter as compared to

other available methods, thus motivating the use of DFA in

place of NFA for similar studies. In addition to this, the above

algorithm also inspires a further study for producing a more

time-efficient algorithm for the above conversion.

5. REFERENCES
[1] Antimirov, V. [1996]. “Partial derivatives of regular

expressions and finite automata constructions”. Theoretical

Computer Science. vol. 155, no. 2, pp. 291-319.

[2] Ben-David, S., D. Fisman, and S. Ruah [2008].

“Embedding finite automata within regular expressions”.

Theoretical Computer Science. vol. 404, no. 3, pp. 202-

218.

[3] Berry, G. and R. Sethi [1986]. “From regular expressions to

deterministic automata”. Theoretical Computer Science.

vol. 48, no. 1, pp. 117-126.

[4] Berstel, J., D. Perrin, and C. Reutenauer [2009]. Codes and

Automata. Encyclopedia of Mathematics and its

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.4, February 2011

27

Applications no. 129. Cambridge University Press.

Cambridge.

[5] Bruggemann-Klein A. [1993]. “Regular expressions into

finite automata”. Theoretical Computer Science. vol. 120,

no. 2, pp. 197-213.

[6] Brzozowski, J. A. and R. Cohen [1969]. “On

decompositions of regular events”. Journal of the ACM (J.

ACM). vol. 16, no. 1, pp. 132-144.

[7] Carrasco, R. C., J. Daciuk, and M. L. Forcada [2009].

“Incremental construction of minimal tree automata”.

Algorithmica. vol. 55, no. 1, pp. 95-110.

[8] Carrasco, R. C. and M. L. Forcada [2001]. “Incremental

construction and maintenance of minimal finite-state

automata”. Computational Linguistics. vol. 28, no. 2, pp.

207-216.

[9] Chang, C. H. and R. Paige [1992]. “From regular

expressions to DFAs using compressed NFAs”. In

Proceedings of the 3rd Annual Symposium on

Combinatorial Pattern Matching. Lecture notes in

Computer Science no. 644. Springer-Verlag, London. pp.

90-110.

[10] Cohen, D. I. A. [1991]. Introduction to Computer Theory.

2nd edn. John Wiley & Sons, Inc. New York.

[11] Daciuk, J., S. Mihov, B. W. Watson, and R. E. Watson

[2000]. “Incremental construction of minimal acyclic

finite-state automata”. Computational Linguistics. vol. 26,

no. 1, pp. 3-16.

[12] Geffert, V. [2003]. “Translation of binary regular

expressions into nondeterministic ε-free automata with

o(nlogn) transitions”. Journal of Computer and System

Sciences. vol. 66, no. 3, pp. 451-472.

[13] Ginzburg, A. [1968]. Algebraic Theory of Automata.

Academic Press. New York.

[14] Glushkov, V. M. [1961]. “The abstract theory of

automata”. Uspekhi Mathematicheskikh Nauk (UMN). vol.

16, no. 5(101), pp. 3-62.

[15] Greenlaw, R. and H. Hoover [1998]. Fundamentals of the

Theory of Computation: Principles and Practice. Morgan

Kaufmann Publishers, Inc. Elsevier, San Francisco, USA.

[16] Gurari, E. [1989]. An Introduction to the Theory of

Computation. Computer Science Press. Ohio State

University, Columbus, Ohio.

[17] Hagenah, C. and A. Muscholl [1998]. “Computing epsilon-

free NFA from regular expressions in o(n.log²(n)) time”. In

Proceedings of the 23rd International Symposium on

Mathematical Foundations of Computer Science. Lecture

Notes in Computer Science no. 1450. Springer-Verlag,

London. pp. 277-285.

[18] Hein, J. L. [1996]. Theory of Computation. Jones & Bartlett

Publishers, Inc. Sudbury, MA.

[19] Hopcroft, J. E. and J. Ullman [1979]. Introduction to

Automata Theory, Languages and Computation. Addison-

Wesley Longman Publishing Company, Inc. Boston, MA,

USA.

[20] Hromkovic J., S. Seibert, and T. Wilke [2001].

”Translating regular expressions into small ε-free

nondeterministic finite automata”. Journal of Computer

and System Sciences. vol. 62, no. 4, pp. 565-588.

[21] Ilie L. and S. Yu [2003]. “Follow automata”. Information

and Computation. vol. 186, no. 1, pp. 140-162.

[22] Johnson, W. L., J. H. Porter, S. I. Ackley, and D. T. Ross

[1968]. “Automatic generation of efficient lexical

processors using finite state techniques”. Communications

of the ACM. vol. 11, no. 12, pp. 805-813.

[23] Leiss, E. [1980]. “Constructing a finite automaton for a

given regular expression”. ACM Special Interest Group on

Algorithms and Computation Theory (ACM SIGACT

News). vol. 12, no. 3, pp. 81-87.

[24] Lewis, H. R. and C. H. Papadimitriou [2001]. Elements of

the Theory of Computation. 2nd edn. Pearson Education

Asia. Delhi.

[25] Martin, J. [2004]. Introduction to Languages and the

Theory of Computation. 3rd edn. Tata McGraw Hill. New

Delhi.

[26] Mayr, Ernst W., G. Schmidt, and G. Tinhofer (eds.)

[1995]. Graph-Theoretic Concepts in Computer Science.

Lecture notes in Computer Science no. 903. Springer-

Verlag, Berlin/Heidelberg, New York.

[27] Möhring, R. H. (ed.) [1991]. Graph-Theoretic Concepts in

Computer Science, 16th International Workshop, WG '90,

Berlin, Germany, June 20-22, 1990, Proceedings. Lecture

Notes in Computer Science no. 484. Springer. London, UK.

[28] Rytter, W. [1989]. “A note on optimal parallel

transformations of regular expressions to nondeterministic

finite automata”. Information Processing Letters. vol. 31,

no. 2, pp. 103-109.

[29] Singh, A. [2009]. Elements of Computation Theory.

Springer-Verlag. London.

[30] Sipser, M. [2006]. Introduction to the Theory of

Computation. 2nd edn. PWS Publishing.

[31] Stefano, C. R. [2009]. Formal Languages and Compilation.

Springer-Verlag. London.

[32] Taylor, R. G. [1998]. Models of Computation and Formal

Languages. Oxford University Press. New York.

[33] Thompson, K. [1968]. “Regular expression search

algorithms”. Communications of the ACM. vol. 11, no. 6,

pp. 419-422.

[34] Watson, B. [1995]. “Taxonomies and toolkits of regular

language algorithms”. Ph.D. Thesis. Eindhoven University

of Technology, CIP-DATA Koninklijke Bibliotheek, Den

Haag.

[35] Wood, D. [1987]. Theory of Computation: A Primer.

Addison-Wesley Longman Publishing Company, Inc.

Boston, MA, USA.

[36] Yamamoto, H. [2005]. “New finite automata corresponding

to semiextended regular expressions”. Systems and

Computers in Japan. vol. 36, no. 10, pp. 54-61.

[37] Ziadi, D. and J. M. Champarnaud [1999]. “An optimal

parallel algorithm to convert a regular expression into its

Glushkov automaton”. Laboratoire d'Informatique de

Rouen. vol. 215, no. 1-2, pp. 69-87.

