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ABSTRACT 

This paper describes a method for constructing a minimal 

deterministic finite automaton (DFA) from a regular expression. 

It is based on a set of graph grammar rules for combining many 

graphs (DFA) to obtain another desired graph (DFA). The graph 

grammar rules are presented in the form of a parsing algorithm 

that converts a regular expression R into a minimal deterministic 

finite automaton M such that the language accepted by DFA M 

is same as the language described by regular expression R. 

The proposed algorithm removes the dependency over the 

necessity of lengthy chain of conversion, that is, regular 

expression → NFA with ε-transitions → NFA without ε-

transitions → DFA → minimal DFA. Therefore the main 

advantage of our minimal DFA construction algorithm is its 

minimal intermediate memory requirements and hence, the 

reduced time complexity. The proposed algorithm converts a 

regular expression of size n in to its minimal equivalent DFA in 

O(n.log2n) time. In addition to the above, the time complexity is 

further shortened to O(n.logen) for n ≥ 75.   
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Algorithms, Complexity of Algorithm, Regular Expression, 

Deterministic Finite Automata (DFA), Minimal DFA. 
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1. INTRODUCTION AND BACKGROUND 
Regular expressions and finite automata are two dissimilar 

representations for regular languages: regular expressions on 

one hand generate regular languages while on the other hand 

finite automata accept regular languages. It is well known that 

each regular expression can be transformed into a 

nondeterministic finite automaton (NFA) with or without ε-

transitions, and finally this NFA can be converted into a DFA. 

In the literature related to the conversion problem, it has been 

found that there exist many different algorithmic approaches for 

converting a regular expression into some variant of a finite 

automaton; Watson [34] enumerated various algorithmic 

approaches for the conversion problem. Algorithmic approaches 

to convert a regular expression into some variant of a finite 

automaton include: 

• The algorithms to convert regular expression into NFA with 

or without ε-transitions (see, e.g. [1], [5], [6], [12], [13], 

[16], [18], [20], [21], [23], [28], [33], [36] and [37]) and 

• The algorithms to convert regular expression into DFA 

using intermediate NFAs (as in various studies like [2], [3], 

[4], [9], [10], [15], [19], [24], [25], [29], [30], [31], [32] and 

[35]).  

Daciuk et al. [11] discussed a parsing algorithm to convert a set 

of strings into a minimal, deterministic, acyclic finite-state 

automaton. Carrasco and Forcada [8] presented another 

algorithm to modify any minimal finite-state automaton so that a 

string is added to or removed from the language accepted by it. 

Recently, Carrasco et al. [7] presented another algorithm that 

allowed the incremental addition or removal of unranked order 

trees to a minimal frontier-to-root deterministic finite-state tree 

automaton. All the above studies had limitations as they 

represented only a finite set of strings. 

The traditional methods, discussed above, to convert a regular 

expression R into a minimal DFA M consist of four phases: (i) 

to convert R into a non-deterministic finite automaton (NFA) 

with ε-transitions, (ii) to convert the above NFA into an NFA 

without ε-transitions, (iii) to convert this NFA (without ε-

transitions) into a DFA, and finally (iv) to minimize this DFA. 

This paper presents a parsing algorithm Construct which 

converts a regular expression (finite as well as infinite set of 

strings) into a minimal DFA using the following two phases, 

recursively. 

(i) Constructing a DFA (for ε / φ / a single alphabet symbol / 

kleene closure of a DFA / union of two DFA / concatenation 

of two DFA) by applying the rules for automaton 

construction and joining operations of DFA (Cohen [10]), 

and 

(ii) Minimizing the obtained DFA (Hopcroft and Ullman [19]). 

In the proposed algorithm, parsing is performed by (i) obtaining 

the information from regular expression in a precise manner and 

then (ii) converting this information into DFA using the graph 

grammar rules defined for this conversion. Following Johnson et 

al. [22], Möhring [27] and Mayr et al. [26], we have prescribed 

a set of graph grammar rules for minimization, union, 

concatenation, and kleene closure operations over DFA and our 

parsing algorithm works as a genuine folder containing all these 

rules. Throughout the conversion process, graph operations 

needed to join DFA take place using an appropriate graph 

grammar rule from this folder. 

The contents of this paper are arranged as follows. 

Section 2 describes the proposed implementation procedure, 

followed by the equivalent algorithm to convert a regular 

expression into a minimal DFA in the next section. This section 

also depicts the instances of our algorithm’s implementation 

initially by graphs and followed by tables. Finally, this section 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.4, February 2011 

17 

ends with an evaluation of the algorithm. Last Section 4 deals 

with the conclusions of the present research paper. 

2. IMPLEMENTATION PROCEDURE 
Following Brzozowski and Cohen [6] and Antimirov [1], the 

proposed algorithm Construct first constructs a minimal 

DFA (graph) for the deepest positioned element of the given 

regular expression. In the next step, Construct combines this 

DFA with the DFA based on the surrounding part of deepest 

element’s position, to obtain another minimal DFA. The 

process of combining DFA is continued till the entire regular 

expression is converted into the resultant DFA. The 

implementation procedure is described in detail as follows. 

Construct first stores the given regular expression R as (R) 

in an array X. Therefore the start and end markers of R are 

‘(’ and ‘)’ respectively. Then, following Berry and Sethi [3], 

Construct obtains the address of innermost parenthesis string 

say R1 of R. Construct then scans R1 for some x* ∀ x ∈ Σ ∪ 

{ε, φ, Mz such that z ≥ 1 (Mz will not exist for R1 and can 

exist only for R2 onwards)}, and if any such x* exists, 

Construct constructs the minimal DFA for those entire x* 

(Construct first constructs an intermediate DFA say I for x, 

and then for x* 
it obtains the kleene closure DFA of I, and 

finally it stores the so obtained DFA in some Li), and 

replaces all x* by their equivalent minimal DFA name Li for i 

≥ 1 in R1. Construct also stores all those Li’s in XL. 

Thereby, in the string R1 all x* are replaced by some Li for i 

≥ 1. 

Construct again scans R1 for some string s ∀ s ∈ Σ* ∪ {φ} ∪ 

{Li, Mz for i, z ≥ 1}*, and if any such s exists, Construct 

constructs the minimal DFA for all those s recursively 

(Construct first constructs a DFA Nj for the 1st character of 

string s; then if s contains another character, Construct 

concatenates Nj by the DFA of that character and stores the 

resultant minimal DFA back in Nj, and this process continues 

till the whole s is consumed) and replaces all s by their 

equivalent minimal DFA name Nj for j ≥ 1. Construct also 

stores all those Nj’s in XN. Hence, in the string R1, all s are 

replaced by some Nj for j ≥ 1. 

R1 is again scanned for a '+' operator. If a '+' does not exist, 

the only Nj value in R1 is stored as M1. However in the 

presence of a '+' operator, Construct assumes that it is 

between x and y ∀ x, y ∈ {Nj for j ≥ 1}. Construct stores the 

left side operand of '+' as M1 and joins this M1 to the right 

side operand of '+' using union operation, and stores the 

result (minimal DFA) back in M1; then Construct again 

searches for the next '+' operator in R1, and if found 

Construct again joins M1 to the right side operand of '+' 

using union operation, and stores the result (minimal DFA) 

back in M1; Construct continues till the entire string R1 is 

replaced by M1. Construct also stores M1 in XM. 

Construct then replaces the entire (R1) (“(”, followed by 

string R1, followed by “)”) by M1. As the innermost left and 

right parentheses are removed, Construct has, possibly, a 

new innermost parenthesis (the next higher parenthesis after 

the parenthesis for R1). Let the innermost parenthesis string 

be R2. Construct performs the same operation with R2 as it 

had done with R1 to get the next string R3. Continuing like 

this, Construct will replace the entire regular expression R 

by an equivalent minimal DFA name Mz for z ≥ 1. Finally, 

the last Mz is printed and stored as the output M. 

In the implementation procedure, inside the regular 

expression Construct performed all the replacement 

operations by replacing strings Li, Nj, or Mz (for i, j, z ≥ 1) 

into the regular expression (as in Ben-David et al. [2]). The 

exact values of these Li, Nj, and Mz were stored on XL, XN, 

and XM respectively. Whenever Construct replaced anyone 

of Li, Nj, or Mz into the regular expression, the 

corresponding value of Li, Nj, or Mz was either appended to 

the sets XL, XN, or XM respectively (if Li, Nj, or Mz was 

new) or was updated in XL, XN, or XM respectively (if Li, 

Nj, or Mz was already existing). Similarly if Construct read 

anyone of Li, Nj, or Mz inside a regular expression, the 

corresponding value of Li, Nj, or Mz was extracted from XL, 

XN, or XM respectively, some join operation (union, 

concatenation, or kleene closure) was performed over them, 

and the resultant value was stored back in XL, XN, or XM 

respectively along with storing the same string name into the 

regular expression (For example if L3 was DFA for a*, then 

‘L3’ was over-written in place of a* in regular expression 

and the exact value of L3 was also stored in XL. Similarly, if 

we wanted to concatenate N3 followed by DFA for symbol 1, 

we first extracted the current value of N3 from XN, 

concatenated it with the DFA for symbol 1, stored the 

resultant DFA back as N3, stored the value of N3 in XN at the 

previous place of N3, and rewrote 'N31' as ‘N3’ inside the 

regular expression.). 

Following Rytter [28], Construct used a high-speed 

processor that performed all the graph operations in almost 

insignificant time. Whenever any of the graph grammar 

function (Symbol, Union, Concat, Star, and Min) was called 

inside the algorithm, the processor was activated and after 

activation it performed the following sequence of operations 

in a constant and insignificant time: 

(i) It obtained the information from array X and used the 

function that activated it. 

(ii) It executed the associated function (the function that 

activated the processor) with the input, as received from 

X. If this input was an already stored string name (Li, Nj, 

or Mz), then the processor extracted the value of that 

string name from XL, XN, or XM and used that extracted 

value as input, otherwise the processor used the same 

read input. 

(iii) It stored the output (Li, Nj, or Mz) of the associated 

function by overwriting that output name (Li, Nj, or Mz) 

in array X at the place from where the input was taken. It 

also stored the full description of Li, Nj, or Mz in XL, 

XN, or XM respectively. 

3. ALGORITHM 
Algorithm Construct takes a regular expression R and a finite 

set of alphabet symbols Σ as input and prints the minimal 

DFA M as output such that L(M) = L(R). Figure 1 shows the 

algorithm Construct. 

Algorithm Construct 

Input: a regular expression R and a set Σ of alphabet 

symbols. 

Output: a minimal DFA M such that L (M) = L (R). 
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type automata = (Q, Σ, δ, Q[1], F); 

M : automata; 

begin 

 M ← Converter (R, Σ);    

      [M stores the output sent by function Converter] 
 print M;         [output M is printed] 

end       

Figure 1. Algorithm Construct to print the minimal DFA 

equivalent to a regular expression. 

Algorithm Construct calls the function Converter, which 

maintains all the replace operations in array X (array X 

contains R) for converting R into a minimal DFA M. Figure 

2 shows the function Converter. 

Function Converter (R, Σ) 

begin 

if R = φ OR R = ‘ε’ OR length(R) = 1 then 

 begin 

return Symbol(R);  [function Symbol returns min. DFA 

for φφφφ / ε / reg. exp. of length 1] 
 end;  

endif; 

int n, n1, i, j, z, inner, outer, left_paren, right_paren, 

position_star, inter, count; 

n ← length(R);  

X : array [1..n+2] of Σ ∪ {(, ), #, Li, Nj, Mz for i, j, z ≥ 1}; 

z ← 1; X[1] ← ‘(’;  

Store R in array X from 2nd to (n+1)th position; X[n+2] ← ‘)’; 

n1 ← n+2; 

10 i, j ← 1;  

find the innermost bracket in X; 

inner ← in such that X[in] contains the left parenthesis of 

innermost bracket; 

outer ← out such that X[out] contains the right parenthesis of 

innermost bracket; 

left_paren ← inner; right_paren ← outer; 

scan X from X[inner] to X[outer] for all x* where x ∈ Σ ∪ {ε, φ, 

Mz for z ≥ 1} 

if x* found then for every x* such that X[position_star] = x 

if X[position_star] = Mz then Li ← Min(Star(X[position_star])) 

else Li ← Min(Star(Symbol(X[position_star]))) 

 endif; 

  X[position_star] ← Li; [X[position_star] stores the 

automata name for x*] 
store Li in XL;             [automata Li for x* is stored in XL] 

i ← i +1;  

shift the values of X[position_star+2] to X[n1] to 1 position left 

in X; 

X[n1] ← ‘#’; outer ← outer - 1; 

endif; 

if no x* found then exit endif; 

endscan; 

inter ← inner; 

15 scan X from X[inter] to X[outer] 

count ← inter + 1; 

if X[count] ∈ Σ ∪ ε ∪ φ then Nj ← Symbol(X[count]) else Nj ← 

X[count] 

endif;  

X[count] ← Nj;      [X[count] stores the automata name Nj] 

store Nj in XN;         [automata Nj is stored in XN] 

count ← count+1; 

20 if X[count] ∈ Σ ∪ ε ∪ φ then  

Nj ← Min(Concat(Nj, Symbol(X[count]))); 

X[count-1] ← Nj; store Nj in XN; 

shift the values of X[count+1] to X[n1] to 1 position left; 

 X[n1] ← ‘#’;  outer ← outer-1;  go to 20; 

endif; 

if X[count] ∈ {Li, Mz for i, z ≥ 1} then  

Nj ← Min(Concat(Nj, X[count])); 

X[count-1] ← Nj; store Nj in XN; 

shift the values of X[count+1] to X[n1] to 1 position left; 

X[n1] ← ‘#’; outer ← outer-1; go to 20; 

endif; 

if X[count] = ‘+’ then  

j ← j+1; inter ← count; go to 15;  

endif; 

if X[count] = ‘)’ then  

j ← j+1;  

endif; 

endscan; 

scan X from X[inner] to X[outer] 

Mz ← X[inner+1]; [Some Nj at X[inner+1] is stored in 

name Mz] 
X[inner+1] ← Mz; [X[inner+1] stores the automata name Mz] 

store Mz in XM;                    [automata Mz is stored in XM] 

30 if X[inner+2] = ‘+’ then  

 Mz ← Min(Union(Mz, X[inner+3])); 

 X[inner+1] ← Mz; 

 store Mz in XM; 

 shift the values of X[inner+4] to X[n1] to 2 positions left;  

 X[n1-1], X[n1] ← ‘#’; outer ← outer-2;  

 go to 30; 

 endif; 

 if X[inner+2] = ‘)’ then endif; 

endscan; 

z ← z+1; 

shift the values of X[inner+1] to X[n1] to 1 position left; 

shift the values of X[outer] to X[n1] to 1 position left; 

replace ‘#’ from X[n1+1-(right_paren-left_paren)] to X[n1]; 

n1 ← n1 – (right_paren-left_paren); 

if n1 = 1 then return X[n1] else go to 10 endif;   

                [value of X[n1] i.e. Mz is returned] 
end function; 

Figure 2. Function Converter to convert a regular 

expression R into minimal DFA. 

Function Converter stores regular expression R in an array 

X from 2nd to (n+1)th position, where n = length(R). X[1] and 

X[n+2] are initialized as ‘(’ and ‘)’ respectively. Then 

Converter constructs the DFA using the following three 

phases recursively. 

(i) During the first phase, Converter captures the 

innermost parenthesis string, say R1. Inside R1, it 

replaces all x* (x can be a symbol of Σ, or φ, or ‘ε’, or 

an already existing DFA name Mz) by their equivalent 

minimal DFA name Li in R1 and also stores these Li’s in 

XL. 

(ii) During the second phase, Converter again scans R1 

from left to right in search of some s ∀ s ∈ Σ* ∪ {φ} ∪ 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.4, February 2011 

19 

{Li, Mz for i, z ≥ 1}*, and replaces all such s by their 

equivalent minimal DFA name Nj in R1 and also stores 

Nj’s in XN. 

(iii) During the third phase, Converter again scans R1 for 

‘+’ operators, and using ‘union operation of DFA’ it 

replaces the whole string R1 by an equivalent DFA name 

M1 and also stores M1 in XM. 

So, after the first recursion, the entire string R1 is converted 

into some M1. Then Converter replaces (R1) by M1 in array 

X. It again scans X for an innermost parenthesis string, say 

R2. Now, Converter deals with R2 in exactly the same way 

as it converted R1 into M1, to get M2. This process continues 

until Converter is unable to find an innermost parenthesis, at 

which time it comes out from the recursive process, and 

sends the last DFA Mz to the calling algorithm. Function 

Converter makes use of some other functions depicting graph 

grammar rules for various graph operations. These functions 

are Shiftleft, Symbol, Union, Concat, and Min. Figure 3 

shows the function Shiftleft. 

Function Shiftleft (X, d1, d2) 

begin 

for d = d1 to d2 

 begin 

  X[d] ← X[d+1]; 

 end;   

X[d2+1] ← ‘#’; return X; 

end function; [cell's contents of X are shifted to one 

position left from d1 to d2 and last 

cell's content is made #] 

Figure 3. Function Shiftleft. 

Function Shiftleft shifts the contents of X to one position 

left, starting from d1, and also places a ‘#’ sign to the last 

cell of X. Figure 4 shows the function Symbol. 

Function Symbol (a) 

begin 

if a = ‘ε’ then 

begin 

 return M ← ({q0, q1}, Σ, {δe({q0, q1}, s) ← {q1} ∀ s ∈ Σ}, 

q0, {q0}); 

 end;                [returns the minimal DFA for ‘ε’] 

endif; 

if a = φ then     

begin 

return M ← ({l0}, Σ, {δφ(l0, s) ← {l0} ∀ s ∈ Σ}, l0, φ); 

 end; [returns the minimal DFA for φφφφ where φφφφ contains 

only one state q0] 
endif; 

return M ← ({p0, p1, p2}, Σ, {δa(p0, a) ← {p1}, δa(p0, b) ← 

{p2}∀ b ∈ Σ - {a}, {δa({p1, p2}, c) ← {p2} ∀ c ∈ Σ}, p0, 

{p1});   [returns the min. DFA for a single 

alphabet symbol a] 
end function;  

Figure 4. Function Symbol obtaining min. DFA for ‘φφφφ’ or ‘ε’ 

or alphabet symbol of length 1. 

Function Symbol converts ε into a minimal DFA; the 

minimal DFA contains two states q0 and q1 out of which q0, 

the start state, is the only final state and q1 is a non-final 

state. There is no transition from q0 enters back to q0, and all 

the transitions from q0 and q1, for all alphabet symbols, enter 

to state q1. 

Function Symbol also converts φ into a minimal DFA; the 

minimal DFA contains only one state l0. l0 is the start state 

and is also a non-final state, and all the transitions from l0, 

for all alphabet symbols, enter back to state l0. 

Function Symbol also converts an alphabet symbol ‘a’ into a 

minimal DFA; the minimal DFA contains three states p0, p1, 

and p2 out of which p0 is the start state and p1 is the only 

final state. There is a transition that enters from p0 to p1 on 

the alphabet symbol ‘a’, and all other possible transitions 

from all the states enter to p2 which is a non-final state. 

Figure 5 shows the function Union. 

Function Union (Ml(Ql, Σ, δl, l0, Fl), Mr(Qr, Σ, δr, m0, Fr)) 

begin 

l_length ← cardinality(Ql); r_length ← cardinality(Qr); 

rename the states of Ql as lu and store corresponding δl for 0 ≤ u 

≤ l_length–1; 

rename the states of Qr as mv and store corresponding δr for 0 ≤ 

v ≤ r_length–1; 

M ← (Q ← {[lumv] | 0 ≤ u ≤ l_length–1, 0 ≤ v ≤ r_length–1}, Σ, 

δunion, [l0m0], F); 

F ← φ;  

u ← 0; 

while (u ≤ l_length–1) 

begin 

v ← 0; 

while (v ≤ r_length–1) 

begin 

 δunion([lumv], a) ← {[lgmh] | δl(lu, a) = lg and δr(mv, a) = 

mh ∀ a ∈ Σ, and g, h ≥ 0}; 

 if lu ∈ Fl OR mv ∈ Fr then  

 F ← F ∪ {[lumv]} 

 endif; 

 v ← v+1; 

end; 

u ← u+1; 

end; 

rename [l0m0] by r0 and rename other states of Q as ru for 1 ≤ u < 

l_length x r_length and also rename all these states in F and 

store corresponding δunion; 

return M ← (Q, Σ, δunion, r0, F); 

end function; 

Figure 5. Function Union obtaining union of two DFA. 

Function Union joins two DFA with respect to the union 

operation by combining the states. Union first combines the 

start states of the two DFA and then makes this combined 

state as the start state of the resultant DFA. Let this 

combined state be [l0m0], where l0 and m0 are the start states 

of two inputs DFA respectively. The transition from state 

[l0m0] for an alphabet symbol ‘a’ enters into state [lgmh] 

provided that transition from state l0 for ‘a’ enters into state 

lg, and transition from state m0 for ‘a’ enters into state mh in 

the respective DFA. Union continues this process of 

generating and connecting new states, by means of 

transitions, until it has no more new states to connect and all 
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the possible transitions enter in to some state. Finally, all 

those combined states in this resultant DFA become final, 

which have any of their component states as a final state in 

the inputs DFA. Figure 6 shows the function Concat. 

Function Concat (Ml(Ql, Σ, δl, l0, Fl), Mr(Qr, Σ, δr, m0, Fr)) 

begin 

l_length ← cardinality(Ql); r_length ← cardinality(Qr); 

rename the states of Ql as lu and store corresponding δl for 0 ≤ u 

≤ l_length–1; 

rename the states of Qr as mv and store corresponding δr for 0 ≤ 

v ≤ r_length–1; 

Σ° ← addlast(Σ, ‘#’); [adds # after all the elements of set ΣΣΣΣ 

to get ΣΣΣΣ°°°°] 

jc, tc, t ← 1, ktemp, jtemp, w : integer;  

l, kc : string; a : char; 

S : array[variable length] of strings; 

if l0 ∈ Fl then 

begin  

kc ← l0m0; S[jc] ← l0m0; 

end  

else 

begin  

kc ← l0; S[jc] ← l0; 

end 

endif; 

a ← first element of Σ°; [combines l0 with m0 if l0 is a 

final state] 

while (jc > 0) 

begin  

if length(kc) = 2 then  [length(s) gives the length of  

   string s i.e. length(l1m2m4) = 6] 
begin 

l ← δl(kc, a); 

end  

else 

begin 

l ← δl(substring(kc, 1, 2), a);  

w ← 2; 

while (w ≤ length(kc)-1) 

begin 

l ← append(l, δm(substring(kc, w+1, 2), a)); 

w ← w+2; 

end;          [append(a, b) = ab] 

end; 

δ(kc, a) ← l; 

if substring(l, 1, 2) ∈ Fl then 

begin 

jc ← jc+1; 

if m0 in l then remove m0 from l; 

δ(kc, a) ← append(l, m0);  

S[jc] ← δ(kc, a);  

l ← δ(kc, a);           [append m0 at the end of l] 

end  

else 

begin 

jc ← jc+1; δ(kc, a) ← l; S[jc] ← l; 

end; 

 rewrite l such that suffixes of states are in non-decreasing 

order;  

 rewrite l such that it does not contain duplicate occurrence 

of states;       [l0m1m3m2→→→→ l0m1m2m3, l0m1m1m3→→→→ l0m1m3] 

S[jc] ← l; δ(kc, a) ← l; 

for ktemp = 1 to jc-1 

begin 

if S[ktemp] = S[jc] then 

begin  

jc ← jc-1; 

end; 

end;  

       [does not allow duplicate state names to enter in array S] 

t ← t+1;  

a ← next element of Σ°; 

if a = ‘#’ then 

begin 

a ← first element of Σ°; ic ← ic+1; 

for jtemp = ic to jc 

begin   

 restore the strings in array S such that length(S[jtemp]) 

is in non-decreasing order;  

end; [if S[1]=l0m0m1 & S[2]=l0m2 they will be 

restored as S[1]=l0m2 & S[2]=l0m0m1] 

  end  

else 

begin 

t ← t-1; 

end; 

kc ← S[t]; 

if t > jc then 

begin 

exit; 

end; 

end;                [of while (jc >>>> 0)] 

F ← φ; 

for ktemp = 1 to jc 

begin 

Q[ktemp] ← S[ktemp]; 

if mi in S[ktemp] such that mi ∈ Fr then 

begin 

F ← F ∪ S[ktemp]; 

end; 

end; 

rename the states of Q as sc and store corresponding δcon for c ≥ 

0 and also rename the corresponding states in F; 

return M ← (Q, Σ, δcon, s0, F); 

end function;  

Figure 6. Function Concat obtaining concatenation of two 

DFA. 

Function Concat joins two DFA, M1 followed by M2, using 

the following rule. To construct M1M2, Concat first 

constructs that part of M1, which does not contain any final 

state of M1. For the remaining construction, whenever 

Concat reaches to a final state p of M1, it clubs this final 

state p with the start state q of M2 to get a combined state 

[pq], and also renames state p as the combined state [pq]. 

Now Concat obtains the remaining states of M1M2 using the 

following rule. If a transition enters into a combined state 

[lg] for some alphabet symbol ‘a’, which contains any of its 

component states as a final state of M1, Concat clubs this 

combined state with the start state q of M2 to get a combined 
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state [lgq] (new or already existing), and that transition, for 

the same alphabet symbol ‘a’, now enters into this combined 

state [lgq]. Then Concat constructs the remaining part of 

M1M2 using the same logic which was applied in function 

Union for combined states. Finally, all those combined states 

in M1M2 become final which have any of their components 

as a final state of M2. Figure 7 shows the function Star. 

Function Star (M(Q, Σ, δ, q0, F)) 

begin 

length ← cardinality(Q); 

rename the states of Q as qi and store corresponding δ for 0 ≤ i ≤ 

length–1; 

Σ° ← addlast(Σ, ‘#’); 

is ← 0, k, current, istar, tstar, jstar, ktemp, jtemp, w, clos : integer; 

P, S, F', Q : array[variable length] of strings; 

q, kstar : string; 

a : char; 

a ← first element of Σ°; 

while (a ≠ ‘#’)    [while loop creates states pi for 

transition(s) from q0 back to q0] 
begin 

if δ(q0, a) = q0 then 

 begin 

 is ← is+1; P[is] ← pis-1; δ'(q0, a) = pis-1; 

 end; 

a ← next element of Σ°; 

end;      

∀ a ∈ Σ begin 

 if δ(q0, a) = qj, such that j ≠ 0 then 

begin 

δ'(q0, a) ← qj; 

∀ 0 ≤ k ≤ cardinality(P)-1 begin 

   δ'(pk, a) ← qj; 

   end; 

end  

 else 

begin 

if δ(q0, a) = q0 then 

begin 

∀ 0 ≤ k ≤ cardinality(P)-1 begin 

     δ'(pk, a) ← pk; 

     end; 

end; 

end; 

 end; [this block creates self transition(s) at pi's 

  and other transition(s) for q0 and pi's] 

∀ a ∈ Σ begin 

 for current = 1 to cardinality(Q)-1  

  begin 

  δ'(qcurrent, a) ← δ(qcurrent, a); 

  end; 

 end; 

          [remaining transitions for states other than q0 and pi's] 
append the states of P and Q, after renaming pi's into qj's where i 

≥ 0 and j = cardinality(Q)+i and restore δ' for these qj's; 

        [adds states to DFA if there is a transition from q0 to q0] 

istar, tstar, jstar ← 1; kstar ← q0; S[jstar] ← q0; 

a ← first element of Σ°;     

while (jstar > 0) 

begin 

if length(kstar) = 2 then 

  begin 

   q ← δ'(kstar, a); 

   end  

else 

begin 

q ← δ'(substring(kstar, 1, 2), a);  

   w ← 2; 

   while (w ≤ length(kstar)-1) 

begin 

 q ← append(q, δ'(substring(kstar, 

w+1, 2), a)); 

w ← w+2; 

end;  

end; 

δ*(kstar, a) ← q; 

if qi in q such that qi ∈ F then 

begin 

if q0 in q then 

begin 

remove q0 from q;  

q ← append(q, q0);  

end  

else 

begin 

q ← append(q, q0);   

        [append q0 at the end of q if q contains a final state of F] 
end; 

end;   

jstar ← jstar+1; δ*(kstar, a) ← q; S[jstar] ← q; 

 rewrite q such that suffixes of states are in non-

decreasing order;     [q0q1q3q2 →→→→ q0q1q2q3] 

 rewrite q such that it does not contain duplicate 

occurrence of states;        [q0q1q1q3 →→→→ q0q1q3] 

δ*(kstar, a) ← q;  

S[jstar] ← q; 

for ktemp = 1 to jstar-1 

begin 

if S[ktemp] = S[jstar] then 

begin 

jstar ← jstar-1; 

end; 

end;    

       [does not allow duplicate state names to enter in array S] 

tstar ← tstar+1; 

a ← next element of Σ°; 

if a = ‘#’ then 

begin 

a ← first element of Σ°; 

istar ← istar+1; 

for jtemp = istar to jstar 

begin         

 restore the strings in array S such that 

length(S[jtemp]) is in non-decreasing order;  

 [if S[1]=q0q2 & S[2]=q1, they will be 

restored as S[1]=q1 & S[2]=q0q2] 
end; 

end  

else 

begin 

tstar ← tstar-1; 
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end; 

kstar ← S[tstar]; 

if tstar > jstar then 

begin 

exit; 

end; 

end;            [of while (jstar >>>> 0)] 

F' ← {q0}; 

for ktemp = 1 to jstar 

begin 

Q[ktemp] ← S[ktemp]; 

if qi in S[ktemp] such that qi ∈ F then 

begin 

F' ← F' ∪ S[ktemp]; 

end; 

end; 

rename the states of Q as tclos and store corresponding δclosure for 

clos ≥ 0 and also rename the corresponding states in F'; 

return M ← (Q, Σ, δclosure, t0, F'); 

end function;  

Figure 7. Function Star obtaining kleene closure of a DFA. 

Function Star finds the kleene closure of a DFA M using the 

following rule. To construct M*, Star first checks if there is 

any transition from start state q0, back to q0, and if any such 

transition exists, then Star adds new state(s) equal to the 

number of such transitions. The nature (in terms of 

transitions) of these newly added states is same as that of the 

start state q0. So now Star has an intermediate DFA M', 

which contains no transition from start state q0, back to q0. 

Now to construct M*, Star first constructs that part of M' 

which does not contain any final state. For the remaining 

construction of M*, whenever Star reaches to a final state p 

of M', it clubs this final state with the start state q of M' to 

get a combined state [pq] and also renames state p as the 

combined state [pq]. Now Star obtains the remaining states 

of M* using the following rule. If a transition enters into a 

combined state [lg] for some alphabet symbol ‘a’, which 

contains any of its components states as a final state of M', 

Star clubs this combined state [lg] with the start state q of M' 

to get a combined state [lgq] (new or already existing), and 

that transition, for the same alphabet symbol ‘a’, now enters 

into this combined state. Then Star constructs the remaining 

part of M* using the same logic as was applied in function 

Union for combined states. All those combined states in M* 

become final which have any of their component as a final 

state of M'. Finally in M*, Star converts the start state q0 also 

to a final state. Figure 8 shows the function Min. 

Function Min (M(Q, Σ, δ, q0, F)) 

begin 

Σ° ← addlast(Σ, ‘#’); 

kmin, temp, temp1, temp2 : integer; 

S, F' : array[variable length] of strings; 

find the equivalent states in set Q and store them as combined 

states; 

store all the states (combined as well as single) of Q in array S 

such that all the component states of S[kmin] are equivalent for k 

≥ 1, and set S[1] such that it contains q0 as one of its component; 

a ← first element of Σ°; 

while (a ≠ ‘#’) 

begin 

for temp = 1 to cardinality(S) 

begin 

 δmin(S[temp], a) = S[temp1] such that δ(qi, a) = qj such 

that qi in S[temp] and qj in S[temp1] for some qi, qj; 

end; 

a ← next element of Σ°; 

end; 

F' ← φ; 

for temp = 1 to cardinality(S) 

begin 

if qi in S[temp] such that qi ∈ F then 

begin 

F' ← F' ∪ S[temp]; 

end; 

end; 

rename the states of S as mtemp2 and store corresponding δmin for 

0 ≤ temp2 ≤ cardinality(S)-1 and also rename the corresponding 

states in F'; 

return M ← (S, Σ, δmin, m0, F'); 

end function; 

Figure 8. Function Min obtaining minimal DFA equivalent 

to the given DFA. 

Function Min converts a DFA M into an equivalent DFA 

with minimum number of states. Min first finds the 

equivalent states of M, and then clubs those equivalent states 

to make some combined states (Hopcroft and Ullman, [19]). 

All those states which are not equivalent to any other state do 

not form any combined state and hence, will be written as 

single states. Therefore now Min has, possibly, some 

combined states and some single states for minimal DFA 

Mmin. The start state of the resultant DFA Mmin is either the 

start state q0 of M (if q0 is not equivalent to any other state) 

or a combined state containing q0 as one of its component. 

Now, Min connects the start state of Mmin to some other state 

(combined or single) by means of transitions for all alphabet 

symbols, using the transitions of M. Min continues for 

connecting the other states also by means of transitions for 

all alphabet symbols. Finally, all those states (combined or 

single) in Mmin become final if they have anything common 

with the set of final states F of M. 

3.1 Algorithm Implementation 
A detailed demonstration on how the algorithm Construct works 

is shown as successive instances of the algorithm’s 

implementation using two different representations: firstly by 

graphs and secondly by tables. 

3.1.1 Using Graphs 
To convert a randomly chosen regular expression 01* into a 

minimal DFA M, Construct first places 01* in a set of 

parenthesis; therefore, the input will look like (01*). Then 

Construct scans for the innermost parenthesis and since, in this 

case only one parenthesis exists, the same is the innermost. 

Thereby, 1* is the substring of regular expression for which 

Construct draws an initial DFA L1. Construct constructs L1 

using the function Min(Star(Symbol(1))) and the successive 

steps of this construction are as shown by Figures 9 - 11. 
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Construct still runs in the same parenthesis and finds a DFA N1 

equivalent to 0L1 (value of K3 is stored in L1) using the 

following sequential construction steps (Figure 12 - 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, Construct minimizes the obtained DFA N1 to get 

minimal DFA N1 as shown in Figure 14. 

 

 

 

 

 

 

 

Therefore, the regular expression string looks like (N1). Then 

Construct stores N1 as M1 and the string will look like (M1). 

Finally, Construct replaces (M1) by M1, which is the minimal 

DFA for the given regular expression.  

In the next section, we’ll present the successive instances of our 

algorithm’s implementation over another random regular 

expression using table representation. 

3.1.2 Using Tables 
In this section, the algorithm Construct is applied for 

converting a randomly chosen regular expression 

((0+1(01*+0*)*1+1)*) into a minimal DFA. Here n = 20, so 

Construct initializes an array X of size 22 (20+2). Next, it 

places the regular expression into X from 2nd to 21st place 

and also assigns X[1] = '('  and X[22] = ')' as shown in table 

1. The successive instances of the algorithm’s 

implementation are shown by the following sequence of 

stages of X in table 1. 

Table 1. Array X showing the successive instances of 

conversion process of ((0+1(01*+0*)*1+1)*) into DFA M4. 

( ( ( 0 + 1 ( 0 1 * + 0 * ) * 1 + 1 ) * ) ) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

The innermost parenthesis is from 7th to 14th positions, and 

inside this parenthesis first star is at 10th position, and the 

character at (10-1) i.e. 9th position is a 1. So Construct replaces 

9th position by L1 (the min. DFA for 1*), shifts all the cell’s 

content from 11th position onwards to 1 position left, and finally 

replaces the 22nd position by #; next stage of X is 

( ( ( 0 + 1 ( 0 L1 + 0 * ) * 1 + 1 ) * ) ) # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Still in the same innermost parenthesis, which is now from 

7th to 13th positions, one more * exists at position 12. So 

Construct replaces 11th position by L2 (the min. DFA for 0*), 

shifts all the cell’s content from 13th position onwards to 1 

position left, and finally replaces the 22nd position by #; next 

stage of X is 

 ( ( ( 0 + 1 ( 0 L1 + L2 ) * 1 + 1 ) * ) ) # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Construct still runs in the same innermost parenthesis, which 

is now from 7th to 12th position. It reads the character at 8th 

position and replaces it by N1 (the min. DFA for 0); next 

stage of X is 

 

 

K1 = ({q0, q1, q2}, {0, 1}, δδδδ, q0, {q1}) 

Figure 9. DFA K1 designed using Symbol(1). 
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K2 = ({q0, [q0q1], [q0q1q2], q2}, {0, 1}, δδδδ, q0, {q0, [q0q1], [q0q1q2]}) 

Figure 10. DFA K2 designed using Star(Symbol(1)). 
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K3 = ({[q0q1q2], q2}, {0, 1}, δδδδ, [q0q1q2], {[q0q1q2]}) 

Figure 11. DFA K3 designed using Min(Star(Symbol(1))). 
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N1 = ({p0, p1, p2}, {0, 1}, δδδδ, p0, {p1}) 

Figure 12. DFA N1 designed using Symbol(0). 
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Figure 13. DFA N1 designed for N1L1. 

N1 = ({p0, p2, [q2p2], [q0q1q2p1], [q0q1q2p2]}, {0, 1}, δδδδ, p0, 

{[q0q1q2p1], [q0q1q2p2]}) 

Figure 14. DFA N1 designed for its minimal version. 

N1 = ({p0,[q2p2], [q0q1q2p1p2]}, {0, 1}, δδδδ, p0, {[q0q1q2p1p2]}) 
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ARRAY X (Contd.) 

 ( ( ( 0 + 1 ( N1 L1 + L2 ) * 1 + 1 ) * ) ) # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 7th to 12th positions, 

Construct finds a concatenation between 8th and 9th position. So 

it replaces the 8th position by N1 (the min. DFA of concatenation 

of previous value stored in N1 by L1), shifts all the cell’s content 

from 10th position onwards to 1 position left, and finally replaces 

the 22nd position by #; next stage of X is 

 ( ( ( 0 + 1 ( N1 + L2 ) * 1 + 1 ) * ) ) # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 7th to 11th positions, 

Construct reads a + followed by L2, which is at 10th position. So 

it replaces 10th position by N2; next stage of X is 

( ( ( 0 + 1 ( N1 + N2 ) * 1 + 1 ) * ) ) # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

All the possible concatenation operations are performed inside 

the innermost parenthesis, so now Construct checks the 

innermost parenthesis for the union operation. In the same 

innermost parenthesis, i.e. from 7th to 11th positions, it reads the 

character at 8th position and replaces it by M1 (the DFA N1 is 

stored as name M1); next stage of X is 

 ( ( ( 0 + 1 ( M1 + N2 ) * 1 + 1 ) * ) ) # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 7th to 11th positions, 

Construct finds a union between 8th and 10th position. So it 

replaces the 8th position by M1 (the min. DFA of union of 

previous value stored in M1 by N2), shifts all the cell’s content 

from 11th position onwards to 2 positions left, and finally 

replaces each of 21st and 22nd positions by #; next stage of X is 

( ( ( 0 + 1 ( M1 ) * 1 + 1 ) * ) ) # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 7th to 9th positions, 

Construct reads a ')' at 9th position. So it removes that innermost 

parenthesis, by first shifting 8th position onwards to 1 position 

left, and then shifting 9th position onwards to 1 position left, and 

each time replacing the 22nd position by #; next stage of X is 

( ( ( 0 + 1 M1 * 1 + 1 ) * ) ) # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

So now Construct has a new innermost parenthesis from 3rd to 

12th positions. Construct scans this parenthesis for a *, which 

appears at 8th position. It replaces the contents of 7th position by 

L1 (the min DFA for M1
*), shifts all the cell’s content from 9th 

position onwards to 1 position left, and finally replaces the 22nd 

position by #; next stage of X is 

( ( ( 0 + 1 L1 1 + 1 ) * ) ) # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Construct still runs in the same innermost parenthesis, which is 

now from 3rd to 11th position. It reads the character at 4th 

position and replaces it by N1 (the min. DFA for 0); next stage 

of X is 

 

 

 

ARRAY X (Contd.) 

 ( ( ( N1 + 1 L1 1 + 1 ) * ) ) # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 3rd to 11th positions, 

Construct reads a + followed by a 1, which is at 6th position. So 

it replaces 6th position by N2; next stage of X is 

( ( ( N1 + N2 L1 1 + 1 ) * ) ) # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 3rd to 11th positions, 

Construct finds a concatenation between 6th and 7th position. So 

it replaces the 6th position by N2 (the min. DFA of concatenation 

of previous value stored in N2 by L1), shifts all the cell’s content 

from 8th position onwards to 1 position left, and finally replaces 

the 22nd position by #; next stage of X is 

 ( ( ( N1 + N2 1 + 1 ) * ) ) # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 3rd to 10th positions, 

Construct finds a concatenation between 6th and 7th position. So 

it replaces the 6th position by N2 (the min. DFA of concatenation 

of previous value stored in N2 by the DFA for symbol 1), shifts 

all the cell’s content from 8th position onwards to 1 position left, 

and finally replaces the 22nd position by #; next stage of X is 

( ( ( N1 + N2 + 1 ) * ) ) # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Construct still runs in the same innermost parenthesis, which is 

now from 3rd to 9th position. It reads the character at 8th position 

and replaces it by N3 (the min. DFA for 1); next stage of X is 

( ( ( N1 + N2 + N3 ) * ) ) # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

All the possible concatenation operations are performed inside 

the innermost parenthesis, so now Construct checks the 

innermost parenthesis for the union operation. In the same 

innermost parenthesis, i.e. from 3rd to 9th positions, it reads the 

character at 4th position and replaces it by M2 (the DFA N1 is 

stored as name M2); next stage of X is 

( ( ( M2 + N2 + N3 ) * ) ) # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 3rd to 9th positions, 

Construct finds a union between 4th and 6th positions. So it 

replaces the 4th position by M2 (the min. DFA of union of 

previous value stored in M2 by N2), shifts all the cell’s content 

from 7th position onwards to 2 positions left, and finally replaces 

each of the 21st and 22nd positions by #; next stage of X is 

 ( ( ( M2 + N3 ) * ) ) # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 3rd to 7th positions, 

Construct finds a union between 4th and 6th positions. So it 

replaces the 4th position by M2 (the min. DFA of union of 

previous value stored in M2 by N3), shifts all the cell’s content 

from 7th position onwards to 2 positions left, and finally replaces 

each of the 21st and 22nd positions by #; next stage of X is 
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ARRAY X (Contd.) 

( ( ( M2 ) * ) ) # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 3rd to 5th positions, 

Construct reads a ')' at 5th position, so it removes that innermost 

parenthesis, by first shifting 4th position onwards to 1 position 

left, and then shifting 5th position onwards to 1 position left, and 

replacing each time 22nd position by #; next stage of X is 

 ( ( M2 * ) ) # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

So now a new innermost parenthesis exists from 2nd to 5th 

positions. Construct scans this parenthesis for a *, which 

appears at 4th position. It replaces the contents of 3rd position by 

L1 (the min DFA for M2
*), shifts all the cell’s content from 5th 

position onwards to 1 position left, and finally replaces the 22nd 

position by #; next stage of X is 

 ( ( L1 ) ) # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Construct still runs in the same innermost parenthesis, which is 

now from 2nd to 4th position. It reads the character at 3rd position 

and replaces it by N1 (the DFA L1 is stored as name N1); next 

stage of X is 

 ( ( N1 ) ) # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the absence of any possible concatenation operation, 

Construct checks the innermost parenthesis for the union 

operation. In the same innermost parenthesis, i.e. from 2nd to 4th 

positions, Construct reads the character at 3rd position and 

replaces it by M3 (the DFA N1 is stored as name M3); next stage 

of X is 

 ( ( M3 ) ) # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 2nd to 4th positions, 

Construct reads a ')' at 4th position, so it removes that innermost 

parenthesis, by first shifting 3rd position onwards to 1 position 

left, and then shifting 4th position onwards to 1 position left, and 

replacing each time 22nd position by #; next stage of X is 

( M3 ) # # # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Now the innermost parenthesis is from 1st to 3rd position. The 

innermost string has no *, so no replacement is possible by an 

Li. Next, Construct scans the innermost parenthesis for 

concatenation operation. It reads the character at 2nd position 

and replaces it by N1 (the DFA M3 is stored as name N1); next 

stage of X is 

 ( N1 ) # # # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the absence of any possible concatenation operation, 

Construct checks the innermost parenthesis for the union 

operation. In the same innermost parenthesis, i.e. from 1st to 3rd 

positions, it reads the character at 2nd position and replaces it by 

M4 (the DFA N1 is stored as name M4); next stage of X is 

 

 

ARRAY X (Contd.) 

( M4 ) # # # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

In the same innermost parenthesis, i.e. from 1st to 3rd positions, 

Construct reads a ')' at 3rd position, so it removes that innermost 

parenthesis, by first shifting 2nd position onwards to 1 position 

left, and then shifting 3rd position onwards to 1 position left, and 

replacing each time 22nd position by #; next stage of X is 

M4 # # # # # # # # # # # # # # # # # # # # # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Now, Construct does not find any innermost parenthesis and 

thus shows the final output as M4. 

3.2 Evaluation of Algorithm 
In this section, we obtain the time complexity of the proposed 

algorithm Construct. Because of the varied nature of regular 

expressions (variable positions of left parenthesis, right 

parenthesis, *, +, and concatenation operator), we obtain the 

average-case time complexity by applying the algorithm over a 

lot of different-sized regular expressions. First of all, the 

algorithm Construct is applied over a regular expression 

(011)*+10*+(1101*0)* of size 20 and the time taken for this 

conversion is obtained as shown below.  

Here n = 20, R = (011)*+10*+(1101*0)*. 

Therefore array X is ((011)*+10*+(1101*0)*). 

The transitions needed to obtain innermost parenthesis=5+4=9. 

The transitions needed in search of a ‘*’ operator inside the 

innermost parenthesis=4. 

The transitions needed in search of a concatenation operator 

inside the innermost parenthesis=4. 

The transitions needed in search of a ‘+’ operator inside the 

innermost parenthesis=2. 

Therefore array X is (M1
*+10*+(1101*0)*). 

Continued from the same point after replaced M1, the transitions 

needed to obtain the next innermost parenthesis=14+7=21. 

The transitions needed in search of a ‘*’ operator inside the 

innermost parenthesis=7. 

The transitions needed in search of a concatenation operator 

inside the innermost parenthesis=6. 

The transitions needed in search of a ‘+’ operator inside the 

innermost parenthesis=2. 

Therefore array X is (M1
*+10*+M2

*). 

Continued from the same point after replaced M2, the transitions 

needed to obtain the next innermost parenthesis=2+10=12. 

The transitions needed in search of a ‘*’ operator inside the 

innermost parenthesis=10. 

The transitions needed in search of a concatenation operator 

inside the innermost parenthesis=7. 

The transitions needed in search of a ‘+’ operator inside the 

innermost parenthesis=6. 

Therefore array X now contains the resultant DFA M3.  

Hence, the total number of transitions required for converting R 

into DFA M3 = 9+4+4+2+21+7+6+2+12+10+7+6 = 90. 

Next, the algorithm Construct is applied over 150 regular 

expressions of 15 different sizes n, and for this, 10 different and 

random regular expressions are taken of each size n. Then, the 

average time taken in the conversion for each value of n is 

obtained and is shown in table 2. 
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Table 2. Comparison Table between n, n.logen, n.log2n and 

time taken by proposed algorithm. 

n “n” n.logen n.log2n n2 

Average Time 

taken by 

proposed 

algorithm 

1 1 0 0 1 1 

5 5 8.05 11.61 25 26.2 

10 10 23.03 33.22 100 46 

15 15 40.62 58.60 225 65.8 

20 20 59.92 86.44 400 92.4 

25 25 80.47 116.10 625 110.6 

30 30 102.04 147.21 900 127.4 

35 35 124.44 179.53 1225 148.4 

40 40 147.56 212.88 1600 167 

45 45 171.30 247.13 2025 190 

50 50 195.60 282.19 2500 221 

75 75 323.81 467.16 5625 318.6 

100 100 460.52 664.39 10000 426.4 

150 150 751.60 1084.32 22500 608.2 

200 200 1059.66 1528.77 40000 804 

As shown in table 2, the proposed algorithm takes a little more 

time than n.log2n for 1 ≤ n ≤ 10; it coincides with the time 

n.log2n for 10 ≤ n ≤ 20; and then it becomes better by taking less 

time than n.log2n for n > 20. In addition, the algorithm’s time 

complexity becomes better than n.logen when n ≥ 75. Hence, the 

proposed algorithm takes O(n.log2n) time. Besides, for larger 

values of n (n ≥ 75) the proposed algorithm becomes more time-

efficient and shows a time complexity of O(n.logen) as shown in 

figure 15. 
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Figure 15. Comparison Graph between n, n.logen, n.log2n 

and time taken by proposed algorithm. 

4. CONCLUSION AND FUTURE WORK 
From the basic results of formal language parsing, graph 

grammars and automata theory we have derived a simple novel 

method to construct a minimal deterministic finite automaton 

from a regular expression. We have applied our method to a lot 

of regular expressions and obtained the desired and exact results 

all the times showing thereby the applicability of our method for 

getting the minimal DFA from a regular expression. This 

method removes the dependency over the necessity of lengthy 

chain of conversion, that is, regular expression → NFA with ε-

transitions → NFA without ε-transitions → DFA → minimal 

DFA. Therefore the main advantages of our minimal DFA 

construction algorithm are its minimal intermediate memory 

requirements and hence, it’s reduced time complexity. This 

algorithm converts a regular expression of size n in to its 

minimal equivalent DFA in O(n.log2n) time. In addition to this, 

the time complexity is further shortened to O(n.logen) for n ≥ 75. 

Glushkov [14] presented a method to convert a regular 

expression into an ε-free NFA with O(n2) transitions while 

Hagenah and Muscholl [17] performed the same conversion 

with O(n.log2(n)) transitions. Later, Hromkovic et al. [20] gave 

a method for the above conversion where the time complexity 

was O(n.log2n) which was the least amongst all the above 

methods. However, all the above methods were inadequate as 

they converted a regular expression into only an ε-free NFA and 

not into minimal DFA. Therefore, additional time was required 

to convert ε-free NFA into minimal DFA. Hence, the overall 

time complexity for the required conversion was more than 

O(n.log2n). However, our method converted a regular expression 

into a minimal DFA directly in O(n.log2n) time hence, showing 

the supremacy of our method over the above methods.  

Furthermore, Rytter [28] presented a method for converting a 

regular expression of size n into an NFA in log n time using 

(n/log n) parallel processors. As compared to Rytter’s method 

[28], our method converted a regular expression of size n into a 

DFA in O(n.log2n) steps using a high-speed processor. Thereby, 

the number of processors was reduced to 1 by our method. 

However, the time complexities were not comparable as the two 

methods produced different outputs; Rytter’s method [28] 

produced NFA while our method produced minimal DFA. 

Hence, results by our algorithm are an improvement over 

Rytter’s method [28]. 

Most researches attempted hitherto are based on the use of 

intermediate NFA for the above conversion. However, the 

present algorithm uses intermediate DFA in place of NFA, and 

still shows a time complexity which is shorter as compared to 

other available methods, thus motivating the use of DFA in 

place of NFA for similar studies. In addition to this, the above 

algorithm also inspires a further study for producing a more 

time-efficient algorithm for the above conversion. 
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