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ABSTRACT 
In this paper the dynamics of the complex logarithmic function is 

investigated using the Ishikawa iterates. The fractal images 

generated from the generalized transformation 

function log( )nz z c , 2n are analyzed.   
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1. INTRODUCTION  

The  fractals generated  from  the  self-squared function, 
2z z c   where z and c are complex quantities, have been  

studied  extensively  in  the  literature[2, 8, 9 & 10]. A multitude of 

interesting, intriguing and rich families of fractals are generated by 

changing the complex function ( )F z . This paper explores the 

dynamics of a complex logarithmic function. 

In 1918, French mathematician Gaston Julia[12] 

investigated the iteration process of a complex function intensively 

and attained a Julia set, which is a landmark in the field of fractal 

theory. The object Mandelbrot set on the other hand was given by 

Benoit B. Mandelbrot [13] in 1979. Recently, R. L. Devaney [5], 

[6] and [7] studied widely the behavior of the exponential function 

and analyzed the Julia sets under different conditions. We briefly 

recall the well known result for the family of the quadratic 

polynomial
2( )cQ z z c . Each map cQ has a single critical 

point at 0 and so, cQ has a single critical orbit. The fate of this 

orbit leads to well known fundamental dichotomy for quadratic 

polynomials:    

(1) If (0)n
cQ , then ( )cJ Q  is a Cantor set. 

(2) But if 
n
cQ  does not tends to  then, ( )cJ Q is a connected 

set.  

The set of parameter values of c for which the Julia sets of 

cQ is connected forms the well known Mandelbrot set. The Julia 

set for parameter c is defined as the boundary between those values 

of 0z that remain bounded after repeated iterations and those that 

escape to infinity. Julia set is a place where all the chaotic behavior 

of the complex function occurs. As is well known that Julia sets on 

the real axis are reflections symmetric while those on the complex 

plane are rotational symmetric with exception to c(0,0). For a 

quadratic family, a point at infinity is a super attracting fixed point 

and so, it is surrounded by an intermediate basin of attraction and 

if critical orbits tend to infinity, then the critical point must lie in 

this basin and consequently entire forward orbit lies in this basin.  

For the transcendental function, like logarithmic 

function, Julia set may be defined as closure of the set of the points 

whose orbits may escape to infinity under the iteration of cQ . 

Equivalently, the Julia set is also closure of the set of the repelling 

periodic points. These two definitions clearly illustrates the chaotic 

behavior of Julia sets arbitrarily, close to any point in Julia set are 

the points whose orbits tends to infinity as well as the other points 

whose orbits are not only bounded but in fact periodic. For a 

quadratic family, the only singular value is critical 

value (0)cc Q , since 0 is the only critical point. Further 

infinity is the super attracting fixed point for cQ . The Mandelbrot 

set on other hand is the set of values of c for which the orbit of 0 

under cQ does not tends to infinity. Equivalently, Mandelbrot set 

takes those values of c, for which Julia sets of, cQ is connected. 

2. PRELIMINEARIES 

The  process  of generating  fractal  images from 

log( )nz z c  is similar  to  the  one employed  for the self-

squared  function[21].  Briefly, this process consists of iterating 

this function up to N times. Starting from a value 0z  we obtain 

1, 2, 3, 4,...z z z z by applying the transformation log( )nz z c . 

Definition2.1:  Ishikawa Iteration [11]: Let X be a subset of real 

or complex numbers and :f X X  for 0x X , we have the 

sequences{ }nx and { }ny  in X in the following manner: 

( ) (1 )n n n n ny s f x s x  

                       1 ( ) (1 )n n n n nx s f y s x  

where 0 1ns , 0 1ns and 
ns & 

ns are both 

convergent to non zero number. 

 

Definition 2.2: The sequences
nx and 

ny constructed above is 

called Ishikawa sequences of iterations or Relative Superior 
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sequences of iterates. We denote it by 0( , , , )n nRSO x s s t .     

Notice that 0( , , , )n nRSO x s s t  with ns =1 is 0( , , )nSO x s t  

i.e. Mann’s orbit and if we place 1n ns s  then 

0( , , , )n nRSO x s s t  reduces to
0( , )O x t . 

           We remark that Ishikawa orbit 0( , , , )n nRSO x s s t with 

1/ 2ns  is relative superior orbit. 

Now we define Mandelbrot sets for function with respect to 

Ishikawa iterates. We call them as Relative Superior Mandelbrot 

sets [23, 27] 

 

Definition 2.3[23, 27]: Relative Superior Mandelbrot set RSM 

for the function of the form ( ) n

cQ z z c , where n = 1, 2, 3, 

4… is defined as the collection of c C for which the orbit of 0 

is bounded i.e.                          

{ : (0) : 0,1,2...}k

cRSM c C Q k is bounded. 

 In functional dynamics, we have existence of two 

different types of points. Points that leave the interval after a 

finite number are in stable set of infinity. Points that never leave 

the interval after any number of iterations have bounded orbits. 

So, an orbit is bounded if there exists a positive real number, such 

that the modulus of every point in the orbit is less than this 

number. 

             The collection of points that are bounded, i.e. there exists 

M, such that | ( ) |nQ z M , for all n, is called as a prisoner set 

while the collection of points that are in the stable set of infinity 

is called the  escape set. Hence, the boundary of the prisoner set 

is simultaneously the boundary of escape set and that is Julia set 

for Q. 

 

Definition 2.4[23, 27]]:  The set of points RSK whose orbits are 

bounded under relative superior iteration of the function Q (z) is 

called Relative Superior Julia sets. Relative Superior Julia set of 

Q is boundary of Julia set RSK. 

  

2.1 Generation Process: The  basic  principle  of generating  

fractals  employs the  iterative  formula: 1 ( )n nz f z where  

0z  =  the  initial value of z,  and  iz  =  the  value of the  

complex  quantity  z  at  the  ith  iteration.  For example, the 

Mandelbrot’s self-squared function for generating fractals is: 
2( )f z z c , where  z  and c  are  both  complex 

quantities.  

We propose the use of the transformation 

function log( )nz z c  for generating fractal images with 

respect to Ishikawa iterates, where z and c are the complex 

quantities and n is a real number.  Each of these fractal images is 

constructed as a two-dimensional array of pixels.  Each pixel is 

represented by a pair of ( , )x y coordinates.  The complex 

quantities z and  c   can be represented as:  

                                 
x y

x y

z z iz

c c ic
 

where  ( 1)i and  xz , xc are  the  real parts  and  yz  

& yc are  the  imaginary  parts  of  z and  c ,  respectively.  The 

pixel coordinates ( , )x y may be associated with ( xc , yc ) or 

( xz , yz ). 

Based on this concept, the fractal images can be classified as 

follows:  

 (a) c-plane fractals, wherein ( , )x y is a function of ( xc , yc ) 

 (b)  z-plane fractals, wherein ( , )x y   is a function of ( xz , yz ).                                                                                            

In the  literature, the  fractals  for  n = 2  in z plane are  termed  as  

the Mandelbrot  set while the fractals  for n = 2  in c  plane are 

known  as  Julia  sets 

 

2.2 Generating the fractals: Fractals have been generated from 

nz z c using escape-time techniques, for example by 

Gujar etal.[8, 9] and Glynn [10]. We have used in this paper 

escape time criteria of Relative Superior Ishikawa iterates for 

function log( )nz z c . 

 Escape Criterion for Quadratics: Suppose 

that | | max{| |,2 / ,2 / }z c s s , then | | (1 ) | |n

nz z  

and | |nz as n .So, | | | |z c and | | 2 /z s as 

well as | | 2 /z s  shows the escape criteria for quadratics. 

Escape Criterion for Cubics:  Suppose 
1/2 1/2| | max{| |, (| | 2 / ) , (| | 2 / ) }z b a s a s  then | |nz   

as n . This gives an escape criterion for cubic polynomials 

General Escape Criterion: Consider 
1/ 1/| | max{| |, (2 / ) , (2 / ) }n nz c s s then | |nz   as n is 

the escape criterion. (Escape Criterion derived in [23, 27]). 

Note that the initial value 0z  should be infinity, since 

infinity is the critical point of log( )nz z c . However instead 

of starting with 0z = infinity, it is simpler to start with 1z  = c , 

which yields the same result. (A critical point of 

z F(z) c is a point where ( ) 0F z ). The role of 

critical points is explained in [1]. 

 

2.3 Midgets of Relative Superior Mandelbrot Set:  

   The midgets of the RSM set are the small mini 

Mandelbrot set like images found in the scattered surroundings of 

the RSM set. The study of midgets in the Mandelbrot set is given 

by Philip[20] and    Romera [24]. 
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We have generated numerous RSM sets for z( )cQ  for 

various values of n. We find fascinating new fractals having 

several effectively different geometric shapes. However, we have 

selected a few figures to study midgets in RSM sets for z( )cQ  

with n = 2, 4, 6 and 8, wherein s = 0.8 and s'=0.9. The 

Mandelbrot set consists of many small decorations or bulbs 

attached to the main body. The main body is called "main 

cardioid" by Devaney [4]-[7] and simply "cardioid" by Philip 

[20]. Similarly, the biggest bulb attached to the main cardiod is 

named as "period-2 bulb" by Devaney and "head" by Philip. 

Further, the small decorations attached to the main 

cardiod are called "atom-n" by Philip[20], and "period-n bulb" by 

Devaney [4], where n is the period of the bulb. Each period-n 

bulb has a main antenna attached to it. This antenna is named as 

"spikes" or "tendrils" by Philip [20]. Devaney[4] has shown that 

the main antenna consists of a number of spokes attached; the 

number of spokes is the same as on the period of the 

corresponding bulb. In our study, we largely follow the Devaney's 

nomenclature and occasionally that of Philip[20]. 

The RSM set for z( )cQ  with degree n contains n-

primary bulbs. We find that a period-2 bulb is connected to each 

of these (n - 1) primary bulbs. Other period-n bulbs vanish as the 

value of s comes nearer to 0. Further, the main antenna looks 

disconnected for small values of s and s'. 

Now we consider the following two cases. 

 

Case I (s = 1, s  = 1special case) 

We observe that, when s = 1 and s'=1, the RSM set for 

n > 2 is the Mandelbrot set of nth order having nth main 

cardioids. On zooming, we find only one kind of midgets, i.e. 

mini Mandelbrot sets of nth order, which are near the apex or end 

of the branch.  

 

Case II (0 < s < 1, 0 <  s  < 1, general case) 

For n > 2, we observe that, the RSM set of nth order 

contains nth distinct main cardioids (see Figs. 2 and 3). On 

zooming the RSM set for n > 2, we get the midgets of mini 

Mandelbrot set on the main antennas of period-n bulbs. A 

remarkable feature is observed that, all the midgets are of order 

2, i.e., the order of each of the midgets does not depend on the 

degree of the polynomial z( )cQ . We notice that the order of 

midgets is not independent of the degree of the polynomial 

z( )cQ  when s = 1, s' = 1 (cf. Case I). 

These observations show that, at least, some of the RSM sets are 

effectively different from the usual Mandelbrot sets. 

 

3. GEOMETRY OF RELATIVE SUPERIOR 

MANDELBROT SETS AND RELATIVE 

SUPERIOR JULIA SETS:  
The fractals generated from the equation 

log( )nz z c possesses rotational as well as reflection 

symmetry. As conjectured by Gujar and Bhavsar in [8, 9], the 

fractals generated with the exponent n are (n+1) way rotationally 

symmetric.  

 

3.1 Relative Superior Mandelbrot sets:  

 There are several secondary ovoids or bulbs attached 

with the main body or the central ovoid. Here, the 

number of major secondary lobe is (n-1). Besides, this 

main body of Mandelbrot set is observed to be 

symmetrical about real axis.   

 

 As the value of s tend to 1 and s' tends to 1, the Relative 

Superior Mandelbrot sets of logarithmic function 

converts to the general Mandelbrot sets of logarithmic 

function, hence we can say that the Relative Superior 

Mandelbrot sets of logarithmic function is the general 

case of the usual Mandelbrot sets of logarithmic 

function. 

 

 In case of quadratic polynomial, among all the secondary 

ovoids, only one that is the major secondary ovoid 

happens to be quite larger than rest of the other ovoids. 

Moreover, as the value of s and s' changes, the rest of the 

ovoids vanishes except the major secondary ovoid. 

 

 In case of the cubic polynomial, the central body is 

bifurcated into two lobes, where each primary ovoid 

contains a major secondary ovoid along with other 

ovoids. As, the value of s and s' varies, then the major 

secondary lobes also shows the bifurcations. 

 

 In case of biquadractic function, the central body is 

bifurcated into three lobes, where two major lobes 

contains bigger secondary major ovoid while the third 

one which remains comparatively a smaller lobe, has a 

very small secondary major lobe. 

 

 We also observe that the Relative Superior Mandelbrot 

sets of logarithmic function had their Midgets for 

quadratic, Biquadratic and other even valued function. 

 

4. FIXED POINTS 

4.1 Fixed points of quadratic polynomial  

Table 1: Orbit of F(z) at s=1 and s'=1 for 

(z0=1.115279339+0.004573602931i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

205 2.2608 215 2.2609 

206 2.2605 216 2.2607 

207 2.2609 217 2.2608 

208 2.2611 218 2.261 

209 2.2607 219 2.2608 

210 2.2606 220 2.2608 

211 2.261 221 2.2608 

212 2.261 222 2.2608 

213 2.2607 223 2.2608 

214 2.2607 224 2.2608 
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We skipped 204 iterations and after 219 iterations value 

converges 

 

Figure  1.  : Orbit of F(z) at s=1 and s'=1 for 

(z0=1.115279339+0.004573602931i) 

 
 

Table 2: Orbit of F(z) at s=0.5 and s'=0.2 for 

 (z0= -0.2719720527+0.006189740197i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.27204 8 0.77381 

2 1.0321 9 0.77413 

3 0.92033 10 0.77418 

4 0.7621 11 0.77419 

5 0.75008 12 0.77418 

6 0.78331 13 0.77418 

7 0.77306 14 0.77418 

Here we observe that the value converges to a fixed point after 

10 iterations 

Figure 2.  Orbit of F(z) at s=0.5 and s'=0.2 for 

 (z0= -0.2719720527+0.006189740197i) 

 

Table 3: Orbit of F(z) at s=0.5 and s'=0.4 for 

(z0= 0.1221501844-0.001193880049i) 

Number 

of 

iteration i 

|F(z)| Number 

of 

iteration i 

|F(z)| 

1 0.12216 9 1.7162 

2 1.3071 10 1.716 

3 1.6111 11 1.7159 

4 1.6914 12 1.7158 

5 1.7096 13 1.7157 

6 1.7151 14 1.7157 

7 1.7166 15 1.7157 

8 1.7167 16 1.7157 

Here the value converges to a fixed point after 13 iterations 

Figure 3.  Orbit of F(z) at s=0.5 and s'=0.4 for 

(z0= 0.1221501844-0.001193880049i) 

 

Table 4 Orbit of F(z) at s=0.8 and s'=0.4 for 

(z0= 0.116875247+0.008872315035i) 

Number 

of 

iteration i 

|F(z)| Number 

of 

iteration i 

|F(z)| 

1 0.11721 7 1.7157 

2 2.1293 8 1.7157 

3 1.7603 9 1.7157 

4 1.7258 10 1.7157 

5 1.7188 11 1.7157 

6 1.7164 12 1.7157 

Here the value converges to a fixed point after 07 iterations 

Figure 4.  Orbit of F(z) at s=0.8 and s'=0.4 for 

(z0= 0.116875247+0.008872315035i) 

 
 

4.2  Fixed points of Cubic  polynomial  

Table 1: Orbit of F(z) at s=1 and s'=1 for  

(z0= 1.159503886+0.09059823882i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 1.163 10 4.5376 

2 1.878 11 4.5371 

3 3.1287 12 4.5368 

4 4.4407 13 4.5367 

5 4.637 14 4.5367 

6 4.6023 15 4.5367 

7 4.5678 16 4.5367 
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8 4.5502 17 4.5367 

9 4.5423 18 4.5367 

Here we observe that the value converges to a fixed point after 13 

iterations 

Figure  1.  Orbit of F(z) at s=1 and s'=1 for  

(z0= 1.159503886+0.09059823882i) 

 

Table 2: Orbit of F(z) at s=0.5 and s'=0.1 for 

 (z0 = 0.739164036+0.03249605129i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 0.73988 12 0.80468 

2 0.6624 13 0.80488 

3 2.106 14 0.80534 

4 0.84776 15 0.80495 

5 1.0982 16 0.80517 

6 0.33581 17 0.80507 

7 1.019 18 0.80511 

8 0.69424 19 0.80509 

9 0.84457 20 0.8051 

10 0.79229 21 0.8051 

11 0.80849 22 0.8051 

Here we observe that the value converges to a fixed point after 20 

iterations 

Figure 2 Orbit of F(z) at s=0.5 and s'=0.1 for 

 (z0 = 0.739164036+0.03249605129i) 

 
Table 3: Orbit of F(z) at s=0.5 and s'=0.3 for 

(z0 = 0.4806782686+0.02610157227i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

20 0.80485 27 0.8051 

21 0.80502 28 0.80509 

22 0.80512 29 0.80509 

23 0.80516 30 0.80509 

24 0.80516 31 0.80509 

25 0.80514 32 0.8051 

26 0.80512 33 0.8051 

We skipped 19 iterations and after 32 iterations value converges 

Figure 3.  Orbit of F(z) at s=0.5 and s'=0.3 for 

(z0 = 0.4806782686+0.02610157227i) 

 
Table 4 Orbit of F(z) at s=0.8 and s'=0.3 for 

(z0= 1.694305119-0.002625316039i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

15 4.5539 24 4.5374 

16 4.5489 25 4.5372 

17 4.5452 26 4.537 

18 4.5427 27 4.5369 

19 4.5409 28 4.5368 

20 4.5396 29 4.5368 

21 4.5387 30 4.5368 

22 4.5381 31 4.5367 

23 4.5377 32 4.5367 

We skipped 14 iterations and after 31 iterations value converges 

Figure 4.  Orbit of F(z) at s=0.8 and s'=0.3 for 

(z0= 1.694305119-0.002625316039i) 

 
4.3  Fixed points of Bi-quadratic polynomial 

Table 1: Orbit of F(z) at s=1 and s'=1 for  

(z0= 1.36233755-0.02045744357i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

1 1.3625 8 8.6066 

2 1.048 9 8.6118 

3 2.6441 10 8.6129 

4 6.0664 11 8.6131 

5 7.9792 12 8.6132 

6 8.4729 13 8.6132 
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7 8.5828 14 8.6132 

Here we observe that the value converges to a fixed point after 12 

iterations 

 

Figure  1 Orbit of F(z) at s=1 and s'=1 for  

(z0= 1.36233755-0.02045744357i) 

 
Table 2: Orbit of F(z) at s=0.5 and s'=0.1 for  

(z0= 0.4283854228-0.03991188002i) 

Number of 

iteration i 

 

|F(z)| 

Number of 

iteration i 

 

|F(z)| 

30 0.88893 37 0.88866 

31 0.88848 38 0.88878 

32 0.88883 39 0.88874 

33 0.88881 40 0.8887 

34 0.8886 41 0.88876 

35 0.8888 42 0.88873 

36 0.88876 43 0.88873 

We skipped 29 iterations and after 42 iterations value converges 

Figure 2.  : Orbit of F(z) at s=0.5 and s'=0.1 for  

(z0= 0.4283854228-0.03991188002i) 

 

Table 3: Orbit of F(z) at s=0.5 and s'=0.3 for 

(z0= 0.3088081894-0.01017917836i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

11 0.89619 20 0.88834 

12 0.8852 21 0.88897 

13 0.88884 22 0.88867 

14 0.89048 23 0.88868 

15 0.88673 24 0.88882 

16 0.8901 25 0.88866 

17 0.88822 26 0.88877 

18 0.88861 27 0.88873 

19 0.88914 28 0.88873 

We skipped 10 iterations and after 27 iterations value converges 

Figure 3.  Orbit of F(z) at s=0.5 and s'=0.3 for 

(z0= 0.3088081894-0.01017917836i) 

 
Table 4 Orbit of F(z) at s=0.8 and s'=0.3 for 

(z0= 0.4057819286-0.0129093121i) 

Number of 

iteration i 

|F(z)| Number of 

iteration i 

|F(z)| 

11 8.4042 20 8.6122 

12 8.5055 21 8.6127 

13 8.5579 22 8.6129 

14 8.5848 23 8.613 

15 8.5986 24 8.6131 

16 8.6057 25 8.6131 

17 8.6094 26 8.6132 

18 8.6112 27 8.6132 

We skipped 10 iterations and after 26 iterations value converges 

Figure 4.  Orbit of F(z) at s=0.8 and s'=0.3 for 

(z0= 0.4057819286-0.0129093121i) 

 

5. GENERATION OF RELATIVE 

SUPERIOR MANDELBROT SETS: 
           We generate Relative Superior Mandelbrot Sets. We 

present here some Relative Superior Mandelbrot sets for cubic and 

biquadratic function.  

 

5.1 Relative Superior Mandelbrot Sets for Quadratic function: 

Figure 1: Relative Superior Mandelbrot Set for s= s'=1    
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 Figure 2: Relative Superior Mandelbrot Set for s=0.4, s'=0.8 

 

Figure 3: Relative Superior Mandelbrot Set for s=0.5, s'=0.7 

 
Figure 4: Relative Superior Mandelbrot Set for s=0.6, s'=0.8 

 
 

5.2 Relative Superior Mandelbrot Sets for Cubic function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1  

 
Figure 2: Relative Superior Mandelbrot Set for s=0.3, s'=0.8 

 
Figure 3: Relative Superior Mandelbrot Set for s=0.4 s'=0.6 

 
Figure 4: Relative Superior Mandelbrot Set s=0.4, s'=0.8 

 
5.3 Relative Superior Mandelbrot Sets for Bi-quadratic 

function: 

Figure 1: Relative Superior Mandelbrot Set for s=s'=1       

 
Figure 2: Relative Superior Mandelbrot Set for s=0.3, s'=0.8 

 
Figure 3: Relative Superior Mandelbrot Set for s=0.4, s'=0.7 
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Figure 4: Relative Superior Mandelbrot Set for s=0.5, s'=0.5   

 
Figure 5:Relative Superior Mandelbrot Set for n=7, s=1, s'=1 

 

Figure 6:Relative Superior Mandelbroot Set for n=7, s=0.4, 

s'=0.6 

 

Figure 7: Relative Superior Mandelbrot Set for n=12, s=0.5, 

s'=0.8 

 

Figure 8:Relative Superior Mandelbrot Set for n= 25, s=0.6, 

s'=0.8 

 

 

6. GENERATION OF RELATIVE 

SUPERIOR JULIA SETS: 
  

 We present here some filled Relative Superior Julia sets 

for quadratic, cubic and biquadratic function.  

 

6.1 Relative Superior Julia sets for Quadratic function: 

Figure 1: Relative Superior Julia Set for s=0.4, s'=0.8, 

c=0.6777636952+0.007335278698i

 
 6.2: Relative Superior Julia sets for Cubic  function: 

Figure 1: Relative Superior Julia Set for s=0.4, s'=0.8, 

c=0.6857349346+0.09564534988i 
  

 
6.3 Relative Superior Julia sets for Bi-quadratic function: 

Figure 1: Relative Superior Julia Set for s=0.4, s'=0.8, 

c=0.7741479655+0.01607362203i 

 
7. RELATIVE SUPERIOR MIDGET OF THE 

LOGARTHMIC FUNCTION: 

7.1 Relative Superior Midget of the quadratic function: 

Figure 1:  Relative Superior Midget for s=1, s'=1 
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Figure 2:  Relative Superior Midget for s=0.8, s'= 0.8 

 
Figure 3:  Zoom of Relative Superior Midget for s=0.8, s'= 0.8 

 

7.2 Relative Superior Midget of the bi-quadratic function: 

Figure 1:  Relative Superior Midget for s=1, s'=1     

 

Figure 2:  Relative Superior Midget for s=0.8, s'= 0.9 

 

Figure 3:  Zoom of Relative Superior Midget for s=0.8, s'= 0.9 

 

7.3 Relative Superior Midget of the function for n = 6 

Figure 1:  Relative Superior Midget for s=1, s'=1     

 

Figure 2:  Relative Superior Midget for s=0.8, s'= 0.9 

 

Figure 3: Disconnected bulb of period-3 bulb for s=0.8, s'= 0.9 

 

Figure 4: Disconnected bulb of period-5 bulb for s=0.8, s'= 0.9 
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7.3 Relative Superior Julia of Midget of the quadratic function: 

Figure 1: Relative Superior Julia Set for s=0.8, s'=0.8, 

c=0.2090087+0.0000122i 

 

7.4 Relative Superior Julia of Midget of the bi- quadratic 

function: 

Figure 1: Relative Superior Julia Set for s=0.8, s'=0.9, 

c=0.2090087+0.0000122i 

 

8. CONCLUSION 

In the dynamics of complex logarithmic polynomial 

log( )nz z c , where    2n , the fractals generated with 

exponent n are found as (n + 1) way rotationally symmetric. There 

are several ovoids or bulbs attached with the main body. The 

number of major secondary lobe is (n – 1). Besides this, for the 

polynomial of degree greater than two, the central body is 

bifurcated into (n – 1) lobes. 

The midgets observed for the logarithmic function are 

derived for even polynomials while for the odd function, bulbs 

gets disconnected. 
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