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ABSTRACT 
The k-nearest neighbor rule is one of the simplest and most 

attractive pattern classification algorithms. However, it faces 

serious challenges when patterns of different classes overlap 

in some regions in the feature space. In the past, many 

researchers have developed various methods to improve its 

performance. In this paper, we propose an improved evidence 

theoretic kNN algorithm which combines Dempster Shafer 

theory of evidence and k nearest neighbouring rule with 

distance metric based neighborhood. It is shown that the 

proposed algorithm significantly improves the performance of 

the k-nearest neighbor rule. In experiments this algorithm 

performed better than voting, distance weighted and extended 

k nearest neighbours algorithms with best k, and it achieved 

highest performance when number of neighbours considered 

is seven.  
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1. INTRODUCTION 
Dempster Shafer Theory of Evidence [8] is widely accepted 

as a rich and flexible framework for representing and 

reasoning with imperfect information. Pattern Classification 

by the Distance Metric is one of the earliest concept in 

automatic pattern recognition. The k-Nearest Neighbour Rule 

is one of the most widely used pattern classification technique 

proposed by Fix and Hodges[6]. Cover and Hart[2] showed 

that under certain conditions k-NN method approaches the 

optimal Bayes error rate. Dudani[5] proposed a method to 

assign a weight to the nearest neighbors in the neighborhood. 

Denoux[4] proposed an evidence theoretic k-NN method 

for classification based on Dempster Shafer Theory, in which 

each neighbor of a pattern to be classified is considered as a 

piece of evidence to support certain proposition concerning 

the class membership of a pattern. Based on the evidence, 

basic beliefs are assigned to the subset of all classes. Such 

basic belief assignments are obtained for each of k nearest 

neighbors and aggregated using the Dempster rule. It is well 

known that combining basic belief assignment is 

computationally expensive and it becomes impractical when 

the frame of discernment  has more than 15 to 20 elements.  

Hai Hung and David Bell[11] proposed an alternative 

method for evidence theoretic classification to avoid the need 

of combination and the problem of choosing the best k for 

kNN. In this method, a single basic belief assignment is 

constructed for the neighbors. A classification rule was 

designed based on the basic belief assignment and it is known 

as extended kNN. 

In extended kNN, the key issue was how neighborhoods were 

interpreted and selected. The Hypercube interpretation of 

neighborhood was adopted and neighbors were selected. 

In this paper, we propose an evidence theoretic non-

parametric algorithm for multivariate classification. Instead of 

using hypercube interpretation of neighborhood as used in 

extended kNN, we adopt a distance metric based 

neighborhood. Each neighborhood is considered as a piece of 

evidence to support the class membership of the pattern to be 

classified. We call this improved evidence theoretic kNN. 

Experimental results are presented to show the competence of 

this algorithm. 

  

2. DEMPSTER SHAFER THEORY 
Dempster-Shafer Theory of Evidence is an extension of 

probability theory, which allows the representation of 

uncertainty and the combination of evidence. Dempster-

Shafer Theory starts with the definition of all possible values, 

, called a frame of discernment that a variable can take. An 

exact belief value is assigned to each subset of  and this 

represents the uncertainty that the value of the variable 

belongs to the set. 

Let  be a finite set called frame of discernment. A 

mass function or basic belief assignment is a mapping m : 

  such that 

 

                                               

The mass m(X) measures the amount of belief that is exactly 

committed to X. is called a focal element of m if 

m(X) > 0.  

Given two mass functions  and  defined over 

the same we can combine them using the Dempster Rule of 

Combination as follows: 

             (1)        

The pignistic probability function [9] associated with m is 

such that for any   is     

           (2) 

For  , we can define conditional pignistic 

probability  as follows, in a way similar to 

conditional (classical) probability: 

         (3) 

3. K NEAREST NEIGHBOR RULE 
The nearest neighbor (NN) rule, first proposed by Fix and 

Hodges [6], is one of the oldest and simplest pattern 

classification algorithms. Given a set of n labeled examples 
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 with input 

vectors   and class labels , 

the NN rule classifies an unseen pattern  to the class of its 

nearest neighbor in the training data . To identify the 

nearest neighbor of a query pattern, a distance function has to 

be defined to measure the similarity between two patterns. 

The basic rationale for the NN rule is both simple and 

intuitive: patterns close in the input space are likely to 

belong to the same class.  

 kNN is popular in pattern recognition community 

mainly due to its good performance and its simple-to-use 

feature. Since the inception of kNN some variations have been 

proposed in order to improve its performance. 

3.1 Distance weighted kNN rule 
In voting kNN the k neighbours are implicitly assumed to 

have equal weight in decision, regardless of their distances 

from the pattern x to be classified. It is intuitively appealing to 

give different weights to the k neighbours based on their 

distances from x, with closer neighbours having greater 

weights. Let d be a distance measure, and  be 

the k nearest neighbours of x arranged in increasing order of 

. So  is the first nearest neighbour of x. [5] 

proposes to assign to the ith nearest neighbour  a weight  

defined as 

   (4) 

Pattern x is assigned to the class for which the weights of 

the representatives among the k nearest neighbours sum to the 

greatest value. This rule was shown by Dudani to yield lower 

error rates than those obtained using the voting kNN rule. [5] 

provides an excellent and detailed review of distance 

weighted kNN. 

3.2 Evidence theoretic kNN rule 
The evidence theoretic k-nearest neighbour rule [4] is a 

pattern classification method based on the Dempster-Shafer 

theory of belief functions. In this approach, each neighbor of a 

pattern to be classified is considered as an item of evidence 

supporting certain hypotheses concerning the class 

membership of that pattern. Based on this evidence, basic 

belief masses are assigned to each subset of the set of classes. 

Such masses are obtained for each of the k nearest neighbours 

of the pattern under consideration and aggregated using the 

Dempster’s rule of combination. In [12] Zouhal and Denoeux 

state ―… in many situations, this method was found 

experimentally to yield lower error rates than other methods 

using the same information‖. They then proposed an 

optimization procedure to determine optimal or near-optimal 

parameter values from the data by minimizing an error 

function. This refinement of the original method is shown 

experimentally to result in substantial improvement of 

classification accuracy. 

3.3 Extended evidence theoretic kNN rule 
Extended evidence theoretic kNN rule[11] is an alternative to 

evidence theoretic kNN. In this approach, multiple 

neighborhoods are computed and each of which provides a 

source of evidence supporting the proposition concerning the 

class membership of the given pattern.  Here, the key issue is 

how neighborhoods are interpreted and selected. Obviously 

there are many possible interpretations of neighborhood and 

neighborhood selection strategies. It adapts a hypercube 

representation of neighborhood along with simple selection 

strategy. It is assumed that the attributes in the dataset are all 

numerical. For a positive integer d, every attribute is 

partitioned into d +1 equal-sized interval. This effectively 

gives equal weights to all attributes. Consider an attribute A, 

and let dom(A) be its domain. The intervals are arranged in 

ascending order as such that for 

. Then every value of the 

attribute belongs to one and only one interval. For a value a of 

A, i.e., , let vi be the interval that a belongs to. 

For a non-negative integer   we call the following 

extended interval the qth order interval of a, written 

as : 

 

Where  

Clearly  

For a data vector (tuple) t, its qth order hypercube is 

 

where t(A) is the projection of t to attribute A. Furthermore we 

let cov( ) be the coverage of  , i.e., the number 

of data instances in the hypercube. 

We take each  as a neighbourhood of t, and so we have 

d+1 neighborhoods for t: . 

Clearly . 

Neighbourhood selection strategy is as follows: for a 

given h, it consider h neighborhoods iNN for 

 where 1NN is a non-empty   with the 

smallest q, and 2NN is , and so on. 

 

4. DISTANCE METRICS 
A non-negative function d (x, y) describing the distance 

between neighboring points x and y, constitutes a metric [1]. 

A metric space is then a set possessing a metric. In general, a 

metric space is formed by a set of valid objects with a global 

distance function (the metric d) which, for every two point 

 gives the distance between them as a nonnegative 

real number d (x, y). A finite subset of set that we could call  

with size n = is the search of objects where we search. 

Then function d (x, y) can also be expressed as 

. The smaller the distance d (x, y), the closer 

x is from y. For a metric to be considered as such,it must 

satisfy: 
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If the distance does not satisfy the strict positiveness 

property (IV), then the space is called a pseudo-metric. Also, 

in some cases property (II) does not hold. It then receives the 

name of quasi-metric. The above axioms express intuitive 

notions about the concept of distance: distances between 

different objects are positive and the distance between x and y 

is the same as the distance between y and x. The triangle 

inequality means roughly that the distance from x to z to y is 

never shorter than going directly from x to y. Some typical 

distance functions used in distance calculations are shown in 

the equations 5, 6 and 7. These most used metric belong to the 

Minkowski family of distances also known as the L metric. 

Euclidean distance:  

                                       (5) 

Manhattan or City-block 

                                             (6) 

Chebychev distance:        

             

                                              (7)  

5. PROPOSED ALGORITHM 
We propose an algorithm which extends the standard majority 

voting kNN by evidence theory for multivariate S class (S  

1). There are two motivations behind this algorithm. First, 

each neighborhood of an unknown pattern t (to be classified) 

as well as the Pattern together provides some evidence 

supporting the class membership of that pattern. Hence the 

aggregation of such evidences using Dempster Shafer Theory 

is expected to result in a good performance of the algorithm. 

Second, we use the most popular Minkowski family of 

distance metrics for neighborhood computation. Hence it is 

expected that it will boost the accuracy of the algorithm 

substantially. 

    Let 

be the 

training set,  is a vector of d attributes or feature whose 

domain is a relation 

) )……. , 

 be the set of classes and t be an incoming 

sample to be classified based on D. Let  

be the set of neighborhoods and each neighborhood is a region 

in (V) covering a set of neighbors of t. We take  as set of 

neighbors so . Figure 1 shows an input pattern t 

covered by three different neighborhoods. These 

neighborhoods are obtained by the distance metric 

 which are then taken as distinct source of 

evidence in classifying an input pattern t. 

 

Figure 1.An example of pattern t in an overlapped 

neighborhoods  

The neighborhood provides a source of evidence 

supporting proposition concerning the class membership of t. 

Each neighborhood is taken as one part of source of evidence 

and all neighborhoods – together as a source of evidence – are 

used to generate a single mass function representing partial 

support by different neighborhoods.   

Consider  and . We are interested in the 

joint probability P( c) –the probability that a randomly 

selected element x of  belongs to  and is in class c, 

i.e.,  and f (x) = c. Having no specific knowledge about 

the distribution p we can apply the principle of indifference to 

approximate P( c) by 

                       (8) 

Where =  

Then we define a function m[t], induced for t from 

the h neighborhoods, as a mapping  such 

that, for  and , 

                  (9) 

Here K is a normalizing factor. It follows that 

. Note that by m[t](X,c) we mean 

, which is similar to the 

interpretation of joint probability P(X,c). Clearly m[t] is a 

mass function. In particular 

 

We propose to classify new patterns through conditional 

pignistic probability. For this we specify the joint pignistic 

probability as  : such that, for and 

, 

 
Note that  is a region covering some neighbours of t so we 

have . We can understand t as a singleton set, therefore 

{t} and . Then we have the following joint, 

marginal and conditional pignistic probabilities for , 

=  

(t) =  
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  /  (t) 

  =   

 =   

where  . 

Classification then proceeds using the following rule: 

Rule1. 

 

If h=1 and we use Rule 1 for classification, then 

= and we end up 

with a majority voting kNN. Therefore Rule 1 is an extended 

majority voting based kNN. The proposed algorithm is given 

in the following page. 

6. EVALUATION 
The Evaluation was done via experiments. The purpose of the 

evaluation is to show if and how the classification procedure 

improves upon the majority voting kNN, the distance 

weighted kNN and extended kNN. The data used in the 

experiments are public Dataset from UC Irvine Machine 

Learning Repository. 

In our experiment, we set the number of neighborhood h=4, 

the neighborhoods   are obtained using the 

distance metrics Euclidean, Manhattan, Chebychev and 

Canberra respectively and recorded the classification 

accuracy. As a comparison, we implemented the voting based 

kNN classifier, the distance weighted kNN classifier and 

extended kNN  and experimented with various values of k 

(from 1 to 10) and recorded the classification accuracy for 

each of the k values. 

Throughout the experiment the validation method is 

10 fold cross validation. The results for improved kNN, 

majority voting kNN, distance weighted kNN and extended 

kNN are shown in the Tables 1, 2, 3 and 4 respectively. 

From the results, we observe that on average improved kNN 

performed better than majority voting kNN, distance weighted 

kNN and extended kNN on these dataset. The performance of 

the improved kNN did not change much with different values 

of k . Such a satutration property is useful since it relieves 

the designer of the kNN from the burden of searching for the 

optimal value of k. The highest performance is reported when 

the number of neighbors considered is 7. Figure 2 shows the 

average performance of our improved kNN with voting kNN, 

distance weighted kNN and extended kNN as a function of k 

over all datasets. 

—————————————————————————

--- 

Algorithm 1 An Improved Evidence Theoretic KNN 

Input:  

 

 be the training set, where is a vector of d 

attributes or features whose domain is a relation 

) )…….   is a 

class variable whose domain is finite set 

 

Unknown pattern   

Process: 

 for i = 1 to h do 

Compute the neighborhood  with distinct distance 

metric for the unknown pattern t using the training 

set . 

 end for 

 for  i = 1 to h do 

 for  j = 1 to m do 

  Set       

  where   

    

 end for  

 end for 

 for j = 1 to m do 

  Set   =  

 end for 

Set  (t) =  

for j = 1 to m do 

Set    

   where   

 

 end for 

 

 Set  

 Output: Assign t to class   

 

7. CONCLUSION 
Based on the conceptual framework of Dempster Shafer 

Theory and kNN rule, a new non parametric classification 

algorithm adopting a simple and efficient neighborhood 

selection strategy has been proposed. To classify the pattern, 

the algorithm considers several neighborhoods, each of which 

is a set of neighbors. The neighbors are taken as a single 

source of evidence supporting the propositions concerning the 

class membership of the pattern. This evidence is represented 

as single mass function in order to quantify the uncertainty 

attached to the class membership of that pattern. 

Table 1. The classification accuracy of our 

improved kNN algorithm 

Dataset 

Min Max 
Avg. 

Accu 

Samples 

Accu. K 
Accu

. 
K K=1 K=3 K=5 K=7 K=9 

Cancer 92.11 1 94.39 5 93.77 92.11 93.51 94.39 94.04 93.86 

Diabetes 70.13 1 76.10 10 73.57 70.13 72.08 74.16 74.68 74.94 

Ionosphere 87.14 10 90.29 3 89.17 89.14 90.29 89.43 89.43 87.71 

Iris 94.66 4-5 95.33 

1-

3,6-

10 

95.20 95.33 95.33 94.66 95.33 95.33 

OCR 97.95 10 98.47 2 98.20 98.35 98.31 98.27 98.27 98.08 

Table 2. The classification accuracy of majority voting kNN 

algorithm 

Dataset 

Min Max 
Avg. 

Accu 

Samples 

Accu

. 
K Accu. K K=1 K=3 K=5 K=7 K=9 

Cancer 90.88 2 93.16 10 92.23 91.23 92.28 92.63 92.46 92.63 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.5, February 2011 

41 

Diabetes 65.06 
2,7,9

,10 
65.19 3-6 65.14 65.19 65.19 65.19 65.06 65.06 

Ionosphere 80.57 2 84.57 1 82.14 84.57 83.43 82.86 82.00 82.86 

Iris 92.66 10 96.00 
1,3,

5 
94.80 96.00 96.00 96.00 95.33 94.00 

OCR 98.06 2 98.49 1 98.24 98.49 98.42 98.29 98.33 98.26 

Table 3. The classification accuracy of distance weighted 

kNN algorithm 

 

Table 4. The classification accuracy of extended kNN 

algorithm 

Dataset 

Min Max Avg. 

Accu 

Samples 

Accu. K Accu. K K=1 K=3 K=5 K=7 K=9 

Cancer 92.50 1-1 92.50 
1-

1 
92.50 92.50 92.50 92.50 92.50 92.50 

Diabetes 71.43 10 74.16 5 72.84 72.60 73.25 74.16 72.73 71.82 

Ionosphere 81.14 10 84.00 
1-

3 
82.60 84.00 84.00 82.86 81.71 81.43 

Iris 90.66 9,10 94.00 1,2 92.60 94.00 93.33 93.33 92.00 90.66 

OCR 95.98 10 96.98 1 96.40 96.98 96.69 96.41 96.23 96.00 

 

Figure 2. Average Performance of all four kNN over all 

datasets as a function of k. 

This Classifier is different from the extended kNN 

in that it doesn’t adept the hypercube representation of 

neighborhood and also different from TBM classifier in that it 

doesn’t use the time consuming Dempster rule of combination 

to aggregate mass functions for classification. 

In experiments using real world datasets, the 

classifier outperformed on average the majority voting kNN, 

distance weighted kNN and extended kNN.   

In this investigation, we have used the most popular 

distance metrics for the neighborhood computation. It will be 

more interesting to use more distance metrics and their 

combination so that it can deal with uncertainty about the 

class membership of the data. We leave it for future 

investigation.  
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Dataset 

Min Max Avg. 

Accu 

Samples 

Accu. K Accu. K K=1 K=3 K=5 K=7 K=9 

Cancer 91.23 1,2 92.28 4,5,10 91.96 91.23 91.93 92.28 91.93 91.93 

Diabetes 67.79 1,2 73.90 10 71.48 67.79 70.65 72.47 73.38 72.73 

Ionosphere 83.14 7,8 84.57 1,2,4 83.63 84.57 84.29 83.14 83.14 83.14 

Iris 95.33 9,10 97.33 5,7 96.20 96.00 96.67 97.33 97.33 95.33 

OCR 98.35 9 98.65 6 98.48 98.49 98.47 98.38 98.56 98.35 


