
International Journal of Computer Applications (0975 – 8887)

Volume 15– No.5, February 2011

14

An Admission Control Mechanism for Web Servers

using Neural Network

Lahcene AID
Department of Computer Science

University of Tiaret, Algeria
 Laboratoire de Communication

dans les Systèmes Informatiques
École Nationale Supérieure

d’Informatique
Oued Smar, Algiers, Algeria

Malik LOUDINI
Laboratoire de Communication

dans les Systèmes Informatiques
École Nationale Supérieure

d’Informatique
Oued Smar, Algiers, Algeria

Walid-Khaled HIDOUCI
Laboratoire de Communication

dans les Systèmes Informatiques
École Nationale Supérieure

d’Informatique
Oued Smar, Algiers, Algeria

ABSTRACT

Web sites are exposed to high rates of incoming requests.

During temporary traffic peaks, web servers may become

overloaded and their services deteriorate drastically. In this

paper, we propose a method for admission control to prevent

and control overloads in web servers by utilizing neural

network (NN). The control decision is based on the desired

web server performance criteria: average response time,

blocking probability and throughput of web server. We have

designed and developed a NN model able to predict web

server performance metrics based on the parameters of the

Apache server, the core of the Linux system and arrival

traffic. The model predictor captures the complex relationship

between web server performance and its configuration. This

avoids an ad-hoc web server configuration, which poses

significant challenges to the server performance and quality of

service (QoS).

Keywords

Web server, Admission control, QoS, Neural networks.

1. INTRODUCTION
One of the major concerns of the web server administrators is

to provide a fast and reliable service that meets their clients. It

must indeed be capable of providing an efficient service at a

given time, as the number of requests to be served

simultaneously is unpredictable. However, a heavy workload

may induce server thrashing and service unavailability. To

cope with this, admission control can be used, which means

that some requests are allowed to be served by the web server

and some are rejected. In this way a reasonable response time

of admitted requests can be guaranteed.

Existing approaches to admission control apply linear control

theory which does not capture the system nonlinearity [1, 2]

or follow a queuing theory approach where the system can be

accurately modeled but at the expense of a hard model

calibration process which makes it unwieldy to use [3,4].

However, it is important to develop a simple performance

model that guarantees these requirements as a complicated

model usually contains parameters that are difficult to

estimate.

Also, web server’s parameters configuration has a direct

impact on server performance, availability and quality of

service (QoS) [5, 6]. We propose a neuronal model able to

predict the web server performance metrics; the model takes

into account the effects of the effective Apache [7] web server

parameters and the core parameter of the underlying operating

system on which the web server runs. Furthermore, our model

captures the dynamic and the nonlinear behavior of server

systems.

The rest of the paper is organized as follows: The next section

gives an overview of how a web server works, together with a

description of the architecture of Apache [7] which is the

server used in our approach. It also discusses on Neural

Networks. In section 3, we describe our web server model, the

procedure of obtaining data for learning and the training of the

neural network. The section 4 represents the implementation

of our model for predictive admission control. The last section

concludes our work.

2. PRELIMINARIES

2.1 Web Server
A web server is software responsible for accepting HTTP [8]

requests from clients, who are known as web browsers, and

serving them HTTP responses.

A HTTP transaction consists of three steps: TCP connection

setup, HTTP layer processing and network processing. The

TCP connection setup is performed through a three way

handshake, where the client and the server exchange TCP

SYN, TCP SYN/ACK and TCP ACK messages. Once the

connection has been established, the client sends a request for

an object which can be for example static Hypertext Markup

Language (HTML) files, image files or various script files.

The server handles the request and returns the object or the

results of these queries. Finally, the TCP connection is closed

by sending TCP FIN and TCP ACK messages in both

directions.

2.2 Apache
Apache is the most popular web server running today,

accounting for more than 59% of all web domains on the

Internet [9]. Apache is an open-source server, distributed and

maintained by a community of developers under the Apache

Software Foundation. A main focus of the Apache server is

the operational stability. For these reasons, we have chosen

Apache for our modeling.

Apache has a modular structure which allows the user to

include or exclude different functionalities. It is a multi-task

server, which means that it can serve a lot of different requests

simultaneously. How the multitasking is implemented is

highly dependent on what operating system the server is

running on. However, On Windows the requests are handled

by threads contained in a single process. The Prefork module

is often used for Linux and UNIX applications. Here, each

process contains only one thread, and thus, a process handles

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.5, February 2011

15

only one request at a time. The name Prefork indicates that

Apache forks processes before they are needed.

Apache uses a single configuration file in which directives can

be written to control Apache’s behavior. A directive is like a

command for the server. Several directives are directly

related to the server’s performance, the most important ones

are MaxClients, ListenBacklog, and KeepAlive. The

MaxClients directive sets the limit on the number of

simultaneous clients that will be served. A lower value of

MaxClients decreases the number of child processes allowed

in the system. This will free up memory space but reduce the

throughput. If the MaxClients value is set too high it may

cause the server to start swapping when the server load

increases. Connection requests from clients collect in a queue

until an Apache process or thread becomes free to service

them. The maximum length of the queue is controlled with the

ListenBacklog directive. Many operating systems reduce this

value to a system limit. On Linux this limit is the kernel

variable somaxconn [10]. When the queue starts growing the

response time for a client’s request might become very long,

because the average time for each request spends in the queue

will increase. If this queue is limited and made very small, the

server will not be able to handle a load peak without rejecting

some of the client requests. The KeepAlive directive allows

multiple sequential HTTP requests to be made by a client on

the same connection.

2.3 Neural Network Basics
A neuron is a processing unit in a neural network (NN). It is a

node that processes all fan-in from other nodes and generates

an output according to a transfer function called the activation

function [11].

The multilayer perceptron (MLP) is a Feedforword Neural

Network (FNN) with one or more layers of units between the

input and output layers. The architecture of an MLP can be

represented as an acyclic graph, so that neurons in any layer

are connected only to neurons in the next layer and no

feedback between layers.

The training of neural networks can be viewed as a nonlinear

optimization problem in which the goal is to find a set of

network weights that minimize the cost function for given

examples [12]. This kind of parameters (network weights)

estimation is also called learning or training algorithm. The

backpropagation [13] learning algorithm is the most

frequently used method in training the networks.

The powerful of neural networks is due to their strong

learning and generalization capability. After a neural network

learns the unknown relation from given examples, it can then

predict, by generalization, outputs for new samples that are

not included in the learning sample set.

3. WEB SERVER MODEL

3.1 Proposed model
We model the web server using the multilayer perceptron

(MLP). The MLP is having three layers as shown in Figure 1,
one hidden layer between the input and output layers. The

model inputs are MaxClients, queue length and arrival rate.

The queue length represents at the same time the two

parameters ListenBacklog and the limit system somaxconn.

The output layer has 3 output nodes which are the

performance metrics: throughput, average response time and

blocking probability.

Fig 1: An MLP model of web servers.

The throughput is the maximum number of requests served in

a given time period. The response time is the average time

required for the system to respond to a client’s request. The

blocking probability is defined as the ratio between the

number of requests not allowed to be served by the web server

and the total number of requests received by a server in a

measurement period. The number of hidden nodes is fixed at

the training phase.

3.2 Training set
Our goal is to study the web server behavior at various arrival

rates: low, high and even when the arrival exceeds the server's

capacity.

However, to measure server performance it is necessary to run

a tool on the clients’ computers that generates an HTTP

workload. Httperf [14] is a tool for measuring web server

performance. It provides a flexible facility for generating

various HTTP workloads and for measuring server

performance. We have chosen Httperf tool, which generates

HTTP workload according to Poisson distribution.

In order to automate the process of load testing of a web

server, we chose Autobench tool which is a perl wrapper

around Httperf. Autobench runs Httperf a number of times

against each host, increasing the number of requested

connections per second on each iteration, and extracts the

significant data from the Httperf output. Distributed

autobench comprises two programs, autobenchd and

autobench_admin. Autobenchd is a daemon, which should be

installed on each of the client machines. It listens to

instructions from autobench_admin which is used for

controlling the cluster of test servers.

The configuration of the laboratory is illustrated by Figure 2.

One server computer and five client computers connected

through a 100 Mbits/s Ethernet switch.

In order to relate the training set to reality, we have used one

of the servers of the University of Tiaret [15], which was a PC

Pentium dual core 1.8 GHZ with 1GB of RAM. The server

used Debian Linux as operating system and Apache 2.2.9

prefork. The five clients were PCs Pentium IV 1.8 GHz with

512 MB RAM and used Ubuntu Linux 9.4 as operating

system. So, we have installed autobench_admin on one client

computer and autobenchd on each of the others client

machines. The document file was stored in the server's local

hard disk.

Arrival rate (λ) Blocking

probability

Hidden layer

 Average

 response time
Queue length

Throughput MaxClients

Input layer Output layer

.

.

.

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.5, February 2011

16

Fig 2: Configuration of the laboratory.

We examined the effects of Linux kernel parameter and

Apache parameters configuration on performance metrics of

the web server. Indeed, we changed the values of two

parameters: MaxClients from 25 to 300 with step size 25 and

the queue length from 25 at 500 with step size 50.

Autobench_admin contacts the set of daemons on all 4

machines, and instructs them to generate simultaneously

HTTP workload according to Poisson distribution with a rate

parameter λ on the target web server. We changed λ (in

number of requests/second) from 25 to 500 with step size 25.

For each values of λ autobench_admin collates the results

(performance metrics). This allowed us to have a training set

of 4800 samples. We were interested in the following

performance metrics: average response time, throughput, and

blocking probability.

3.3 Training the neural model
Before training, data were normalized by subtracting the mean

and dividing by the standard deviation.

An Hyperbolic tangent function was used on the hidden layer

while a linear function was used on the NN output. Initial

weights were randomly chosen and the NN training was

programmed using MATLAB.

A proper selection on the number of hidden neurons has

significant effect on the network performance. For this, we

increased gradually the complexity of the model from 10 to 34

hidden neurons by adding 4 neurons each time. We found that

over 34 hidden neurons, network becomes too complex and

generalization ability becomes low. A cross-validation method

[16] was used to estimate network generalization capability

rather than rigidly partitioning the data into a separate training

set (used to build the network) and validation set (used to test

the network). We chose 5-fold cross-validation [16, 17].

The data were divided into five approximately equal

partitions, and each partition was tested using networks built

using the four remaining partitions as the training data.

The network with a 3-34-3 architecture was trained five times

with different initializations of weights and biases. The

solution with the lowest error was chosen.

The training was performed using backpropagation algorithm

with adaptive learning rate. This one was increased if the new

iteration error was smaller than the previous iteration error.

On the other hand, it was decreased if the new iteration error

was larger than the previous iteration error. A momentum

parameter was used to accelerate learning.

The model obtained after the learning phase was tested over

20% of the data (i.e., 960 samples) that were not served in

training. It has been found that the trained neural network

model is able to generalize and give a meaningful output for

new samples that are not included in the learning sample set.

The below graphs show the testing results. The graphs were

plotted between the test sample set and the corresponding

outputs. It is seen from the graph that the actual output

approaches to the desired output.

Figures 3, 4 and 5 show the average response time, the

throughput and the blocking probability depending on the

arrival rate. While Figures 6, 7 and 8 show successively the

same metrics but depending on the queue length. Figures 9, 10

and 11 show the same metrics depending on MaxClients.

Fig 3: Average response time depending on arrival rate.

Fig 4: Throughput depending on arrival rate.

 Client1

Autobench_admin

Web server

Ethernet switch

 Client2 Client3

 Client4

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.5, February 2011

17

Fig 5: Blocking probability depending on arrival rate.

Fig. 6: Average response time depending on queue length.

Fig 7: Throughput depending on queue length.

Fig 8: Blocking probability depending on queue length.

Fig 9: Average response time depending on MaxClients.

Fig 10: Throughput depending on MaxClients.

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.5, February 2011

18

Fig 11: Blocking probability depending on MaxClients.

4. IMPLEMENTATION
The trained neural network model was converted in C++

language on Linux platform. The administrator has only to

keyboard the values of the input parameters (MaxClients,

queue length and arrival rate), the NN model predicts instantly

the performance metrics (average response time, the

throughput and the blocking probability). According to the

prediction done, the administrator can change the values of

the following parameters: MaxClients, ListenBacklog and the

kernel variable somaxconn. It is possible to reconfigure the

Apache server during runtime by doing a graceful restart from

the command line. The MaxClients and ListenBacklog values

are first edited in the configuration file and then the command

line is issued to make the running server update its

configuration. Arrival rate is limited using the Linux firewall

iptables [18]. Administrators can use iptables to set the

maximum limit on the number of admitted TCP connections

per second.

However, when the administrator has changed the parameters,

he has done an admission control based on a neural prediction.

If the administrator knows the desired performance metric

values and needs to know the values of the corresponding

parameters (model inputs) in order to configure the web server

and limit the accepted http requests, the program changes the

three values of the Neural Network inputs by iteration and the

estimated outputs are compared with the desired performance

metrics. Then, it retains the input values whose outputs are

near or equal to the desired performance metrics.

5. CONCLUSION
In this paper, we have presented a neural network model able

to predict web server performance metrics.

The adopted NN model inputs were chosen as MaxClients,

queue length and arrival rate. The corresponding outputs were

the performance metrics: throughput, average response time

and blocking probability.

The artificial NN training phase was performed using

backpropagation algorithm with adaptive learning rate.

The experimentations have been carried out on a real web

server at the computer center of the University of Tiaret

(Algeria), in order to evaluate our neural model prediction

performances.

The obtained results show that the designed neural model

ensures a predictive admission control with optimal

configuration of the considered web server. Indeed, it can

predict the performance metrics at both lighter loaded and

overloaded regions.

We can say that we have designed an efficient artificial NN

model with real abilities of performance metrics prediction.

Indeed, this predictor captures the complex relationship

between web server performance and its configuration. This

avoids an ad-hoc web server configuration, which poses

significant challenges to the server performance and quality of

service (QoS).

This model could be used to perform admission control of a

web server incoming requests on the basis of desired criteria.

It could, also, be used for the monitoring of the web server

performances.

As a future work, it would be very interesting to design a real-

time tuning of the web server parameters for a more efficient

neuronal prediction based admission control. It could be

carried out by a feedback control strategy.

6. ACKNOWLEDGMENTS
We would like to thank Youcef Meslem for his support at the

computer center of the university of Tiaret and Abdelkader

Maatoug for his useful help.

7. REFERENCES
[1] Parekh S., Gandhi N., Hellerstein J., Tilbury D., Jayram

T. and Bigus J. 2002. Using Control Theory to Achieve

Service Level Objectives In Performance Management.

Real-Time Syst., 23(1-2), 127–141.

[2] Diao Y., Gandhi N., Hellerstein J., Parekh S. and Tilbury

D. 2002. Using MIMO feedback control to enforce

policies for interrelated metrics with application to the

Apache Web server. In Proceedings of the Network

Operations and Management Symposium.

[3] Cao J. and Nyberg C. 2002. On overload control through

queue length for web servers, in Proceedings of the 16th

Nordic Teletraffic Seminar NTS16, Helsinki University

of Technology, Espoo, Finland.

[4] Robertsson A., Wittenmark B., Kihl M. and Andersson

M. 2004. Admission control for web server systems -

design and experimental evaluation. In Proceedings of

the 43rd IEEE Conference on Decision and Control,

(Dec. 2004).

[5] Elnikety S., Nahum E., Tracey J. and Zwaenepoel W.

2004. Method for Transparent Admission Control and

Request Scheduling in E-CommerceWeb Sites. In 13th

international conference on World Wide Web, New

York, NY, (May. 2004).

[6] Heiss H.-U. and Wagner R. 1991. Adaptive Load Control

in Transaction Processing Systems. In 17th International

Conference on Very Large Data Bases, San Francisco,

CA, USA.

[7] Apache web server, http://www.apache.org.

[8] Stallings W. 2000. Data & Computer Communications.

Prentice Hall, sixth Edition.

[9] December 2010 Web server survey by Netcraft,

http://news.netcraft.com/.

[10] Linux manual page, http://linux.die.net/man/2/listen

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.5, February 2011

19

[11] Du K. -L. and Swamy M. N. S. 2006. Neural Networks

in a Softcomputing Framework, Springer-Verlag London

Limited.

[12] Leondes C. T. 1998. Neural Network Systems

Techniques and Applications. Vol. N°1. Academic Press,

California.

[13] Rumelhart D. E., Hinton G. E. and Williams R. J. 1986.

Learning internal representations by error propagation.

In: Rumelhart DE, McClelland JL (eds) Parallel

distributed processing: Explorations in the microstructure

of cognition, 1:Foundation, 318–362. MIT Press,

Cambridge, USA.

[14] HTTPerf – Mosberger D. and Jin T. 1998. A Tool for

Measuring Web Server Performance. HP Research Labs.

(December. 1998), volume 26 issue 3, ACM Sigmetrics

Performance Evaluation Review.

[15] Tiaret university website, http://www.univ-tiaret.dz.

[16] Hastie T., Tibshirani R. and Friedman J. 2002. The

Elements of Statistical Learning: Data Mining, Inference,

and Prediction. Springer-Verlag, New York.

[17] Setiono R. 2001. Feedforward neural network

construction using crossvalidation. Neural Comput. 13,

2865–2877.

[18] Purdy G. N. 2004. Linux iptables Pocket Reference,

O’Reilly Media Inc, Sebastopol, California, USA.

