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ABSTRACT 

Web sites are exposed to high rates of incoming requests. 

During temporary traffic peaks, web servers may become 

overloaded and their services deteriorate drastically. In this 

paper, we propose a method for admission control to prevent 

and control overloads in web servers by utilizing neural 

network (NN).  The control decision is based on the desired 

web server performance criteria: average response time, 

blocking probability and throughput of web server. We have 

designed and developed a NN model able to predict web 

server performance metrics based on the parameters of the 

Apache server, the core of the Linux system and arrival 

traffic.  The model predictor captures the complex relationship 

between web server performance and its configuration. This 

avoids an ad-hoc web server configuration, which poses 

significant challenges to the server performance and quality of 

service (QoS). 
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1. INTRODUCTION 
One of the major concerns of the web server administrators is 

to provide a fast and reliable service that meets their clients. It 

must indeed be capable of providing an efficient service at a 

given time, as the number of requests to be served 

simultaneously is unpredictable. However, a heavy workload 

may induce server thrashing and service unavailability. To 

cope with this, admission control can be used, which means 

that some requests are allowed to be served by the web server 

and some are rejected. In this way a reasonable response time 

of admitted requests can be guaranteed. 

Existing approaches to admission control apply linear control 

theory which does not capture the system nonlinearity  [1, 2]   

or follow a queuing theory approach where the system can be 

accurately modeled but at the expense of a hard model 

calibration process which makes it unwieldy to use [3,4]. 

However, it is important to develop a simple performance 

model that guarantees these requirements as a complicated 

model usually contains parameters that are difficult to 

estimate. 

Also, web server’s parameters configuration has a direct 

impact on server performance, availability and quality of 

service (QoS) [5, 6]. We propose a neuronal model able to 

predict the web server performance metrics; the model takes 

into account the effects of the effective Apache [7] web server 

parameters and the core parameter of the underlying operating 

system on which the web server runs. Furthermore, our model 

captures the dynamic and the nonlinear behavior of server 

systems. 

The rest of the paper is organized as follows: The next section 

gives an overview of how a web server works, together with a 

description of the architecture of Apache [7] which is the 

server used in our approach. It also discusses on Neural 

Networks. In section 3, we describe our web server model, the 

procedure of obtaining data for learning and the training of the 

neural network. The section 4 represents the implementation 

of our model for predictive admission control. The last section 

concludes our work.   

2. PRELIMINARIES 

2.1 Web Server 
A web server is software responsible for accepting HTTP [8] 

requests from clients, who are known as web browsers, and 

serving them HTTP responses. 

A HTTP transaction consists of three steps: TCP connection 

setup, HTTP layer processing and network processing. The 

TCP connection setup is performed through a three way 

handshake, where the client and the server exchange TCP 

SYN, TCP SYN/ACK and TCP ACK messages. Once the 

connection has been established, the client sends a request for 

an object which can be for example static Hypertext Markup 

Language (HTML) files, image files or various script files. 

The server handles the request and returns the object or the 

results of these queries. Finally, the TCP connection is closed 

by sending TCP FIN and TCP ACK messages in both 

directions. 

2.2 Apache 
Apache is the most popular web server running today, 

accounting for more than 59% of all web domains on the 

Internet [9]. Apache is an open-source server, distributed and 

maintained by a community of developers under the Apache 

Software Foundation. A main focus of the Apache server is 

the operational stability. For these reasons, we have chosen 

Apache for our modeling. 

Apache has a modular structure which allows the user to 

include or exclude different functionalities. It is a multi-task 

server, which means that it can serve a lot of different requests 

simultaneously. How the multitasking is implemented is 

highly dependent on what operating system the server is 

running on. However, On Windows the requests are handled 

by threads contained in a single process. The Prefork module 

is often used for Linux and UNIX applications. Here, each 

process contains only one thread, and thus, a process handles 
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only one request at a time. The name Prefork indicates that 

Apache forks processes before they are needed. 

Apache uses a single configuration file in which directives can 

be written to control Apache’s behavior. A directive is like a 

command for the server.  Several directives are directly 

related to the server’s performance, the most important ones 

are MaxClients, ListenBacklog, and KeepAlive. The 

MaxClients directive sets the limit on the number of 

simultaneous clients that will be served. A lower value of 

MaxClients decreases the number of child processes allowed 

in the system. This will free up memory space but reduce the 

throughput. If the MaxClients value is set too high it may 

cause the server to start swapping when the server load 

increases. Connection requests from clients collect in a queue 

until an Apache process or thread becomes free to service 

them. The maximum length of the queue is controlled with the 

ListenBacklog directive. Many operating systems reduce this 

value to a system limit. On Linux this limit is the kernel 

variable somaxconn [10]. When the queue starts growing the 

response time for a client’s request might become very long, 

because the average time for each request spends in the queue 

will increase. If this queue is limited and made very small, the 

server will not be able to handle a load peak without rejecting 

some of the client requests. The KeepAlive directive allows 

multiple sequential HTTP requests to be made by a client on 

the same connection. 

2.3 Neural Network Basics 
A neuron is a processing unit in a neural network (NN). It is a 

node that processes all fan-in from other nodes and generates 

an output according to a transfer function called the activation 

function [11]. 

The multilayer perceptron (MLP) is a Feedforword Neural 

Network (FNN) with one or more layers of units between the 

input and output layers. The architecture of an MLP can be 

represented as an acyclic graph, so that neurons in any layer 

are connected only to neurons in the next layer and no 

feedback between layers. 

The training of neural networks can be viewed as a nonlinear 

optimization problem in which the goal is to find a set of 

network weights that minimize the cost function for given 

examples [12].  This kind of parameters (network weights) 

estimation is also called learning or training algorithm. The 

backpropagation [13] learning algorithm is the most 

frequently used method in training the networks. 

The powerful of neural networks is due to their strong 

learning and generalization capability. After a neural network 

learns the unknown relation from given examples, it can then 

predict, by generalization, outputs for new samples that are 

not included in the learning sample set. 

 

3. WEB SERVER MODEL 

3.1 Proposed model 
We model the web server using the multilayer perceptron 

(MLP). The MLP is having three layers as shown in Figure 1, 
one hidden layer between the input and output layers. The 

model inputs are MaxClients, queue length and arrival rate. 

The queue length represents at the same time the two 

parameters ListenBacklog and the limit system somaxconn. 

The output layer has 3 output nodes which are the 

performance metrics: throughput, average response time and 

blocking probability. 

 

Fig 1: An MLP model of web servers. 

The throughput is the maximum number of requests served in 

a given time period. The response time is the average time 

required for the system to respond to a client’s request. The 

blocking probability is defined as the ratio between the 

number of requests not allowed to be served by the web server 

and the total number of requests received by a server in a 

measurement period. The number of hidden nodes is fixed at 

the training phase. 

3.2 Training set  
Our goal is to study the web server behavior at various arrival 

rates: low, high and even when the arrival exceeds the server's 

capacity. 

However, to measure server performance it is necessary to run 

a tool on the clients’ computers that generates an HTTP 

workload. Httperf [14] is a tool for measuring web server 

performance. It provides a flexible facility for generating 

various HTTP workloads and for measuring server 

performance. We have chosen Httperf tool, which generates 

HTTP workload according to Poisson distribution. 

In order to automate the process of load testing of a web 

server, we chose Autobench tool which is a perl wrapper 

around Httperf. Autobench runs Httperf a number of times 

against each host, increasing the number of requested 

connections per second on each iteration, and extracts the 

significant data from the Httperf output. Distributed 

autobench comprises two programs, autobenchd and 

autobench_admin. Autobenchd is a daemon, which should be 

installed on each of the client machines. It listens to 

instructions from autobench_admin which is used for 

controlling the cluster of test servers. 

The configuration of the laboratory is illustrated by Figure 2. 

One server computer and five client computers connected 

through a 100 Mbits/s Ethernet switch. 

In order to relate the training set to reality, we have used one 

of the servers of the University of Tiaret [15], which was a PC 

Pentium dual core 1.8 GHZ with 1GB of RAM. The server 

used Debian Linux as operating system and Apache 2.2.9 

prefork.  The five clients were PCs Pentium IV 1.8 GHz with 

512 MB RAM and used Ubuntu Linux 9.4 as operating 

system. So, we have installed autobench_admin on one client 

computer and autobenchd on each of the others client 

machines. The document file was stored in the server's local 

hard disk. 

 

Arrival rate (λ) Blocking 

probability 

Hidden layer 

 Average 

 response time 
Queue length 

Throughput MaxClients 

Input layer Output layer 

.

.

. 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.5, February 2011 

16 

 

Fig 2: Configuration of the laboratory. 

 

We examined the effects of Linux kernel parameter and 

Apache parameters configuration on performance metrics of 

the web server. Indeed, we changed the values of two 

parameters: MaxClients from 25 to 300 with step size 25 and 

the queue length from 25 at 500 with step size 50.  

Autobench_admin contacts the set of daemons on all 4 

machines, and instructs them to generate simultaneously 

HTTP workload according to Poisson distribution with a rate 

parameter λ on the target web server. We changed λ (in 

number of requests/second) from 25 to 500 with step size 25. 

For each values of λ autobench_admin collates the results 

(performance metrics). This allowed us to have a training set 

of 4800 samples. We were interested in the following 

performance metrics: average response time, throughput, and 

blocking probability. 

3.3 Training the neural model 
Before training, data were normalized by subtracting the mean 

and dividing by the standard deviation. 

An Hyperbolic tangent function was used on the hidden layer 

while a linear function was used on the NN output. Initial 

weights were randomly chosen and the NN training was 

programmed using MATLAB. 

A proper selection on the number of hidden neurons has 

significant effect on the network performance. For this, we 

increased gradually the complexity of the model from 10 to 34 

hidden neurons by adding 4 neurons each time. We found that 

over 34 hidden neurons, network becomes too complex and 

generalization ability becomes low. A cross-validation method 

[16] was used to estimate network generalization capability 

rather than rigidly partitioning the data into a separate training 

set (used to build the network) and validation set (used to test 

the network). We chose 5-fold cross-validation [16, 17]. 

The data were divided into five approximately equal 

partitions, and each partition was tested using networks built 

using the four remaining partitions as the training data. 

The network with a 3-34-3 architecture was trained five times 

with different initializations of weights and biases. The 

solution with the lowest error was chosen. 

The training was performed using backpropagation algorithm 

with adaptive learning rate. This one was increased if the new 

iteration error was smaller than the previous iteration error. 

On the other hand, it was decreased if the new iteration error 

was larger than the previous iteration error. A momentum 

parameter was used to accelerate learning. 

The model obtained after the learning phase was tested over 

20% of the data (i.e., 960 samples) that were not served in 

training. It has been found that the trained neural network 

model is able to generalize and give a meaningful output for 

new samples that are not included in the learning sample set. 

The below graphs show the testing results. The graphs were 

plotted between the test sample set and the corresponding 

outputs. It is seen from the graph that the actual output 

approaches to the desired output. 

Figures 3, 4 and 5 show the average response time, the 

throughput and the blocking probability depending on the 

arrival rate. While Figures 6, 7 and 8 show successively the 

same metrics but depending on the queue length. Figures 9, 10 

and 11 show the same metrics depending on MaxClients. 

 

 

Fig 3: Average response time depending on arrival rate. 

 

 

Fig 4: Throughput depending on arrival rate. 
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Fig 5: Blocking probability depending on arrival rate. 

 

 

Fig. 6: Average response time depending on queue length. 

 

 

Fig 7: Throughput depending on queue length. 

 

 

 

Fig 8: Blocking probability depending on queue length. 

 

 

Fig 9: Average response time depending on MaxClients. 

 

 

Fig 10: Throughput depending on MaxClients. 
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Fig 11: Blocking probability depending on MaxClients. 

4. IMPLEMENTATION 
The trained neural network model was converted in C++ 

language on Linux platform. The administrator has only to 

keyboard the values of the input parameters (MaxClients, 

queue length and arrival rate), the NN model predicts instantly 

the performance metrics (average response time, the 

throughput and the blocking probability). According to the 

prediction done, the administrator can change the values of 

the following parameters:  MaxClients, ListenBacklog and the 

kernel variable somaxconn. It is possible to reconfigure the 

Apache server during runtime by doing a graceful restart from 

the command line. The MaxClients and ListenBacklog values 

are first edited in the configuration file and then the command 

line is issued to make the running server update its 

configuration. Arrival rate is limited using the Linux firewall 

iptables [18]. Administrators can use iptables to set the 

maximum limit on the number of admitted TCP connections 

per second. 

However, when the administrator has changed the parameters, 

he has done an admission control based on a neural prediction. 

If the administrator knows the desired performance metric 

values and needs to know the values of the corresponding 

parameters (model inputs) in order to configure the web server 

and limit the accepted http requests, the program changes the 

three values of the Neural Network inputs by iteration and the 

estimated outputs are compared with the desired performance 

metrics. Then, it retains the input values whose outputs are 

near or equal to the desired performance metrics.  

5. CONCLUSION 
In this paper, we have presented a neural network model able 

to predict web server performance metrics. 

The adopted NN model inputs were chosen as MaxClients, 

queue length and arrival rate. The corresponding outputs were 

the performance metrics: throughput, average response time 

and blocking probability. 

The artificial NN training phase was performed using 

backpropagation algorithm with adaptive learning rate. 

The experimentations have been carried out on a real web 

server at the computer center of the University of Tiaret 

(Algeria), in order to evaluate our neural model prediction 

performances. 

The obtained results show that the designed neural model 

ensures a predictive admission control with optimal 

configuration of the considered web server. Indeed, it can 

predict the performance metrics at both lighter loaded and 

overloaded regions. 

We can say that we have designed an efficient artificial NN 

model with real abilities of performance metrics prediction. 

Indeed, this predictor captures the complex relationship 

between web server performance and its configuration. This 

avoids an ad-hoc web server configuration, which poses 

significant challenges to the server performance and quality of 

service (QoS). 

This model could be used to perform admission control of a 

web server incoming requests on the basis of desired criteria. 

It could, also, be used for the monitoring of the web server 

performances. 

As a future work, it would be very interesting to design a real-

time tuning of the web server parameters for a more efficient 

neuronal prediction based admission control. It could be 

carried out by a feedback control strategy. 
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