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ABSTRACT

Transient behavior of a first-come first-served, two-
dimensional state M/G/1 queuing model with working
vacation is studied. As soon as the system becomes empty, the
server leaves the system and takes vacation for random
duration during which it may perform ancillary duty and is
called on working vacation. The server works with different
service rate rather than completely stopping service during a
vacation. Both service times during busy period and vacation
period and vacation times are assumed to follow general
distribution. The Laplace transform of the probabilities of
exact number of arrivals and departure by a given time are
obtained. The emphasis in this paper is theoretical but
numerical assessment of operational consequences is also
given and presented graphically. Finally some particular cases
are derived there from.
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1. INTRODUCTION

Much of the vast literature on queueing models with working
vacation is confined to results describing steady-state
operation only. But in many potential applications of
queueing theory, the practitioner needs to know how the
system will operate up to some instant t. Furthermore, if the
system is empty initially, the fraction of time the server is
busy and the initial rate of output, etc. will be below the
steady-state values, and hence, the use of steady-state results
to obtain these measures is not appropriate. Thus, the
investigation of the transient behaviour of queueing processes
is also important from the point of view of the theory and its
applications.

In the present paper, we consider an M/G/1 queueing model
with Exhaustive service and Multiple vacations such that the
server works with different service rates rather than
completely stops service during a vacation period. Such a
vacation is called ‘Working Vacation’. The server begins a
working vacation of random length at the instant when the
queue becomes empty. If the server returns from a working
vacation to find the system not empty, it starts to work
immediately and continues until the system becomes empty
again (Exhaustive service). If the server returns from a
working vacation to find no customers waiting, it begins
another working vacation immediately, and continues in this
manner until it finds at least one customer waiting upon
returning from a working vacation (Multiple working
vacations). It was Servi & Finn [10] who first analyzed the
queueing system with working vacations and obtained the
queue length distribution, mean and variance of the
M/M/1/WV  queue. Subsequently, Wu & Takagi [11]

Ruchi
Research Scholar
Department of Statistics & Operational Research,
Kurukshetra University Kurukshetra,
Haryana, INDIA

generalized the result of Servi & Finn [10] to an M/G/1 queue
with working vacations. He derived the distributions for the
queue size and the system time for an arbitrary customer in
the steady state. Many researchers like Kim, Choi & Chae [6],
Baba [1], Banik et al. [2], Liu et al. [8] and Li & Tian [7]
worked on queueing system with working vacations.

2. MODEL DESCRIPTION

In this paper, we analyze the transient behavior of two state
M/G/1 queue with working vacations. The state of the system
is given by (i, j), where ‘i’ is the number of arrivals and ‘j” is
the number of departures until time t. This queueing system
is referred to as the two state M/G/1/WV queue in this paper.
We follow Pegden & Rosenshine [9], and obtained a more
informative measure by finding out

» Laplace transforms of the probabilities of exact number
of arrivals and departures by a given time

Number of units arrived by time t

Number of units served by time t

Waiting time distribution and cumulative distribution for
sojourn time

Server’s utilization time

numerically and graphically for the above situations for the
case when the service times and vacation times are
exponential. Finally some particular cases of interest are
derived there from.

YV VYVV

The queueing system investigated in this paper assumes that
during the working vacation period and otherwise also the

customers arrive according to a poisson process with ratek.
Queue discipline is first-come-first-served. The service time
distribution during busy period and working vacation period is
general with probability density D1(x) and D2(y) respectively.
Working vacation time distribution is general with probability
density D3(y). Various stochastic processes involved in the
system are statistically independent.

3. DEFINITIONS AND NOTATIONS
Pi,j,B (X, t)A = The probability that there are exactly i

arrivals and j departures by time t and the server is busy in
relation to the queue and the elapsed service time lies between

xand X + A i>]

Py (Y,t)A =The probability that there are exactly i

arrivals and j departures by time t and the server is on working
vacation and the elapsed service time during vacation lies
betweenyandy FASI2]
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Pi, i (t) = The probability that there are exactly i arrivals and j o J‘(s ren@du i1 [ i-1-k, Xk . -
departures by time t. P B(s) = _[e ‘ H _[ o _["13(}’)7L
N, (X)A,n,(Y)A and n,(y)Aare  the first  order o\ ket o 0
probabilities that the corresponding service time during busy —j(s+l+n3(v)+n2(v))dv K+ Yo j[(n;(v)ﬁ]:(v))dv K, +1
period, service time during vacation period and vacation time e’ e’ de o, 1Ay
will be completed in time respectively provided the same had k=l Ka
not been completed till time x and y . And ik
o s [deik,k ] X ;>0 (12)
Dix)=n;(x)e *  ,Dy(y)=m,(y)e " k1
7j‘n3(v)dv y
and D, (y) = n;(y)e * o femmemon (i (i=iok Ve
PIJV(S) J. 0 {zklj ky H
The Laplace transform of P j(t) 0 k=0 k=l 0
61‘],0
Pij(s) = [e™P, (t) dt Re(s)>0 M j(" (rem (v
16 = [P0 dt Re(s jm(y)Pkwv(y,s)dy e
4. SOLUTION OF THE PROBLEM i—jk, i Yu e
N [Tdy. o, |+ j Jnl(x)PUIB(X s)dx
Initially k=1
Po,o,v (0’0) =1 2 y
& clearl J @y eav (i
y e’ Hinfjfk, dy
Py5(0,0)=0 3) o
;i>j21 13
The difference-differential equations governing the ) ' (13)
system are _ % [ @du | izj-if i-j-l-k, X
0 0 iiB(s)=1e?°
api.j.v (y.H)+ ;ypi'j'v (y,t)= _{7\ +n5(y)+ T]z(Y)}Pi,j,v (y.H)+ )\‘Pifl,j,\/ (Yat}? ! ( ) -([ ool ko D
i>j20 (4 w
i-j-1-k >
a 0 1> A ]T] (Y)Pk1+j+1,j,V (y9 S)dy
SR SR 0 =R s 1206 I 3
2 ) 1 1=k, i—j1( i=j-=k, Xk
o P00+ 2 P (o0 =m0 (0 + 4B (00 =80 ): T,y [+ 2| [T |
i>j>0 (6) ky=1 k=0 k,=I 0

The appropriate boundary conditions are

Py (0,0A = jm(y) o (% 0dy (13, );

i—j-1-k;
J’m(x)w FHPy s (X, s)d){ l_IdXl Kok J}dx

ky=1

;1>321 (14

i>j>0 (7)
Py (0.0 = [, 0P,y (020dy + [, GOP Ly (k0 Piv(®)= j e O {Jn WPy e
0 0
i>0 8) < — )
Inl (X)Pii-1,8(x,5)dx pdy ;1>0
P 5(0.0A = jm(y) v (y.bdy + j MOOP, 5 (5,0dx(1-85,); 0
i>j>0 (9 5. VERIFICATION OF MODEL
Using (1) in equations (4) to (6) along with initial conditions The Laplace transform ﬁi,- (S) of the probability P, (t) that
and solving recursively, we have e
_ exactly i units arrive by time t is
Poov(s)=—-— (10) _ i _
7; ) Pi.(s) = Z {Pi,j,B (s)+Pijv (S)}
[y, enav (i Vi) fonern, v ic =
Plov(S) 7»'.[ 0 j e’ (Hin—l—k de 7\.i
0 0o = =—— ;120 (16)
>0 11 (s+1)"



i

Clearly Z {lsi,j,v (s) + li)i,j‘B (s)}: -
i=0 j=0

for > Piels) = ! (17)
i=0 s

or ipi .(t)=1 »a verification.
i

The Laplace transform of the mean number of arrivals by time
t, is

3 iPe(s) == (18)
i S

Hence mean number of arrivals by timet = At, an obvious
result.
The Laplace Transform E., j(s) of the probability P, i®

that exactly j units depart by time t is

Pei®)=3 Pijv(s)+ Piin(s) (19)

i=j

6. PARTICULAR CASES

In this section, we shall examine whether by setting
appropriate parameters, our results are consistent with known
results for some specific cases.

Case I- Results for the case, when the service time during
busy period, service time during vacation period and vacation
time are exponentially distributed i.e.

M (X) =g, (y)=py, and n;(y)=w are obtained by

substituting 1, (X) = y,M,(y) =y and 1, (y) = win

equations (10) to (15).

Pooy (s) = —— (20)
s+ A

B i .

Piov(s) = A ;i>0 @1

S+ME+A+py +w)

13_ (S)— XIW il 1 ‘
O S )t A+ )+ Ay + W) Sl st Aty

i—k-1
[1j ;i>0 (22)
S+A+Uy +W
1
PIIV(S) (HVPH ]V(S)+HBP1| lB(S))
ey
;i>0 (23)
_ o i-j i-j-k; Yo
Pi,j,V (S):J‘e—(s+k+pv+w)y Z}\'l -k, H I HV
0 k=0 k=1
5 i-j-k,
Pk 1+hJ- 1V(5)( (Mww)k10 Hle j-1-k, -k, +
ky=l

l

yk| _ i-j
o _f e Pije(9)e™ ™ [ dy,_ . |pdy
0

k=1 k=1

qs i1 (24)
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k; =0\ k,=l ¢

o)
Pijs(s)= J‘ef(”kﬂl“)x
0

_ i—j-1-k, ijo1f i-j-1-k, Xk,
P +js1iv (8) I IdXi_j_kl_kz + Z I [T
ky=1 K=ol k=l
i-j-1-k,
i—j-1-k
A lPkl+J+1J 1.8(8) | IdX1 ik, —k, dx
k=1

;i>3>1 (25)
(20) to (25) coincide with corresponding equations (10) to
(13) of Indra & Ruchi [5].

SUB-CASES

Sub-case I(a) - When there is no work during vacation period
ie. py is zero. Letting py, =0 in equations (20) to (25), we

have

§o,o,v (s)= L (26)
S+A

S Al .

Piov(s)=—— ;1>0 27
S+ (s+A+w)!

_ 1 i—1 k

Piop(s) = Mw z !

(s+A)(s+A+W(s+A+w)igls+A+p

(Ijm ;i>0 (28)

S+A+w
Piiv(s)= (ujpi,il,B(S) ;1>0 (29)
S+A
_ ® ioj Yo ) i-j
Pijv(s) =_[ g (srhwy ) i _[ WPii1s(s)e™ [dew.k‘ ] dy
0 k, 10 k=1

i>ji=1 (30)

@© i—

-1 i=j
PIJB(S) J. —(s+k+p Z

k=

k=
J. AT WP v (8)
0

=)

~
N

o

-k sz

J‘ xl)lk,
0

_ i—j1-k,
P, +jr1j-1.B (S)( H dxi—j—k,—kz ] dx

~

,=

i-j-1-k, i1 i-j-
dei—j—krkz + Z

k,=1 k, =0

k,=1
;i>j=1 (31

These results agree with equations (1.2.15) to (1.2.20) of

Indra [4].

Sub-case I(b) - Along with case I (a), when server is

instantaneously available and he does not go for a vacation,

the mean vacation time w™! = 0 in (26) to (31), we have

— — 1
Poo(s)=Poo,v(s)=—— (32)
S+A

Pi.o(s)=Pi,o,B(s)=(H;:+uj i Si>0  (33)
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I(s+k+n1(u))du i—j-1f i-j-1-k sz @

i—j-1-k,
r Y T (i k 1)P1JB(S) j ig=0{ =l ! !k
B B i+ k- | it

PH(S) PnV(S) [ +XJP“ IB(S) ;1>0 (34

S+A+p = i-j-1-k,
(S+x)k-1 o n3(Z)Pk1+J+1JV(Y>S)dy HdX1 ~i~k; -k, +
= i>j>0  (35) ko=l
(s+A+p)

i1 i-j-1k, Xiy o

(32) to (35) coincide with equation (5) of Pegden & ik,
Rosenshine [9]. z H J‘Th (X»\' : Pk1+j+l,j—1,B (X, S)dX
0

k;=0\ k,=I 0
Case II — When server is on vacation only, then rate of doing

work during vacation period is zero. Letting 1, (y) =0 in (10) -1k,
to (15), we have HdX1 ik -k, dx
= 1 k,=1
Poo,v(s) =—— (36) : o
s+ ;i>j>1 (41)
I(s+k+n3(w))dw o Y _[Tls(W))dW ;Flgese ;esults agree with equations (1.5.15) to (1.5.20) of
Piov(s) = x'j [17] | ndra [4).
0 k=0 o
6. NUMERICAL RESULTS
(H dy“*k jdy In this section, we present numerical illustrations in order to
. justify the implementation of analytical results. We have used
;1>0  (37) software MATLAB to develop computational program.
X 1. The numerical results for the probabilities of exact
© I(s+h+n1(u))du it i1k Ko ) © ’
is1-k ki+1 number of arrivals
Pion(s)=[e j s
0 1: kz*l 0 . . . . :
, , (i) by a given time i.e. z Pi,j(t)
—J.(s+x+n3(w))dw K+l Yio I(m(w))dw K, +1 =0
e’ e’ dekﬁrszz ) . o
k=l 9 ky=1 (ii) during busy period i.e. Z Pi,j,B ()

i-1-k, =0
[ [Tdx s de ;i>0  (38)

i
i1 (iii) and during vacation period i.e. z Piv(®
=0

o0 o0

P. . _ —(s+M)y D. .

PI’I’V(S)_I © I M (X)Pii-1.8(x,5)dx rdy are computed for different sets of parameter and are
0

0 summarized in Table — I. The Table — I shows complete
;i >0 (39) agreement with the Table — I of Pegden & Rosenshine [9]
except the columns having probabilities of arrivals during
® fj'<s+k+n3<w )dw i-j Vi busy period and vacation period.
Piiv(s)=[e " A" J[ I1] Jjnl(x)P” 18 (x,5)dx
0 ki=l o Jo

Table-1 is based on the relationship

j(n; wdw (i -t -
e’ # [ [dyi s |[dy Pr {i arrivals in (0, t)} = %z Z Pi,j(t)
1 ! =0

k=
(> =1 (40)
where Pi,j(t) = Pi,j,V ) + Pi’j’B ) (1-8; ).
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Table —1I 3 ] 0.00703 | 0.01723 | 0.00670 | 0.00180 ] 0.00018476
4 | 000144 | 0.01624 | 0.01082 | 0.00410 | 0.00060433
n W t l —At i i i i
A HB| py e Q t) SR | TP SR, 5 1 0.00019 | 0.01113 | 0.01280 | 0.00685 | 0.00145219
il =0 ¥0 =0 6 | 0.00001 | 0.00562 | 0.01127 | 0.00854 | 0.00259984
7] 0.00000 | 0.00179 | 0.00631 | 0.00677 | 0.00296147
112 [T |1 |3]1 0149361 | 00122308 | 0.1371304 | 0.1493612
112 [T |1 |3]3] 0224042 | 00678183 | 0.1562235 | 0.2240418 P (i Table —III
Values of t)for A =1 =4 =4 =1
112 [T |1 |3]5] 0100819 | 00546483 | 0.0463363 | 0.1008188 v3.9 My =4 py =4&w
i =1 t=3 t=5 t=7 t=10
202 [T |1 |3]1] 0014873 | 00012179 | 0.0136546 | 0.0148725 0 [ 045816 | 0.06223 0.00842 0.00113 0.0000567
1| 0.34083 | 0.17051 0.03992 0.00768 0.0005527
202 [T |1 3|3 0089235 | 00270118 | 0.0622233 | 0.0892350 oiTe 055138 0090 003555 00036808
212 [ 1 [ 1 [ 3]5 [0.160623 | 0.0868008 | 0.0738223 | 0.1606231 3 [ 0.02458 | 0.20747 0.14811 0.05789 0.0087187
4] 0.00350 | 0.13755 0.17363 0.09699 0.0211590
112 [T |1 |4 1] 0073263 | 00045651 | 0.0686975 | 0.0732625 =~ 17000036 1 0.07156 0.16145 0.12915 0.0408493
T2 [T |1 |4] 30195367 | 0.0448534 | 0.1505134 | 0.1953668 6 | 0.00002 | 002982 1 0.12163 1 0.13957 | 0.0640349
7 [ 0.00001 | 0.00913 0.06789 0.11175 0.0743153
112 [ 1 |1 |45 0156293 | 00680836 | 0.0882098 | 0.1562934
2012 [T [ 1 [ 4] 1000268 | 00001672 | 0.0025165 | 0.0026837 Table — IV
202 [ 1 |1 |43 002826 | 00065721 | 0.0220540 | 0.0286261 Values of P(j, t) for A=1,p; =4,p, =4&w =1
202 [T [ 1 [4]5 0091604 | 0.0399038 | 0.0516998 | 0.0916036 j t=1 t=3 t=5 t=7 t=10
204 [2 [ 1 |45 0091604 | 00137116 | 0.0778920 | 0.0916036 0 048440 ) 0.066379 | 0.00898 | 0.00121 ] 0.00006
1| 036114 | 0.182525 | 0.04267 | 0.00820 | 0.00059
T2 [T |1 |4]4] 0195367 | 00645246 | 0.1308422 | 0.1953668
2 | 0.12430 | 0.248821 | 0.10104 | 0.02765 | 0.00287
T2 [T |1 |3]6] 0050409 | 00322999 | 0.0181094 | 0.0504094 —o0zc0r o555 o555 o 0e199 0000953
T2 [ 1 |1 |4 4] 0195367 | 00645246 | 0.1308422 | 0.1953663 T To00570 T o1asess 018623 070385 | o023eti
1]2 1 1 31 6 | 0.050409 0.0322999 | 0.0181094 | 0.0504094 5 0.00038 0.077192 0.17272 0.13769 0.043449
6 | 0.00002 | 0.031621 | 0.12794 | 0.14634 | 0.066996
7 | 0.00000 | 0.009139 | 0.06789 | 0.11175 | 0.074315
2. The departure process from the M/M/1 queue has the Total | 0.99998 | 0.988095 | 0.86662 | 0.59871 | 0.220220
distribution functionPp(j, t), the probability that exactly j

customers have been served by time t. In terms of Pij(t)’ we
have

PG, =3P,

e

& P(,0=Ps(, )+ Py (1)

where py (j,1) = 2Ps® & pG.0=3P, 0
1=] i=j
Tables IL, III & IV show values of Py (j,t), Py (j,t) & P(j,t)

respectively for different values of t. Table IV coincides up to
six decimal places with table I of Hubbard et al. [3] because
they computed 28 values & we are able to compute only 8
values.

Figs. 2(a)-2(c) display the effect of different values of
AonPy(j,), Py (j,0) & P(,)-

Table — II
Values of Py (j,t) for A=1,p, =4,n, =4&w=1
j t=1 t=3 t=5 t=7 t=10
0 0.0 0.0 0.0 0.0 0.0
1 0.02623 | 0.00414 | 0.00056 | 0.00007 0.00000378
2 0.02030 | 0.01200 | 0.00274 | 0.00052 0.00003742

3. The probability of exactly n customers in the system at
time t, denoted by P(n, t) can be expressed in terms of

OP
P, =3Py (0% POO=Py(n0)+Py(n,0)
=0

Where
PB (n’ t) = z Pj+n,j,B (t) & PV (n’ t) = Z Pj-H‘l,j,V (t)
=0 =0

Values with

of Py (n,t), Py (n,t),

w=1

and P(n,t)

parameters A =1, and py =1 for

Hp =2,
different values of t are shown in the following tables.

Figs. 3(a)-3(c) depict the effect of different values of
AonPy(n,t), Py (n,t) & P(n,t).

Table V for P5(n, t)
N t=1 t=3 t=5
0 0.0 0.0 0.0
1 0.082290012 0.116579206 0.114237580
2 0.041450927 0.093201930 0.093478491
3 0.012999844 0.052851773 0.054290691
4 0.003066883 0.024798463 0.025659204




5 0.000584727 0.009916438 0.009929580
6 0.000093697 0.003299066 0.003000457
7 0.000012835 0.000829619 0.000633436
8 0.000001365 0.000118837 0.000070241
Table VI for Py, (n, t)
N t=1 t=3 t=5
0 0551515356 0.421382585 0392520270
1 0.215830892 0.166496430 0.149569409
2 0.069400881 0.065943899 0.056541479
3 0.018069955 0.025826719 0.021010086
4 0.003870518 0.009800191 0.007533957
5 0.000697602 0.003510927 0.002516171
6 0.000107746 0.001138796 0.000732218
7 0.000014475 0.000303332 0.000163226
8 0.000001576 0.000049791 0.000020523
Table VII for P(n, t)
N t=1 t=3 t=5
0 0.551515356 | 0.421382585 | 0.392520270
1 0.298110904 | 0.283075636 | 0.263806989
2 0.110851808 | 0.159145829 | 0.150019970
3 0.031069799 | 0.078678492 | 0.075300777
4 0.006937401 | 0.034598654 | 0.033193161
5 0.001282329 | 0.013427365 | 0.012445751
6 0.000201443 | 0.004437862 | 0.003732675
7 0.000027310 | 0.001132951 | 0.000796662
8 0.000002940 | 0.000168628 | 0.000090764
Total | 0.999999290 | 0.996048002 | 0.931907019

4. The waiting time distribution for a customer can be
derived as P(W>T|t), the probability that a customer
waits more than T time units in the system, given that the
customer arrives at time t.

P(W>T[0=" p(number of services by timet<n +1)

n=0

P, (0= ¢y i@m ®
S:

n=0s=0

The cumulative distribution for the sojourn time in the
system is

PWE Tl=1- e—mii(uf|)spn ®
S

n=0s=0

Table — VIII is based on the above relationships and the
graphical representation for waiting time and cumulative
distribution for the sojourn time in the system has also been
shown in the fig — 4 and 5 respectively.

Table-VIII
ForA =1,p, =l,u;=2, w=1

P(W> T [f)

0.66237681368507

0.26611626185091

0.07975130381442

0.02106267584575

0.00516058582580

NN W] N —~|A

0.00119987862663
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5. The system utilization, i.e. the fraction of time the server
is busy until time t can also be expressed in terms of Pi j 1.

Thus the fraction of the time the system is empty and
consequently the server is on working vacation is

Uv (t) = i Zl‘, Pi,j,v (t)

and the fraction of time that the system is non-empty and
hence the server utilized is

Ua0=2 3 P50

also total utilization time of server is given by
UM =Ug(®+Uy(©®

Table — IX is based on the above relationships and the
graphical representation has also been shown in the figs. —

6(a), 6(b) and 6(c).

Table-IX
Forh =1,u, =l,puz=2, w=1

t | Utilization time Utilization time Total Utilization time

during busy period during work?ng U(t)

U, (t) vacation period

Uy (1)

1 0.14044480842 0.859471950429 0.9999167588507
2 0.24487805973 0.750588134738 0.9954661944737
3 0.27965057813 0.686840886556 0.9664914646911
4 0.25857017114 0.630755850451 0.8893260215974
5 0.20603419772 0.556149265245 0.7621834629729

Probability of arrivals during

Number of arrivals (i)

Number of arrivals (i)

Fig-1(a) Fig-1(b)



Probability of arrivals

Waiting Time Distribution

Utilization time during busy period

Total utilization time of server
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Fig-2(b)
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Fig-3(b)
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8. CONCLUSION

The two-dimensional state M/G/1 queueing system with
working vacation has been investigated. The applications of
working vacation in manufacturing process, computer and
communication networks are well established. Several
performance measures are derived numerically by using
Matlab programming. The present investigation can be
extended by incorporating bulk input/service. However
numerical technique based on matrix-geometric approach can
be implemented.
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