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ABSTRACT 
It is well known that the Karnaugh-map technique is an 

elegant teaching resource for academics and a systematic and 

powerful tool for a digital designer in minimizing low order 

Boolean functions. Why is the minimization of the Boolean 

expression needed? By simplifying the logic function, we can 

reduce the original number of digital components (gates) 

required to implement digital circuits. Therefore, by reducing 

the number of gates, the chip size and the cost will be reduced 

and the computing speed will be increased. The K-map 

technique was proposed by M. Karnaugh . Later Quine and 

McCluskey reported tabular algorithmic techniques for the 

optimal Boolean function minimization. Almost all techniques 

have been embedded into many computer aided design 

packages and in all the logic design university textbooks. In 

the present work, a well known modeling language, the object 

oriented technique is used for designing an Object-oriented 

model for Karnaugh map with the help of digital gates. An 

Object-oriented algorithm is also proposed for simplification 

of boolean functions through K-map. The   Unified Modeling 

Language stereotypes and class diagrams are presented and 

performance of   Unified Modeling Language  model is 

analyzed.  
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1. INTRODUCTION 
Boolean Algebra forms a cornerstone of computer science and 

digital system design. Many problems in digital logic design 

and testing, artificial intelligence, and combinatory can be 

expressed as a sequence of operations on Boolean functions. 

Such applications would benefit from efficient algorithms for 

representing and manipulating Boolean functions 

symbolically. Unfortunately, many of the tasks one would like 

to perform with Boolean functions, such as testing whether 

there exists any assignment of input variables such that a 

given Boolean expression evaluates to 1 (satisfiability), or two 

Boolean expressions denote the same function (equivalence) 

require solutions to NP-Complete or coNP-Complete 

problems [3]. Consequently, all known approaches to 

performing these operations require, in the worst case, an 

amount of computer time that grows exponentially with the 

size of the problem. This makes it difficult to compare the 

relative efficiencies of different approaches to representing 

and manipulating Boolean functions. In the worst case, all 

known approaches perform as poorly as the naive approach of 

representing functions by their truth tables and defining all of 

the desired operations in terms of their effect on truth table 

entries. In practice, by utilizing more clever representations 

and manipulation algorithms, we can often avoid these 

exponential computations. 

 

 

Preliminaries 

A variety of methods have been developed for representing 

and manipulating Boolean functions. Those based on classical 

representations such as truth tables, Karnaugh maps, or 

canonical sum-of-products form [4] are quite impractical---

every function of n arguments has a representation of size 2n 

or more. More practical approaches utilize representations that 

at least for many functions, are not of exponential size. 

Example representations include as a reduced sum of products 

[4], (or equivalently as sets of prime cubes [5]) and factored 

into unate functions [6]. These representations suffer from 

several drawbacks. First, certain common functions still 

require representations of exponential size. For example, the 

even and odd parity functions serve as worst-case examples in 

all of these representations. Second, while a certain function 

may have a reasonable representation, performing a simple 

operation such as complementation could yield a function 

with an exponential representation. Finally, none of these 

representations are canonical forms, i.e. a given function may 

have many different representations. Consequently, testing for 

equivalence or satisfiability can be quite difficult. Due to 

these characteristics, most programs that process a sequence 

of operations on Boolean functions have rather erratic 

behavior. They proceed at a reasonable pace, but then 

suddenly "blow up", either running out of storage or failing to 

complete an operation in a reasonable amount of time. 

 

The digital gates (Logic gates) are basic electronic 

components of any digital circuit.        A logic gate performs a 

logical operation based on one or more inputs and produces a 

single output voltage value (i.e. voltage levels high and low). 

Logically these voltage values can be referred to as 1s and 0s 

and are used in designing and analyzing the operations of 

logic gates.          A logic gate represents a boolean function. 

A boolean function is an algebraic expression formed with 

boolean variables (having values true or 1 and false or 0) and 

the logical operators           (OR, AND, and NOT). There may 

be a large number of boolean algebraic expressions that 

specify a given Boolean function. It is therefore important to 

find the simplest  representing all the input-output 

relationships of a digital circuit. It displays all possible input 

values combinations with their respective output values. There 

is much literature available on the concepts of digital circuits 

design. The basic concepts of digital circuit design are 

available in in many papers. Normally a Boolean expression 

can be given using two forms:  

 

1. 1 Sum-of-Products (SOP): This is the more common form 

of Boolean expressions. The expressions are implemented as 

AND gates (products) feeding a single OR gate (sum).  

1. 2 Product-of-Sums (POS): This is less commonly used 

form of Boolean expressions. The expressions are 

implemented as OR gates (sums) feeding into a single AND 

gate (product).  
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SOP Boolean expressions may be generated from 

truth tables quite easily by forming an OR of the ANDs of all 

input variables (standard products or minterms) for which the 

output is 1. POS expressions are based on the 0s, in a truth 

table and generated oppositely as SOP by taking an AND of 

the ORs of all input variables (standard sums or maxterms).  

 

      The Unified Modeling Language was created as a 

result of unification of different Object-oriented design 

methodologies. The standards and recent developments of 

UML are available on [8]. The good descriptions of UML 

diagrams and notations are available in [9] and [10]. 

Originally it is defined and has been successfully applied in 

software systems design, but can also be applied in the design 

of hardware systems as well. The Object-oriented design 

using UML diagrams in hardware system modeling and 

designing have been proposed in some research papers, but 

there is very less work available on the applications of UML 

in digital logic minimization. The use of UML in real-time 

and embedded systems specification and design has been 

explored by Gomaa [11] and Schattkowsky [12]. Recently 

Saxena et al. [13] proposed the UML model for the Multiplex 

system for the processes which are executing in distributed 

environment. Damasevicius and Stuikys [14]  one. A boolean 

function can be represented by a truth table. A truth table is a 

tabular arrangement of    presented a design process model for 

adopting Object-oriented design concepts in hardware design 

processes.  

 

In the paper [21], a new class of algorithms for 

manipulating Boolean functions represented as directed 

acyclic graphs. However, we place further restrictions on the 

ordering of decision variables in the vertices. These 

restrictions enable the development of algorithms for 

manipulating the representations in a more efficient manner. 

Al-Rababah [15] introduced a novel approach for 

the synthesis of reconfigurable hardware from UML models. 

The presented approach enables the synthesis of Object-

oriented specifications into hardware circuits. Kohut et al. 

[16] suggested a new approach for modeling of boolean 

neural networks on field programmable gate arrays  using 

UML. Sun et al. [17] outlined a design flow to develop 

clocked hardware circuits using UML notations. The UML 

Class, Statechart and Component diagrams are used to model 

system specifications. 

 

 In this paper, a well known modeling language, the 

object oriented technique is used for designing an Object-

oriented model for Karnaugh map with the help of digital 

gates. An Object-oriented algorithm is also proposed for 

simplification of boolean functions through K-map. The   

Unified Modeling Language stereotypes and class diagrams 

are presented and performance of   Unified Modeling 

Language model is analyzed . 

 

2.  METHODOLOGY  
2.1 Object Oriented Modeling and Minimization of Kmap 

 

The UML provides the facility of defining profiles 

and stereotypes that can be used to define a relevant domain 

specific model element. The UML modeling of digital gates is 

shown             in figure 2. In this design, a stereotype “Digital 

Gate” is defined. Fig.2 

 

 
          Fig. 2 Stereotype of Digital Gate 

 

          Figure 3 shows the class definition of all the digital 

gates.Here the class “Gate” is defined, which is derived from 

the stereotype “Digital_Gate”. The three basic gates are 

defined as the subclasses of this class. The classes namely 

“AND”, “NOT” and “OR” are inherited from the class 

“Gate”. The other gates are defined as the classes which are 

the composition of these basic gates. The class “NAND” is a 

composition of the classes “AND‟ and “NOT”. The class 

“NOR” is a composition of the classes “OR” and “NOT” 

where as the class “XOR” is a composition of the classes 

“AND”, “OR” and “NOT”. 

 
 

 

 

 

 

 

                                                                   Fig. 3 UML Class 

Definition of Digital Gates 

 

2.2 OOP Representation and Minimization of Karnaugh 

Map  

The Karnaugh map is also defined using the UML 

stereotype mechanism. The stereotype “Map” is defined and 

is shown in figure 4. The class definition of Karnaugh map is 

shown in figure 5. In this design, a class “K-map” is defined 

which is derived from the stereotype “Map”. This class 

contains multiple instances (1 to 2n) of a class “minterms” 

which is also defined as a stereotype. In the definition of a 

Karnaugh map, an attribute “n” is more significant.               

This attribute identifies the number of input variables. Based 
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on the number of inputs, the minterms are generated. The 

generalized instance and class instances diagram of 

“minterms” for 3 variables are shown in figure 6(a) and 6(b) 

respectively. Each minterm represents a term which is a 

standard product of the values of input variables. According to 

the K-map simplification process, these minterms are 

arranged in an order and they form a logical adjacency to each 

other. The adjacency is initialized as an attribute “adjacency” 

vector. The input string contains only those minterms for 

which the output is 1. According to the minterms specified in 

the input string, the objects of the class “minterms” are 

generated and all the attributes are initialized. For example, 

for input expression E = x'y'z' + x'yz + xy'z' + xy'z, the 

minterms inputs will be equal to m0 + m3 + m4 + m5. The 

corresponding digit values will be 000 + 011 + 100 + 101. 

This arrangement is shown in figure 6. The annotation 

mechanism of the UML is used to indicate the participating 

Octet, Quad or Pair. The simplification is obtained by using 

an algorithm described below and it is based upon the Object-

oriented methodology 

 

 

2.3 Results and Discussions 
Larger Karnaugh maps reduce larger logic designs. 

How large is large enough? That depends on the number of 

inputs, fan-ins, to the logic circuit under consideration. One of 

the large programmable logic companies has an answer. 

Altera's own data, extracted from its library of customer 

designs, supports the value of heterogeneity. By examining 

logic cones, mapping them onto LUT-based nodes and sorting 

them by the number of inputs that would be best at each node, 

Altera found that the distribution of fan-ins was nearly flat 

between two and six inputs, with a nice peak at five. The 

answer is no more than six inputs for most all designs, and 

five inputs for the average logic design. The five variable 

Karnaugh map follows.  

 

 
 

The older version of the five variable map, a Gray 

Code map or reflection map is shown above. The top (and 

side for a 6-variable map) of the map is numbered in full Gray 

code. The Gray code reflects about the middle of the code. 

The newer preferred style is below.  

 
 

The overlay version of the Karnaugh map, shown 

above, is simply two (four for                a 6-variable map) 

identical maps except for the most significant bit of the 3-bit 

address across the top. If we look at the top of the map, we 

will see that the numbering is different from the previous 

Gray code map. If we ignore the most significant digit of the 

3-digit numbers, the sequence 00, 01, 11, 10 is at the heading 

of both sub maps of the overlay map. The sequence of eight 3-

digit numbers is not Gray code. Though the sequence of four 

of the least significant two bits is.  

 

Let's put our 5-variable Karnaugh map to use. 

Design a circuit which has a 5-bit binary input (A, B, C, D, 

E), with A being the MSB (Most Significant Bit). It must 

produce an output logic High for any prime number detected 

in the input data.  

 

 
 

We show the solution above on the older Gray code 

(reflection) map for reference. The prime numbers are 

(1,2,3,5,7,11,13,17,19,23,29,31). Plot a 1 in each 

corresponding cell. Then, proceed with grouping of the cells. 

Finish by writing the simplified result. Note that 4-cell group 

A'B'E consists of two pairs of cell on both sides of the mirror 

line. The same is true of the 2-cell group AB'DE. It is a group 

of 2-cells by being reflected about the mirror line. When using 

this version of the K-map look for mirror images in the other 

half of the map.  

Out = A'B'E + B'C'E + A'C'DE + A'CD'E + ABCE + AB'DE 

+ A'B'C'D 

Below we show the more common version of the 5-variable 

map, the overlay map.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we compare the patterns in the two maps, some of 

the cells in the right half of the map is moved around since the 

addressing across the top of the map are different. We also 

need to take a different approach at spotting commonality 

between the two halves of the map. Overlay one half of the 

map atop the other half. Any overlap from the top map to the 

lower map is a potential group. The figure below shows that 

group AB'DE is composed of two stacked cells. Group A'B'E 
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consists of two stacked pairs of cells. For the A'B'E group of 

4-cells                               ABCDE  =  00xx1 for the group. 

That is A,B,E are the same 001 respectively for the group. 

And, CD = xx that is it varies, no commonality in CD = xx 

for the group of 4-cells.                                       Since 

ABCDE = 00xx1, the group of 4-cells is covered by 

A'B'XXE = A'B'E.  

 

 
 

 
 

       The above 5-variable overlay map is shown stacked.  

 

2.4 An example of a six variable Karnaugh map follows. We 

have mentally stacked the four sub maps to see the group of 4-

cells corresponding to Out = C'F' . A magnitude comparator 

(used to illustrate a 6-variable K- map) compares two binary 

numbers, indicating if they are equal, greater than, or less than 

each other on three respective outputs. A three bit magnitude 

comparator has two inputs A2A1A0 and B2B1B0 an integrated 

circuit magnitude comparator (7485) would actually have four 

inputs, but, the Karnaugh map below needs to be kept to a 

reasonable size. We will only solve for the A>B output. 

Below, a 6-variable Karnaugh map aids simplification of the 

logic for a 3-bit magnitude comparator. This is an overlay 

type of map. The binary address code across the top and down 

the left side of the map is not a full 3-bit Gray code. Though 

the 2-bit address codes of the four sub maps is Gray code. 

Find redundant expressions by stacking the four sub maps 

atop one another . There could be cells common to all four 

maps, though not in the example below. It does have cells 

common to pairs of sub maps.  

 

 
 

The A > B output above is ABC > XYZ on the map  below.  

 
 

      Wherever ABC is greater than XYZ, a 1 is plotted. 

In the first line ABC=000 cannot be greater than any of the 

values of XYZ. No 1s in this line. In the second line, 

ABC=001, only the first cell ABCXYZ= 001000 is ABC 

greater than XYZ. A single 1 is entered in the first cell of the 

second line. The fourth line, ABC=010, has a pair of 1s. The 

third line, ABC=011 has three 1s. Thus, the map is filled with 

1s in any cells where ABC is greater than XXZ. In grouping 

cells, form groups with adjacent sub maps if possible. All but 

one group of 16-cells involves cells from pairs of the sub 

maps. Look for the following groups:  

        

1 group of 16-cells 

2 groups of 8-cells  

4 groups of 4-cells  

      

    The group of 16-cells, AX' occupies the entire 

lower right sub map; though, we don't circle it on the figure 

above. One group of 8-cells is composed of a group of 4-cells 

in the upper sub map overlaying a similar group in the lower 

left map. The second group of 8-cells is composed of a similar 

group of 4-cells in the right sub map overlaying the same 

group of 4-cells in the lower left map. The four groups of 4-

cells are shown on the Karnaugh map above with the 

associated product terms. Along with the product terms for the 

two groups of 8-cells and the group of 16-cells, the final Sum-

Of-Products reduction is shown, all seven terms. Counting the 

1s in the map, there is a total of 16+6+6=28 ones. Before the 

K- map logic reduction there would have been 28 product 

terms in our SOP output, each with 6-inputs. The karnaugh 

map yielded seven product terms of four or less inputs. The 

wiring diagram is not shown. However, here is the parts list 

for the 3-bit magnitude comparator for ABC>XYZ using 4 

TTL logic family parts:  

1 ea 7410 triple 3-input NAND gate AX', ABY', BX'Y'  
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2 ea 7420 dual 4-input NAND gate ABCZ', ACY'Z', BCX'Z', 

CX'Y'Z'  

1 ea 7430 8-input NAND gate for output of 7-P-terms  

 

3. CONCLUSION 
The proposed algorithm is based on the looping of redundant 

terms. Therefore in order to take a closer look at how to loop 

two, four or eight 1‟s to get the least possible number of 

groups in a K-map table setting.Boolean algebra, Karnaugh 

maps, and CAD (Computer Aided Design) are methods of 

logic simplification. The goal of logic simplification is a 

minimal cost solution. A minimal cost solution is a valid logic 

reduction with the minimum number of gates with the 

minimum number of inputs. Venn diagrams allow us to 

visualize Boolean expressions, easing the transition to 

Karnaugh maps. Karnaugh map cells are organized in Gray 

code order so that we may visualize redundancy in Boolean 

expressions which results in simplification. The more 

common Sum-Of-Products (Sum of Minters) expressions are 

implemented as AND gates (products) feeding a single OR 

gate (sum). Sum-Of-Products expressions (AND-OR logic) 

are equivalent to a NAND-NAND implementation. All AND 

gates and OR gates are replaced by NAND gates. Less often 

used, Product-Of-Sums expressions are implemented as OR 

gates (sums) feeding into a single AND gate (product). 

Product-Of-Sums expressions are based on the 0s, maxterms, 

in a Karnaugh map.  
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