
International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

28

 Optimal Boolean Function Simplification through K-Map
using Object-Oriented Algorithm

Arunachalam Solairaju1, Rajupillai Periyasamy2,

1
Jamal Mohamed College, Tiruchirappalli, India.

2
Nehru Memorial College, Puthanampatti ,India

ABSTRACT
It is well known that the Karnaugh-map technique is an

elegant teaching resource for academics and a systematic and

powerful tool for a digital designer in minimizing low order

Boolean functions. Why is the minimization of the Boolean

expression needed? By simplifying the logic function, we can

reduce the original number of digital components (gates)

required to implement digital circuits. Therefore, by reducing

the number of gates, the chip size and the cost will be reduced

and the computing speed will be increased. The K-map

technique was proposed by M. Karnaugh . Later Quine and

McCluskey reported tabular algorithmic techniques for the

optimal Boolean function minimization. Almost all techniques

have been embedded into many computer aided design

packages and in all the logic design university textbooks. In

the present work, a well known modeling language, the object

oriented technique is used for designing an Object-oriented

model for Karnaugh map with the help of digital gates. An

Object-oriented algorithm is also proposed for simplification

of boolean functions through K-map. The Unified Modeling

Language stereotypes and class diagrams are presented and

performance of Unified Modeling Language model is

analyzed.

Key words: Object-oriented Model. Index Terms, Karnaugh

map ,Boolean functions, Minterm, , Boolean functions,

symbolic manipulation, binary decision diagrams, logic

design verification

1. INTRODUCTION
Boolean Algebra forms a cornerstone of computer science and

digital system design. Many problems in digital logic design

and testing, artificial intelligence, and combinatory can be

expressed as a sequence of operations on Boolean functions.

Such applications would benefit from efficient algorithms for

representing and manipulating Boolean functions

symbolically. Unfortunately, many of the tasks one would like

to perform with Boolean functions, such as testing whether

there exists any assignment of input variables such that a

given Boolean expression evaluates to 1 (satisfiability), or two

Boolean expressions denote the same function (equivalence)

require solutions to NP-Complete or coNP-Complete

problems [3]. Consequently, all known approaches to

performing these operations require, in the worst case, an

amount of computer time that grows exponentially with the

size of the problem. This makes it difficult to compare the

relative efficiencies of different approaches to representing

and manipulating Boolean functions. In the worst case, all

known approaches perform as poorly as the naive approach of

representing functions by their truth tables and defining all of

the desired operations in terms of their effect on truth table

entries. In practice, by utilizing more clever representations

and manipulation algorithms, we can often avoid these

exponential computations.

Preliminaries

A variety of methods have been developed for representing

and manipulating Boolean functions. Those based on classical

representations such as truth tables, Karnaugh maps, or

canonical sum-of-products form [4] are quite impractical---

every function of n arguments has a representation of size 2n

or more. More practical approaches utilize representations that

at least for many functions, are not of exponential size.

Example representations include as a reduced sum of products

[4], (or equivalently as sets of prime cubes [5]) and factored

into unate functions [6]. These representations suffer from

several drawbacks. First, certain common functions still

require representations of exponential size. For example, the

even and odd parity functions serve as worst-case examples in

all of these representations. Second, while a certain function

may have a reasonable representation, performing a simple

operation such as complementation could yield a function

with an exponential representation. Finally, none of these

representations are canonical forms, i.e. a given function may

have many different representations. Consequently, testing for

equivalence or satisfiability can be quite difficult. Due to

these characteristics, most programs that process a sequence

of operations on Boolean functions have rather erratic

behavior. They proceed at a reasonable pace, but then

suddenly "blow up", either running out of storage or failing to

complete an operation in a reasonable amount of time.

The digital gates (Logic gates) are basic electronic

components of any digital circuit. A logic gate performs a

logical operation based on one or more inputs and produces a

single output voltage value (i.e. voltage levels high and low).

Logically these voltage values can be referred to as 1s and 0s

and are used in designing and analyzing the operations of

logic gates. A logic gate represents a boolean function.

A boolean function is an algebraic expression formed with

boolean variables (having values true or 1 and false or 0) and

the logical operators (OR, AND, and NOT). There may

be a large number of boolean algebraic expressions that

specify a given Boolean function. It is therefore important to

find the simplest representing all the input-output

relationships of a digital circuit. It displays all possible input

values combinations with their respective output values. There

is much literature available on the concepts of digital circuits

design. The basic concepts of digital circuit design are

available in in many papers. Normally a Boolean expression

can be given using two forms:

1. 1 Sum-of-Products (SOP): This is the more common form

of Boolean expressions. The expressions are implemented as

AND gates (products) feeding a single OR gate (sum).

1. 2 Product-of-Sums (POS): This is less commonly used

form of Boolean expressions. The expressions are

implemented as OR gates (sums) feeding into a single AND

gate (product).

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

29

SOP Boolean expressions may be generated from

truth tables quite easily by forming an OR of the ANDs of all

input variables (standard products or minterms) for which the

output is 1. POS expressions are based on the 0s, in a truth

table and generated oppositely as SOP by taking an AND of

the ORs of all input variables (standard sums or maxterms).

 The Unified Modeling Language was created as a

result of unification of different Object-oriented design

methodologies. The standards and recent developments of

UML are available on [8]. The good descriptions of UML

diagrams and notations are available in [9] and [10].

Originally it is defined and has been successfully applied in

software systems design, but can also be applied in the design

of hardware systems as well. The Object-oriented design

using UML diagrams in hardware system modeling and

designing have been proposed in some research papers, but

there is very less work available on the applications of UML

in digital logic minimization. The use of UML in real-time

and embedded systems specification and design has been

explored by Gomaa [11] and Schattkowsky [12]. Recently

Saxena et al. [13] proposed the UML model for the Multiplex

system for the processes which are executing in distributed

environment. Damasevicius and Stuikys [14] one. A boolean

function can be represented by a truth table. A truth table is a

tabular arrangement of presented a design process model for

adopting Object-oriented design concepts in hardware design

processes.

In the paper [21], a new class of algorithms for

manipulating Boolean functions represented as directed

acyclic graphs. However, we place further restrictions on the

ordering of decision variables in the vertices. These

restrictions enable the development of algorithms for

manipulating the representations in a more efficient manner.

Al-Rababah [15] introduced a novel approach for

the synthesis of reconfigurable hardware from UML models.

The presented approach enables the synthesis of Object-

oriented specifications into hardware circuits. Kohut et al.

[16] suggested a new approach for modeling of boolean

neural networks on field programmable gate arrays using

UML. Sun et al. [17] outlined a design flow to develop

clocked hardware circuits using UML notations. The UML

Class, Statechart and Component diagrams are used to model

system specifications.

 In this paper, a well known modeling language, the

object oriented technique is used for designing an Object-

oriented model for Karnaugh map with the help of digital

gates. An Object-oriented algorithm is also proposed for

simplification of boolean functions through K-map. The

Unified Modeling Language stereotypes and class diagrams

are presented and performance of Unified Modeling

Language model is analyzed .

2. METHODOLOGY
2.1 Object Oriented Modeling and Minimization of Kmap

The UML provides the facility of defining profiles

and stereotypes that can be used to define a relevant domain

specific model element. The UML modeling of digital gates is

shown in figure 2. In this design, a stereotype “Digital

Gate” is defined. Fig.2

 Fig. 2 Stereotype of Digital Gate

 Figure 3 shows the class definition of all the digital

gates.Here the class “Gate” is defined, which is derived from

the stereotype “Digital_Gate”. The three basic gates are

defined as the subclasses of this class. The classes namely

“AND”, “NOT” and “OR” are inherited from the class

“Gate”. The other gates are defined as the classes which are

the composition of these basic gates. The class “NAND” is a

composition of the classes “AND‟ and “NOT”. The class

“NOR” is a composition of the classes “OR” and “NOT”

where as the class “XOR” is a composition of the classes

“AND”, “OR” and “NOT”.

 Fig. 3 UML Class

Definition of Digital Gates

2.2 OOP Representation and Minimization of Karnaugh

Map

The Karnaugh map is also defined using the UML

stereotype mechanism. The stereotype “Map” is defined and

is shown in figure 4. The class definition of Karnaugh map is

shown in figure 5. In this design, a class “K-map” is defined

which is derived from the stereotype “Map”. This class

contains multiple instances (1 to 2n) of a class “minterms”

which is also defined as a stereotype. In the definition of a

Karnaugh map, an attribute “n” is more significant.

This attribute identifies the number of input variables. Based

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

30

on the number of inputs, the minterms are generated. The

generalized instance and class instances diagram of

“minterms” for 3 variables are shown in figure 6(a) and 6(b)

respectively. Each minterm represents a term which is a

standard product of the values of input variables. According to

the K-map simplification process, these minterms are

arranged in an order and they form a logical adjacency to each

other. The adjacency is initialized as an attribute “adjacency”

vector. The input string contains only those minterms for

which the output is 1. According to the minterms specified in

the input string, the objects of the class “minterms” are

generated and all the attributes are initialized. For example,

for input expression E = x'y'z' + x'yz + xy'z' + xy'z, the

minterms inputs will be equal to m0 + m3 + m4 + m5. The

corresponding digit values will be 000 + 011 + 100 + 101.

This arrangement is shown in figure 6. The annotation

mechanism of the UML is used to indicate the participating

Octet, Quad or Pair. The simplification is obtained by using

an algorithm described below and it is based upon the Object-

oriented methodology

2.3 Results and Discussions
Larger Karnaugh maps reduce larger logic designs.

How large is large enough? That depends on the number of

inputs, fan-ins, to the logic circuit under consideration. One of

the large programmable logic companies has an answer.

Altera's own data, extracted from its library of customer

designs, supports the value of heterogeneity. By examining

logic cones, mapping them onto LUT-based nodes and sorting

them by the number of inputs that would be best at each node,

Altera found that the distribution of fan-ins was nearly flat

between two and six inputs, with a nice peak at five. The

answer is no more than six inputs for most all designs, and

five inputs for the average logic design. The five variable

Karnaugh map follows.

The older version of the five variable map, a Gray

Code map or reflection map is shown above. The top (and

side for a 6-variable map) of the map is numbered in full Gray

code. The Gray code reflects about the middle of the code.

The newer preferred style is below.

The overlay version of the Karnaugh map, shown

above, is simply two (four for a 6-variable map)

identical maps except for the most significant bit of the 3-bit

address across the top. If we look at the top of the map, we

will see that the numbering is different from the previous

Gray code map. If we ignore the most significant digit of the

3-digit numbers, the sequence 00, 01, 11, 10 is at the heading

of both sub maps of the overlay map. The sequence of eight 3-

digit numbers is not Gray code. Though the sequence of four

of the least significant two bits is.

Let's put our 5-variable Karnaugh map to use.

Design a circuit which has a 5-bit binary input (A, B, C, D,

E), with A being the MSB (Most Significant Bit). It must

produce an output logic High for any prime number detected

in the input data.

We show the solution above on the older Gray code

(reflection) map for reference. The prime numbers are

(1,2,3,5,7,11,13,17,19,23,29,31). Plot a 1 in each

corresponding cell. Then, proceed with grouping of the cells.

Finish by writing the simplified result. Note that 4-cell group

A'B'E consists of two pairs of cell on both sides of the mirror

line. The same is true of the 2-cell group AB'DE. It is a group

of 2-cells by being reflected about the mirror line. When using

this version of the K-map look for mirror images in the other

half of the map.

Out = A'B'E + B'C'E + A'C'DE + A'CD'E + ABCE + AB'DE

+ A'B'C'D

Below we show the more common version of the 5-variable

map, the overlay map.

If we compare the patterns in the two maps, some of

the cells in the right half of the map is moved around since the

addressing across the top of the map are different. We also

need to take a different approach at spotting commonality

between the two halves of the map. Overlay one half of the

map atop the other half. Any overlap from the top map to the

lower map is a potential group. The figure below shows that

group AB'DE is composed of two stacked cells. Group A'B'E

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

31

consists of two stacked pairs of cells. For the A'B'E group of

4-cells ABCDE = 00xx1 for the group.

That is A,B,E are the same 001 respectively for the group.

And, CD = xx that is it varies, no commonality in CD = xx

for the group of 4-cells. Since

ABCDE = 00xx1, the group of 4-cells is covered by

A'B'XXE = A'B'E.

 The above 5-variable overlay map is shown stacked.

2.4 An example of a six variable Karnaugh map follows. We

have mentally stacked the four sub maps to see the group of 4-

cells corresponding to Out = C'F' . A magnitude comparator

(used to illustrate a 6-variable K- map) compares two binary

numbers, indicating if they are equal, greater than, or less than

each other on three respective outputs. A three bit magnitude

comparator has two inputs A2A1A0 and B2B1B0 an integrated

circuit magnitude comparator (7485) would actually have four

inputs, but, the Karnaugh map below needs to be kept to a

reasonable size. We will only solve for the A>B output.

Below, a 6-variable Karnaugh map aids simplification of the

logic for a 3-bit magnitude comparator. This is an overlay

type of map. The binary address code across the top and down

the left side of the map is not a full 3-bit Gray code. Though

the 2-bit address codes of the four sub maps is Gray code.

Find redundant expressions by stacking the four sub maps

atop one another . There could be cells common to all four

maps, though not in the example below. It does have cells

common to pairs of sub maps.

The A > B output above is ABC > XYZ on the map below.

 Wherever ABC is greater than XYZ, a 1 is plotted.

In the first line ABC=000 cannot be greater than any of the

values of XYZ. No 1s in this line. In the second line,

ABC=001, only the first cell ABCXYZ= 001000 is ABC

greater than XYZ. A single 1 is entered in the first cell of the

second line. The fourth line, ABC=010, has a pair of 1s. The

third line, ABC=011 has three 1s. Thus, the map is filled with

1s in any cells where ABC is greater than XXZ. In grouping

cells, form groups with adjacent sub maps if possible. All but

one group of 16-cells involves cells from pairs of the sub

maps. Look for the following groups:

1 group of 16-cells

2 groups of 8-cells

4 groups of 4-cells

 The group of 16-cells, AX' occupies the entire

lower right sub map; though, we don't circle it on the figure

above. One group of 8-cells is composed of a group of 4-cells

in the upper sub map overlaying a similar group in the lower

left map. The second group of 8-cells is composed of a similar

group of 4-cells in the right sub map overlaying the same

group of 4-cells in the lower left map. The four groups of 4-

cells are shown on the Karnaugh map above with the

associated product terms. Along with the product terms for the

two groups of 8-cells and the group of 16-cells, the final Sum-

Of-Products reduction is shown, all seven terms. Counting the

1s in the map, there is a total of 16+6+6=28 ones. Before the

K- map logic reduction there would have been 28 product

terms in our SOP output, each with 6-inputs. The karnaugh

map yielded seven product terms of four or less inputs. The

wiring diagram is not shown. However, here is the parts list

for the 3-bit magnitude comparator for ABC>XYZ using 4

TTL logic family parts:

1 ea 7410 triple 3-input NAND gate AX', ABY', BX'Y'

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.7, February 2011

32

2 ea 7420 dual 4-input NAND gate ABCZ', ACY'Z', BCX'Z',

CX'Y'Z'

1 ea 7430 8-input NAND gate for output of 7-P-terms

3. CONCLUSION
The proposed algorithm is based on the looping of redundant

terms. Therefore in order to take a closer look at how to loop

two, four or eight 1‟s to get the least possible number of

groups in a K-map table setting.Boolean algebra, Karnaugh

maps, and CAD (Computer Aided Design) are methods of

logic simplification. The goal of logic simplification is a

minimal cost solution. A minimal cost solution is a valid logic

reduction with the minimum number of gates with the

minimum number of inputs. Venn diagrams allow us to

visualize Boolean expressions, easing the transition to

Karnaugh maps. Karnaugh map cells are organized in Gray

code order so that we may visualize redundancy in Boolean

expressions which results in simplification. The more

common Sum-Of-Products (Sum of Minters) expressions are

implemented as AND gates (products) feeding a single OR

gate (sum). Sum-Of-Products expressions (AND-OR logic)

are equivalent to a NAND-NAND implementation. All AND

gates and OR gates are replaced by NAND gates. Less often

used, Product-Of-Sums expressions are implemented as OR

gates (sums) feeding into a single AND gate (product).

Product-Of-Sums expressions are based on the 0s, maxterms,

in a Karnaugh map.

4. REFERENCES
1. C.Y. Lee, „„Representation of Switching Circuits by

Binary-Decision Programs‟‟, Bell System Technical

Journal, Vol. 38, July 1959, pp. 985-999.

2. S.B. Akers, „„Binary Decision iagrams‟‟, IEEE

Transactions on Computers, Vol. C-27, No. 6, June

1978,pp. 509-516.

3. M.R. Garey and D.S. Johnson, Computers and

Intractibility: A Guide to the Theory of NP-

Completeness, Freeman, New York, 1979.

4. F.J. Hill and G.R. Peterson, Introduction to Switching

Theory and Logical Design, Wiley, New York, 1974.

5. J.P. Roth, Computer Logic, Testing, and Verification,

Computer Science Press, Potomac, MD., 1980.

6. R. Brayton, et al, „„Fast Recursive Boolean Function

Manipulation‟‟, International Symposium on Circuits

and Systems, IEEE, Rome, Italy, May 1982, pp. 58-62.

7. B.M.E. Moret, „„Decision Trees and Diagrams‟‟, ACM

Computing Surveys, Vol. 14, No. 4, December 1982,pp.

593-623.

[8] OMG, UML Superstructure specification, v2.0, Retrieve

from http://www.omg.org/cgi-bindoc?formal/05-07-

04.

[9] Booch, G., Rumbaugh, J., Jacobson, I. (2004), The Unified

Modeling Language User Guide, welfth Indian Reprint,

Pearson Education.

[10] Roff, T. (2006), UML: A Beginner‟s Guide, Tata

McGraw-Hill Edition, Fifth Reprint.

[11] Gomaa, H. (2001), Designing Concurrent, Distributed,

and Real-Time Applications with UML, Proceedings of

the 23rd International Conference on Software

Engineering ICSE‟01), IEEE Computer Society.

[12] Schattkowsky, Tim (2005), UML 2.0 - Overview and

Perspectives in SoC Design, IEEE.

[13] Saxena, V., Arora D. and Ahmad S. (2007), Object

Oriented Distributed Architecture System through UML,

IEEE International Conference on Advanced in

Computer Visio and Information Technology, ACVIT-

07, Nov. 28-30, ISBN 978- 81-89866-74-7, 305-310.

[14] Kohut, R., Steinbach, B., and Fröhlich, D. (), FPGA

Implementation of Boolean Neural Networks using

UML.

[15] Damasevicius, R., Stuikys, V. (2004), Application of

UML for Hardware Design Based on Design Process

Model, IEEE.

[16] Al-Rababah Ahmad, A. (2009), UML - Models

Implementations in Software Engineering System

Equipments Representations, International Journal of

Soft Computing Applications, Issue 4,25-34,

Euro Journals Publishing, Inc.,Retrieved from

http:/www. eurojournals.com / IJSCA. html

[17] Sun, Zhenxin, Wong, Weng-Fai, Zhu, Yongxin and

Pilakkat, Santhosh Kumar (2005), Design of Clocked

Circuits Using UML, IEEE ASP-DAC 2005 (901-904).

[18]. S. Fortune, J. Hopcroft, and E.M. Schmidt, „„The

Complexity of Equivalence and Containment for Free

Single Variable Program Schemes‟‟, in Automata,

Languages, and Programming, Goos, Hartmannis,

Ausiello, and Boehm, eds., Springer-Verlag, Lecture

Notes in Computer Science, Vol. 62, 1978, pp.227-240.

[19] Crenshaw, Jack W. (2003), A primer on Karnaugh maps,

Embedded Systems Design, Retrieved from

http://www.embedded.com/columns/programmerstoolbo

x / 16100908 ?Requested = 264392 .

[20] Kuphaldt, Tony R. (2007), Lessons in Electric Circuits,

Volume IV – Digital, Fourth Edition, and Available as

part of the Open Book Project collection retrieved from:

[21] H. Abelson, and P. Andreae, „„Information Transfer and

Area-Time Trade-Offs for VLSI Multiplication ‟‟,

Communications of the ACM, Vol. 23, No. 1, January

1980, pp. 20-23.

[22]. Vipin Saxena, Manish Shrivastava and Deepak Arora ,

International” Graph-Based Algorithms”, Journal of

Computer Science and Network Security, for Boolean

Function VOL.9 No.6, June 2009

