Q-Vague Groups and Vague Normal Sub Groups with Respect to (T, S) Norms

A. Solairaju¹, R. Nagarajan² & P. Muruganantham³

1. PG & Research Department of Mathematics, Jamal Mohamed College, Trichy-20

2. Department of Mathematics, JJ College Of Engg & Tech, Trichy- 09

3. Department of Mathematics, Kurinji College of Arts & Science, Trichy-02

ABSTRACT

In this Paper, Q-Vague sets and Q-Vague normal subgroups are studied. The study of Vague groups initiated by Ranjit Biswas [2006] is continued and Q-Vague homologous groups characterized as normal groups which admit a particular type of Q-Vague groups with respect to (mini, max) norms.

Keywords: Q-Vague set, Q-Vague group, Q-Vague-cut group, Q-Vague normal group, Q-Vague centralizer, Homologous group.

1. INTRODUCTION AND PRELIMINARIES

The theory of fuzzy groups defined by Rosenfeld [1971] is the first application of fuzzy theory in Algebra. Since then a number of works has been done in the area of fuzzy algebra, Gau.W.L. and Bueher. D.J. [1993] has initiated the study of Vague sets as an improvement over the theory of fuzzy sets to interpret and solve real life problems which are in general Vague. Recently, Biswas [2006] defined the notion of Vague groups analogous to the idea of Rosenfeld [1971]. The notion of Q-fuzzy groups is defined by [2009]. The objective of this paper is to contribute further to the study Q-Vague groups and introducing concepts of Q-Vague normalizer, Q-Vague centralizer and Q-Vague homologous group by imposing fitness condition that can be removed. In this paper, we characterized the Q-Vague normal groups and homologous Q-Vague group which admit a particular type of Q-fuzzy groups.

Definition 1.1: A Q-Vague set (or in-short QVS) in the universe of discourse X is characterized by two membership functions given by

1. a truth membership function $t_A : X \times Q \rightarrow [0,1]$

2. a false membership function $f_A : X \times Q \rightarrow [0,1]$ such that $t_A (x,q) + f_A(x,q) \leq 1$, for all $x \in X$ and $q \in Q$.

Definition 1.2: The interval $[t_A (x,q), 1 - f_A(x,q)]$ is called the Q-Vague Value of X in A, and it is denoted by $V_A(x,q)$. So $V_A(x,q) = [t_A(x,q), 1 - f_A(x,q)]$.

Definition 1.3: A Q-Vague set 'A' of X with $t_A(x, q) = 0$ and $f_A(x, q) = 1$ for all $x \in X$ and $q \in Q$ is called Zero Q-Vague set of X. A Q-Vague set 'A' of X with $t_A(x,q) = 1$ and $f_A(x,q) = 0$ for all $x \in X$ and $q \in Q$ is called Unit Q-Vague set of X.

Definition 1.4: A Q-Vague set 'A' of a set 'X' with $t_A(x, q) = \alpha$ and $f_A(x, q) = (1-\alpha)$ for all $x \in X$ is called α -Q-Vague set of X where $\alpha \in [0, 1]$.

Definition 1.5: Let Q and G be a set and group respectively. A Q-Vague set 'A' of G is called a Q-Vague group of G if for all x,y in G and $q \in Q$.

 $(QVG1) \ V_A(xy,\,q) \geq \ T \ \{ \ V_A(x,\,q),\, V_A(y,\,q) \ \} \ \text{and}$

 $(QVG2) \quad V_A(x^{-1},q) \ge V_A(x,q)$

Thus $t_A(xy, q) \ge T \{ t_A(x, q), t_A(y, q) \}$

 $f_A(xy, q) \leq S \{ f_A(x, q), f_A(y, q) \}$ and

 $t_A(x^{-1}, q) \ge t_A(x, q), f_A(x^{-1}, q) \le f_A(x, q).$

Here the element xy stands for $x \, \bullet \, y.$

Definition 1.6: The α - cut A_{α} of the Q-Vague set 'A' is the (α, α) cut of A and hence given by $A_{\alpha} = \{x / x \in G, t_A (x, q) \ge \alpha \}.$

Definition 1.7: Let 'A' be a Q-Vague group (QVG) of G. Then 'A' is called Q-Vague normal subgroup (QVNG) is $V_A(xy, q) = V_A(yx, q)$ for $x, y \in G, q \in Q$. **Definition 1.8:** Let 'A' be a Q-Vague group of G. The set $N(A) = \{a \in G / V_A(axa^{-1}, q) = V_A(x, q)\}$ for $x \in G$ is called Q-Vague normalizer of A.

Definition 1.9: Let 'A' be a Q-Vague group of G. Then C(A) = { $a \in G / V_A([a,x]_q) = V_A(e,q)$ } for all $x \in G$, $q \in Q$ is called Q-Vague Centralizer of A where $[a, x]_q = (a^{-1}x^{-1}ax, q)$.

2. CHARACTERIZATIONS OF Q-VAGUE NORMAL GROUPS

The following theorem is first started.

Proposition 2.1: If 'A' is a Q-Vague normal group of a group G, then $K = \{ x \in G / V_A(x,q) = V_A(e,q) \}$ is a crisp normal subgroup of G.

Proof: 'A' is a Q-Vague normal group of G.

Let x, y \in K and q \in Q implies $V_A(x,q) = V_A(e,q)$ and $V_A(y,q) = V_A(e,q)$.

Consider $V_A(x^{-1}y,q) \ge T \{V_A(x,q), V_A(y,q)\}$

 $= T \{ V_A(e,q), V_A(e,q) \}$

$$= V_A(e,q) \ge V_A(x^{-1}y,q)$$

implies $V_A(x^{-1}y,q) = V_A(e,q)$, and so $x^{-1}y \in H$. Therefore 'K' is a crisp subgroup of G.

Let $x \in G$, $y \in K$. Consider $V_A(xyx^{-1},q) = V_A(y,q) = V_A(e,q)$ implies $xyx^{-1} \in K$ implies that K is a crisp normal subgroup of G.

Proposition 2.2: Let 'A' be a Q-Vague normal subgroup of G. Then α -cut. A_{α} is a crisp normal subgroup of G.

Proof: $A_{\alpha} = \{ x \in G / t_A(x, q) \ge \alpha \}$. Let x, $y \in A_{\alpha}$ implies $t_A(x, q) \ge \alpha$ and $t_A(y, q) \ge \alpha$.

Consider $t_A(xy^{-1},q) \ge Min \{ t_A(x,q), t_A(y,q) \}$

$$\geq$$
 Min { α, α } = α

implies $t_A(xy^{-1},q) \ge \alpha$ and so $xy^{-1} \in A_\alpha$. Therefore A_α is a crisp subgroup of G.

Now, for all $x \in G$, $y \in A_{\alpha}$. Consider $t_A(xyx^{-1},q) = t_A(y,q) \ge \alpha$ implies $xyx^{-1} \in A_{\alpha}$.

Proposition 2.3: If A and B are two Q-Vague normal groups of G, then $A \cap B$ is also Q-Vague normal subgroups of G.

Proof: If A and B are two Vague groups of G, then $A \cap B$ is also Vague group of G. [Proposition 4.4 [8]).

Now, $t_{A \cap B}(xy,q) = T \{ t_A(xy,q), t_B(xy,q) \}$

$$= T \{ t_A(yx, q), t_B(yx, q) \}$$

 $= t_{A \cap B} (yx, q)$

Also $f_{A\cap B}(xy,q) = S \{f_A(xy,q), f_B(xy,q)\}$

= S { $f_A(yx,q), f_B(yx,q)$ }

 $= f_{A \cap B}(yx,q)$

Proof: Since 'A' is a Q-vague group of G then $K = \{x \in G \mid V_A(x,q) = V_A(e,q)\}$ is a crisp subgroup of G. Also $(A \cap B)$ is a Q-vague group of G. Now we wish to show that $(A \cap B)$ is a Q-vague normal group of K. Let $x, y \in K$ then $xy \in K$ and $yx \in K$ implies

 $V_A(xy,q) = V_A(e,q)$ and $V_A(yx,q) = V_A(e, q)$ implies $V_A(xy,q) = V_A(yx,q)$.

Since 'B' is a Q-vague normal group of G, then $V_B(xy,q) = V_B(yx,q)$.

Consider $t_{A\cap B}(xy, q) = T t_A(xy, q), t_B(xy, q)$ $= T\{t_A(yx, q), t_B(yx, q)\}$ $= t_{A\cap B}(yx, q).$ Also, $f_{A\cap B}(xy,q) = S \{f_A(xy,q), f_B(xy,q)\}$ $= S \{ f_A(yx,q), f_B(yx,q) \}$

 $= f_{A \cap B}(yx,q).$

Therefore V $_{A\cap B}(xy,q) = V_{A\cap B}(yx,q)$ thus $A\cap B$ is a Q-Vague normal group of K.

Proposition 2.5: Let 'A' be a Q-vague group of G. Then 'A' is Q-vague normal group of G if and only if $V_A([x, y]_q) \ge V_A(x, q)$ for all x,y in G, where $[x, y]_q = (x^{-1}y^{-1}xy, q)$.

Proof: Suppose 'A' is Q-vague normal group of G.

For all $x, y \in G$, $V_A([x,y]_q) = V_A(x^{-1}y^{-1}xy, q)$

 $= V_A(x^{-1}(y^{-1}xy), q)$

$$\geq T \{ V_A(x^{-1},q) , V_A(y^{-1}xy,q) \}$$

 $= \ T \ \{ \ V_A(x,q) \ , \ V_A(x,q) \} = \ V_A(x,q).$

Therefore $V_A([x,y]_q) \ge V_A(x,q).$

Conversly, suppose $V_A([x,y]_q) \ge V_A(x,q)$ for x,z in G.

It follows that $V_A(x^{-1}zx, q) = V_A(ex^{-1}zx, q) = V_A(zz^{-1}x^{-1}zx, q)$ = $V_A(z [z,x]_q)$

 $\geq T \{ V_A(z, q), V_A([z, x]_q) \} = V_A(z, q)$

 $\label{eq:constraint} \text{Therefore } V_A(x^{\text{-}1}zx,\,q) \geq \ V_A(z,q) \text{ for all } x,z \text{ in } G \text{ and } q \ \in \ Q.$

It follows that $V_A(z,q) = V_A(xx^{-1}zxx^{-1}, q) \ge T \{ V_A(x, q), V_A(x^{-1}zx, q) \}.$

Now if T {V_A(x, q), V_A(x⁻¹zx, q)} = V_A(x,q), then V_A(z, q) \geq V_A(x,q) for all x,z in G.

Implying the constant set and in this case the result is holds trivially.

If $T\{V_A(x, q), V_A(x^{-1}zx, q)\} = V_A(x^{-1}zx, q)$, then $V_A(z, q) \ge V_A(x^{-1}zx, q)$ for all x, z in G.

This implies $V_A(z,q) = V_A(x^{-1}zx, q)$. Thus 'A' is a Q-vague normal group of G.

Proposition 2.6: Let 'A' be a Q-Vague normal group of G. Then (i) Q-normalizer N(A) is a crisp subgroup of G (ii) 'A' is Q-vague normal group of N(A).

Proof: (i) 'A' is a Q-vague group of G and $N(A) = \{a \in G/V_A (ax^{-1}a, q)\} = V_A(x,q) \text{ for all } x \in G\}.$

Now let x, $y \in N(A)$ implies $V_A(xax^{-1}, q) = V_A(a, q)$ and $V_A(yby^{-1}, q) = V_A(b, q)$.

So $V_A(xy^{-1}a(xy^{-1})^{-1},q) = V_A(xy^{-1}axyx^{-1},q) = V_A(y^{-1}ay,q) = V_A(y,q) = xy^{-1} \in N(A)$

Therefore, N(A) is a crisp subgroup of G.

(ii) Suppose 'A' is a Q-vague normal group of G. Let a \in G, $x \in$ A, $V_A(xax^{-1},q) = V_A(a,q)$

implies a \in N(A)and so G \subseteq N(A) \subseteq G. Thus N(A) = G. Convexly, N(A) = G giving $V_A(axa^{-1},q) =$

 $V_A(x,q)$ for all $x \in G$. So 'A' is Q-vague normal group of G. Let $x \in A$. Therefore $\alpha \in N(A) \subseteq G$, and then

 $V_A(x\alpha x^{-1},q) = V_A(\alpha,q)$ gives 'A' is a Q-vague normal group of N(A).

Proposition 2.7: Let 'A' be a Q-vague normal group of G and $K = \{ x \in G / V_A (x, q) = V_A(e,q) \}$. Then $K \subseteq C(A)$.

Proof: Let $x \in K$ implies $V_A(x,q) = V_A(e,q)$ for all $y \in G$. Consider

$$\begin{split} V_A([x, y] q) &= V_A(x^{-1}y^{-1}xy, q) \\ &= V_A(x^{-1} (y^{-1}xy), q) \\ &\geq T \{V_A(x, q), V_A(y, q)\} \end{split}$$

 $= V_A(x, q) = V_A(e, q)$ implies

$$V_A([x, y] q) \ge V_A(e, q).$$

But $V_A([x,y]_q) \leq V_A(e,q)$ gives $V_A([x,y]_q) = V_A(e,q)$ and so $x \in C(A)$, thus $K \subseteq C(A)$.

Proposition 2.8: Let 'A' be a Q-Vague group of a group G. Then $K = \{ x \in G / V_A(x, q) = V_A(e, q) \}$ is a normal subgroup of N(A).

Proof: Let $x \in K$, $y \in G$ implies

$$V_A(x, q) = V_A(e, q).$$

Consider $V_A(xyx^{-1},q) \ge T\{V_A(x,q), V_A(y,q)\}$

$$\begin{split} &= V_A(y,q) = V_A(eye,\\ &= V_A(x^{-1}(xyx^{-1}x),q)\\ &\geq T \ \{ \ V_A(x^{-1},q), V_A(xyx^{-1}x,q) \ \}\\ &= T \ \{ \ V_A(e,q), V_A(xyx^{-1},q) \ \}\\ &= V_A(xyx^{-1},q) \ for \ all \ y \in G. \end{split}$$

q)

 $V_A(xyx^{-1},q) = V_A(x,q)$, for all $y \in G$ gives $x \in N(A)$ and so $K \subseteq N(A)$.

Now, for all $a \in N(A)$, $V_A(axa^{-1},q) = V_A(x,q)$ for all $x \in G$. Thus $V_A(axa^{-1},q) = V_A(y,q) = V_A(e,q)$ for all $y \in K$, giving that $aya^{-1} \in K$, and so K is a normal subgroup of N(A).

Proposition 2.9: Let 'A' be a Q-vague group of G then C(A) is a normal subgroup of G.

Proof: $C(A) = \{a \in G / V_A ([a, x]_q) = V_A(e,q), \text{ for all } x \in G \}.$

Let $a \in C(A)$ gives $V_A ([a, x]_q) = V_A(e, q)$. So $V_A (a^{-1}x^{-1}x, q) = V_A(e, q)$.

Thus V_A ((xa)⁻¹ax, q) = $V_A(e,q)$ implies V_A (xa, q) = V_A (ax, q).

Let $a,b\in C(A)$. Then V_A ($[\ a,x]_q\,)=V_A(e,q)$ and $\ V_A$ ($[\ b,x]_q\,)=V_A(e,q)$

Consider

 $V_{A}\,(\;[\;ab^{\text{-}1},\,x]_{q}\,) = V_{A}(\;(ab^{\text{-}1})^{\text{-}1}x^{\text{-}1}ab^{\text{-}1}x,\,q) = V_{A}(\;b\;(a^{\text{-}1}x^{\text{-}1}ab^{\text{-}1}x,\,q))$

= $V_A((a^{-1}x^{-1}ax, x^{-1}b^{-1}xb), q) = V_A([a, x]_q, [x, b]_q)$

$$\geq T \{ V_A([a, x]_q), V_A([x, b]_q) \}$$

Therefore, V_A ([$ab^{-1}, x]_q$) $\geq V_A(e,q)$

 $\geq V_A([ab^{-1}, x]_q)$ gives

 V_A ($[\ ab^{\text{-}1},\ x]_q$) = $V_A(e,q)\$ and so $\ ab^{\text{-}1}\in C(A).$ Therefore C(A) is a subgroup of G.

Now, for all $a \in C(A)$ for all $g \in G$, it follows that

$$\begin{split} V_A(\ [\ g^{-1}ag, x]_q) &= V_A(\ (g^{-1}ag)^{-1}x^{-1}g^{-1}agx, q) \\ &= V_A(\ [\ g, a]_q, (a^{-1}(gx)^{-1}a(gx)\) \end{split}$$

 $= V_{A}([g, a]_{q}, V_{A}[a, gx]_{q}) = T \{V_{A} [g, a]_{q}, [a, gx] \}$ $= T \{V_{A}(e,q), V_{A}(e,q)\}$ $= V_{A}(e,q)$

Then V_A ([g⁻¹ag, x]_q) $\geq V_A(e,q)$

 $\geq V_A ([g^{-1}ag, x]_q)$ gives

 $V_{A}([g^{-1}ag, x]_{q}) = V_{A}(e, x).$

Thus V_A ($[g^{-1}ag, x]_q$) = $V_A(e, q)$ gives $g^{-1}ag \in C(A)$, and so C(A) is a crisp normal subgroup of G.

Proposition 2.10: If 'A' is a Q-vague group of G and θ is a homomorphism of G, then Q-vague set A^{θ} is also Q-vague group of G.

Proof: Let $x,y \in G$ and $q \in Q$. Then

 $t_A{}^\theta(xy,q)=t_A$ (θ $(xy,~q))=t_A$ ($\theta(x,q),~\theta(y,q)$) $\geq T$ { $t_A($ $\theta(x,q),~t_A($ $\theta(y,q)$ }

= T {
$$t_A^{\theta}(x,q), t_A^{\theta}(y,q)$$
 }

Also

 $f_A^{\ \theta}(xy,q)=f_A\ (\ \theta(xy,\ q))=f_A\ (\ \theta(x,q),\ \theta(y,q)\)\leq\ S\ \{\ f_A(\ \theta(x,q),\ f_A(\ \theta(y,q)\)$

= S {
$$f_A^{\theta}(x,q), f_A^{\theta}(y,q)$$
 }

Again

 $t_{A}^{\theta}(x^{-1},q) = t_{A}(\theta(x^{-1},q)) = t_{A}(\theta(x,q)^{-1})$

 $= t_A \ (\ \theta(x, q)) \qquad = t_A \ (\ \theta \ (x, q) \ \ for \ all \ \ x \in G$

Similarly, $f_A^{\theta}(x^{-1},q) = f_A(\theta(x, q) \text{ for all } x \in G$, Thus $_A^{\theta}$ is a Q-vague group of G.

Proposition 2.11: If A is a Q-vague characteristic group of G, it is a Q-vague normal group of G.

Proof: Let $x, y \in G$ and $q \in Q$. Consider the map $\theta : G \rightarrow G'$ given by $\theta(g,q) = (x^{-1}gx, q)$ for all $g \in G$. Clearly, θ is an automorphism of G. Now $t_A(xy,q) = t_A^{\theta}(xy, q) = t_A(x^{-1}xyx, q) = t_A(yx, q)$.

Similarly, $f_A(xy,q) = f_A(yx,q)$ for all $x, y \in G$. Therefore 'A' is a Q-Vague normal group of G.

Definition 2.12: (Q-Homologous Vague groups) : Let A and B be two Q-vague groups of a group G. If there exists $\Phi \in Aut(G)$ such that $V_A(x, q) = V_B(\Phi(x, q))$ for all $x \in G$. Thus $t_A(x, q) = t_B(\Phi(x, q))$ and $f_A(x, q) = f_B(\Phi(x, q))$. Then A and B are homologous Vague group of G.

Proposition 2.13: Let 'B' be a Q-vague group of G. $\Phi \in Aut$ (G). Let 'A' be a Q-vague set of G such that $V_A(x,q) = V_B(\Phi(x,q))$ for all $x \in G$. Then A and B are Q-homologous Vague group of G.

Proof: $V_A(xy, q) = V_B(\Phi(xy, q)) = V_B(\Phi(x, q), \Phi(y, q))$

 $\geq T \{ V_B (\Phi(x,q), V_B(\Phi(y,q)) \}$

 $= T \{ V_A(x,q), V_A(y,q) \}$

Also $V_A(x^{-1}, q) = V_B(\Phi(x^{-1}, q))$

 $= V_B((\Phi(x,q))^{-1}) \ge V_B((\Phi(x,q)) = V_A(x,q).$

Therefore 'A' is a Q-vague group of G. Hence A and B are Q-homologous Vague groups of G.

Proposition 2.14: Let A and B be Q-homologous Vague group of G. Then C(A) and N(A) are Q-homologous subgroups of G.

Proof: Let A and B are Q-homologous vague groups of G. Then C(A), C(B) are subgroups of G. Now C(A), C(B) are to be proved Q-homologous subgroups of G. For this, it is enough to check that, there exits an automorphism Φ of G such that $\Phi(C(A)) = C(B)$.

Since A and B are -homologous Vague groups, there exsits $\Phi \in Aut(G)$ such that

 $\begin{array}{lll} V_A(x,\,q) &= V_B(\ \Phi\ (x,\,q)); \ V_B(x,\,q) &= V_A(\ \Phi^{\text{-}1} \\ (x,\,q)). \mbox{ For } x\in G, \mbox{ so for } a\in C(A), \mbox{ it follows that } \end{array}$

 $\begin{array}{ll} V_{B}(\left[\ \Phi(a), \, x \right]_{q} \) = V_{B} \ (\ (\ \Phi(a))^{-1} \ x^{-1} \ \ \Phi(a) x, \, q) \\ & = V_{B} \ (\ \ \Phi(a^{-1}) \ x^{-1} \ \ \Phi(a) x, \, q) \end{array}$

- $= V_B \left(\Phi(a^{-1} \Phi^{-1}(x^{-1}) a \Phi^{-1}(x), q) \right)$
- = $V_A (a^{-1} \Phi^{-1}(x^{-1}) a \Phi^{-1}(x), q)$

=
$$V_A([(a, \Phi^{-1}(x)]_q) = V_A(e, q)$$

 $= V_A(\Phi^{-1}(x,q)) = V_B(e,q)$ for all $x \in G$.

Therefore Φ (C (A)) \subseteq C (B) ----> (1).

On the other hand, for all $a \in C (B)$.

 $V_{B}(\ [\ \Phi^{\text{-1}}(a),\,x]_{q}) = V_{A}(\ \Phi^{\text{-1}}(a^{\text{-1}})\ x^{\text{-1}}\ \Phi^{\text{-1}}(a)x,\,q) = V_{A}(\ \Phi^{\text{-1}}(a^{\text{-1}})x^{\text{-1}}) = V_{A}(\ \Phi^{\text{-1}}(a)x,\,q) = V_{A}(\ \Phi^{\text{-1}}(a)x,\,q)$

$$= V_A (\Phi^{-1} [a, \Phi(x)] q)$$

= $V_B([(a, \Phi(x)]_q) = V_B(e, q)$

 $= V_B (\Phi(e, q)) = V_A(e, q).$

Therefore $\Phi^{-1}(a, q) \in C^{-1}(A)$ gives

 $C(B) \subseteq \Phi(C(A)) ----> (2).$

From (1) and (2), $\Phi(C(A)) = C(B)$. Hence C(A) and C(B) are Q-homologous subgroup of G.

3. CONCLUSION

Ranjit Biswas [6] introduced the concept of Vague groups and others [1], [5] were discussed. [8] investigated the concept of Q-Fuzzy groups. In this paper we investigate a new kind of Q-Vague groups and its characterizations.

4. REFERENCES

- I.Demirci. M, Vague groups, Jou-Math Anal. Application. 230 (1999), 142 – 156.
- [2] Gau. W.L and Buechrer, D.J, Vague Sets, IEEE Transactions on systems, Man and Cybernetics Vol. 23, (1993), 610 – 614.
- [3] Hakiimuddin Khan, M. Ahamed and Ranjit Biswas, On Vague groups, Int. Journal of Computational Cognition, Vol.5, No.1 (2007).
- [4] 4. N.P. Mukherjee, Fuzzy normal subgroups and Fuzzycosets, Information sciences, 34, 225 – 239, (1984).
- [5] N. Ramakrishna, "Vague normal groups", International Journal of Computational Cognition, Vol.6, No.2, (2008) 10-13.
- [6] Ranjit Biswas, Vague groups, Int. Journal of Computational Cognition Vol.4, No.2 (2006).
- [7] Rosenfeld. A, Fuzzy groups, Jou. Maths. Anal. Application (35) (1971) 512- 517.
- [8] A. Solairaju and R. Nagarajan, A New Structure and Construction of Q-fuzzy groups, Advances in Fuzzy Mathematics, 4(2009), 1, 23-29.
- [9] Yunjie Zhang, Some Properies of Fuzzy subgroups, Fuzzy sets and Systems, 119 (2001), 427–438.
- [10] Zadeh. L.A., Fuzzy set. Infor. And Control, Vol.8 (1965), 338 – 353.