
International Journal of Computer Applications (0975 – 8887)

Volume 15– No.8, February 2011

42

Comparing Complexity in Accordance with Object
Oriented Metrics

Dr. Rakesh Kumar
Reader, Department of
Computer Science and

Applications, Kurukshetra
University Kurukshetra

ABSTRACT

Metrics are essential in software engineering for measuring

software complexity, quality, estimating size and project effort.

The major techniques for software cost estimation are sizing or

predication of various kinds of software deliverable items. The

cost estimation techniques consists of various categories like

tools and methods for estimating and measuring software size,

function points, lines of code, and object points. This paper

highlights the object-oriented software metrics proposed in 90s’

by Chidamber, Kemerer and several studies were conducted to

validate the metrics and discovered several deficiencies. Further

new object oriented metrics were proposed by Li. Chidamber,

Kemerer proposed six software metrics as Weighted Methods

per Class (WMC), Depth of Inheritance Tree (DIT), Number of

Children (NOC) , Coupling Between Object classes (CBO),

Response For a Class (RFC), Lack of Cohesion in Methods

(LCOM). A new metrics suite for object-oriented programming

proposed by Li includes Number of Ancestor Classes (NAC),

Number of Local Methods (NLM), Class Method Complexity

(CMC), Number of Descendent Classes (NDC), Coupling

Through Abstract Data Type (CTA), and Coupling Through

Message Passing (CTM) as an alternatives to Chidamber and

Kemerer metrics. Here the comparisons have been made

between the metrics proposed by Chidamber, Kemerer and Li.

Keywords

Software metrics, object-oriented metrics, sizing, software

complexity, software measurement.

1. INTRODUCTION
The software engineers were of the view that the isolating

objects makes their software easier to manage but many of them

were of reverse views that software becomes more complex to

maintain and document, or even to engineer from the start. This

made the move towards the object-oriented paradigm (OOP) as

it could increase the capability of programming through its

reusability function. Researchers studied ways to maintain

software quality and developed object-oriented programming in

part to address common problems by strongly emphasizing

discrete, reusable units of programming logic. By the

implementation of OOP the researchers modified and validated

the conventional metrics theoretically or empirically. Sizing and

complexity metrics were the most impressive contributions for

effort and cost estimation in project planning.

The OO approaches control complexity of a system by

supporting hierarchical decomposition through both data and

procedural abstraction [BOO91]. According to Brooks "The

complexity of software is an essential property, not an accidental

one"[BRO87]. The OO decomposition process helps to control

the inherent complexity of the problem; it does not reduce or

eliminate the complexity. Software complexity being one of the

major contributing factors to the cost of developing and

maintaining software [GRA92]. Software complexity

measurement contributes in making the cost trade-offs in two

ways. These are 1) To provide a quantitative method for

predicting how difficult it will be to design, implement, and

maintain the system. 2) To provide a basis for making the cost

trade-offs necessary to reduce costs over the lifetime of the

system.

Since 70’s several approaches for predicting the software size

were proposed. It was found that the complexity and size are

strongly related to the effort value and also most of object-

oriented metrics are based on this assumption. The object-

oriented software metrics considers the measure items such as

the number of lines in the code, the number of attributes

[BRI95][CHI94] or the complexity of methods

[CAB76][NEJ88]. Since these metrics are correlated to fault-

proneness, they require an advanced state of development like

the implementation stage.

2. OBJECT-ORIENTED METRICS
Chidamber and Kemerer [CHI94] proposed six Object-Oriented

design measures which were considered as the foundation of

Object-Oriented metrics. These metrics are: 1) Weighted

Methods per Class (WMC): the weighted sum of all methods in

a class. 2) Depth of Inheritance Tree (DIT): maximum length

from the class to the root in the inheritance tree. 3) Number of

Children (NOC): number of directly inherited classes. 4)

Coupling Between Object classes (CBO): count of the number

of other classes coupled to the considered class. 5) Response For

a Class (RFC): number of methods that can be invoked by a

message received by an object of the considered class. 6) Lack

of Cohesion in Methods (LCOM): number of methods using the

same set of attributes minus the number of methods using a

different set of attributes.The object-oriented metrics can be

classified into two categories: 1) Adaptation of classical sizing

metrics and 2) Object-oriented sizing and complexity metrics.

2.1 Classical Sizing Metrics
Software size estimation model by Laranjeira [LAR90] provided

a method that helped for sizing object-oriented systems based on

successive estimations of refinements of the system objects.

Confidence in size estimates increases as the system becomes

more and more refined. He used various statistical techniques

for determining the rate of convergence to the actual estimate.

Gurvinder Kaur
Lecturer, Guru Nanak Khalsa Institute

of Technology and Management

Studies, Yamuna Nagar

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.8, February 2011

43

Minkiewicz [MIN09] considered the value of various measures

of size, lines of code and function points. The model [FRA06]

estimated size, measured by function points [ALB83] directly

from a conceptual model of the system being built. A model

proposed by Tan et al. estimated lines of code based on the

counts of entities, relationships, and attributes from the

conceptual data model [TAN06]. A model related to the early

information on use cases into a size estimate, measured in

function points was given by Diev [DIE06].

Briand et al. [BRI01] empirically quoted the relationship

between class size and the development effort by using

regression techniques. Antoniol et al. [ANT99] followed

adaptation of traditional function points, called “Object oriented

Function Points” for enabling the measurement of object-

oriented analysis and design specifications. . First the constructs

were identified in object-oriented systems (e.g., classes and

methods) for using them as parameters for OOFPs, and then a

flexible model was built to estimate system size. Similarly,

Costagliola et al. [COS05] presented their class point, a function

points-like approach, for estimating the size of object-oriented

products.

Two new metrics by Braz and Vergilio [BRA06] based on use

case were introduced: 1) Use case size points for the internal

structure to captures the functionality. 2) Fuzzy use case size

points, on Fuzzy Set Theory for creation of gradual

classifications dealing with uncertainty. Nesi and Querci also

proposed a new complexity and size metrics for effort

evaluation and prediction [NES98].

2.2 Object-Oriented Sizing Metrics
Object-oriented sizing metrics by Chidamber and Kemerer

theoretically proposed six metrics [CHI94]. An empirical study

on the metrics by Li and Henry was conducted using

maintenance effort data, while Basili et al. [BAS96] validated

the metrics using software defects. In 1994, Chidamber and

Kemerer revised the original metrics of 1991 using measurement

theory and empirical data [CHI91]. Chucher and Shepperd also

commented on possible ambiguities in some of those metrics

was reported in [CHU95].

3. CHIDAMBER AND KEMERER

METRICS
Chidamber and Kemerer [CHI94] [CHI91] gave a new set of 6

proposed software metrics for object-oriented design. The

metrics proposed are described as:

a) Weight methods per class (WMC) - The Weighted Methods

per Class (WMC) metric is the sum of the complexity of

methods and count of the combined complexity of methods in a

given class. This assigns a complexity value of 1 to each

method, and therefore the value of the WMC is equal to the

number of methods in the class. The number of methods and the

complexity of the methods is a predictor of how much time and

effort is required to develop and maintain the class. The larger

the number of methods in a class, the greater the potential

impact on children. Churcher and Shepperd’s (C&S) criticized

on the ambiguity of WMC. They pointed out that there are two

factors for C++ methods which C&K didn’t specify; whether

constructor/ destructor methods were all counted and whether

operators are included as methods.

Li [LI98] emphasized that the metric can be used with two

intentions: 1) count of methods, and 2) sum of the internal

complexity of all methods, but the problem was that the number

of methods and the internal structural complexity of methods are

two independent attributes of a class and the dual interpretation

of WMC metric might create a difficulties to the practitioner. Li

[LI98] then proposed two new metrics: 1) Number of Local

Methods (NLM) and 2) Class Method Complexity (CMC) to

measure the two attributes that the WMC intends to capture.

b) Depth of Inheritance tree (DIT) - The Depth of Inheritance

Tree (DIT) metric is “the maximum length from the node to the

root of the tree”. Li found there are two ambiguous points in this

definition: 1) maximum length from node to root becomes

unclear with multiple roots and 2) conflicting goals stated in the

definition and theoretical basis for the DIT metric. It indicate

that the DIT metric measure the number of ancestor class of a

class, but the definition of DIT stated that it should measure the

length of the path in the inheritance tree, which is the distance

between two nodes in a graph. Li [LI98] proposed a new

metric: Number of Ancestor Classes (NAC) as an alternative to

DIT.

c) Response for class (RFC) - The response set of a class

(RFC) is defined as set of methods that can be potentially

executed in response to a message received by an object of that

class. [JON07]. No ambiguity or inadequacy is reported for this

metric. The instrumentation model for the RFC is the means to

calculate the RFC metric stated in [CHI91].

d) Number of children (NOC) - According to Chidamber and

Kemerer [CHI94] [CHI91], the Number of Children (NOC)

metric is defined as the number of immediate sub-classes

subordinated to a class in the class hierarchy. The theoretical

points came out as NOC is a measure of how many subclasses

are going to inherit the methods of the parent class. The

viewpoints were 1) The greater the number of children, the

greater the potential for reuse, since inheritance is a form of

reuse. 2) The greater the number of children, the greater the

likelihood of improper abstraction of the parent class. 3) The

number of children gives an idea of the potential influence a

class has on the design. Li [LI98] proposed a new metric:

Number of Descendent Classes (NDC) as an alternative to the

NOC metric to remedy the insufficiency of immediate sub-class

counting in NOC.

e) Lack of cohesion of methods (LCOM) - This metric is a

count of the number of disjoint method pairs minus the number

of similar method pairs. The disjoint methods have no common

instance variables, while the similar methods have at least one

common instance variable [JON07][BAS96].

f) Coupling between objects (CBO) - The coupling Between

Object Classes (CBO) metric is defined as “CBO for a class is a

count of the number of non-inheritance related couples with

classes”. Li [LI98] claimed that the unit of “class” used in this

metric is difficult to justify, and suggested different forms of

class coupling: inheritance, abstract data type and message

passing which are available in object-oriented programming. Li

[LI98] proposed 2 new metrics: 1) Coupling Through Abstract

Data Type (CTA) and 2) Coupling Through Message Passing

(CTM) as an alternative metrics.

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.8, February 2011

44

4. LI METRICS
Li discovered some metrics as he discovered problems with

Chidamber and Kemerer metrics during the course of defining

the unit definition model for the metrics. An alternative suite of

object-oriented metrics was proposed by Li [LI98]. Six metrics,

Number of Ancestor Classes (NAC), Number of Local Methods

(NLM), Class Method Complexity (CMC), Number of

Descendent Classes (NDC), Coupling Through Abstract Data

Type (CTA), and Coupling Through Message Passing (CTM)

were proposed in order to overcome some limitations found in

Chidamber and Kemerer metrics.

a) Number of ancestor classes (NAC) - The Number of

Ancestor classes (NAC) metric proposed as an alternative to the

DIT metric measures the total number of ancestor classes from

which a class inherits in the class inheritance hierarchy. The

theoretical basis and viewpoints both are same as the DIT

metric. In this the unit for the NAC metric is “class”, Li [LI98]

justified that because the attribute that the NAC metric captures

is the number of other classes’ environments from which the

class inherits.

b) Number of local methods (NLM) - The Number of Local

Methods metric (NLM) is defined as the number of the local

methods defined in a class which are accessible outside the

class. It measures the attributes of a class that WMC metric

intends to capture. The theoretical basis and viewpoints are

different from the WMC metric. The theoretical basis describes

the attribute of a class that the NLM metric captures. This

attribute is for the usage of the class in an object-oriented design

because it indicates the size of a class’s local interface through

which other classes can use the class. Li [LI98] stated three

viewpoints for NLM metric as following: 1) The NLM metric is

directly linked to a programmer’s effort when a class is reused

in an OO design. More the local methods in a class, the more

effort is required to comprehend the class behavior. 2) The

larger the local interface of a class, the more effort is needed to

design, implement, test, and maintain the class. 3) The larger the

local interface of a class, the more influence the class has on its

descendent classes.

c) Class method complexity (CMC) - The Class Method

Complexity (CMC) metric is defined as the summation of the

internal structural complexity of all local methods. The CMC

metric’s theoretical basis and viewpoints are significantly

different from WMC metric. The NLM and CMC metrics are

fundamentally different as they capture two independent

attributes of a class. These two metrics affect the effort required

to design, implement, test and maintain a class.

d) Number of descendent classes (NDC) - The Number of

Descendent Classes (NDC) metric as an alternative to NOC is

defined as the total number of descendent classes (subclass) of a

class. The stated theoretical basis and viewpoints indicate that

NOC metric measures the scope of influence of the class on its

sub classes because of inheritance. Li claimed that the NDC

metric captures the classes attribute better than NOC.

e) Coupling through abstract data type (CTA) - The

Coupling through Abstract Data Type (CTA) is defined as the

total number of classes that are used as abstract data types in the

data-attribute declaration of a class. Two classes are coupled

when one class uses the other class as an abstract data type

[LI98]. According to Li [LI98] the theoretical view was that the

CTA metric relates to the notion of class coupling through the

use of abstract data types. This metric gives the scope of how

many other classes’ services a class needs in order to provide its

own service to others. The Viewpoints were: 1) More time is

required by the software engineer to spend in understanding the

interfaces of the used classes in order to create the design for a

high CTA class than a low one. 2) For a test engineer, more

effort is needed to design test cases and perform testing for high

CTA class than a low one because the behaviors of the used

classes also need to be tested. 3) For a maintenance engineer, it

takes more time to understand a high CTA class than a low one

because a high CTA class uses more class whose behaviors may

compliance the class.

f) Coupling through message passing (CTM) - The Coupling

through Message Passing (CTM) defined as the number of

different messages sent out from a class to other classes

excluding the messages sent to the objects created as local

objects in the local methods of the class. Two classes can be

coupled because one class sends a message to an object of

another class, without involving the two classes through

inheritance or abstract data type [LI98]. Theoretical view given

was that the CTM metric relates to the notion of message

passing in object-oriented programming. The metric gives an

indication of how many methods of other classes are needed to

fulfill the class’ own functionality. The Viewpoints were 1) A

class designer needs to spend more effort in understanding the

services provided by other classes in a high CTM class than in a

low CTM class because the outgoing message are directly

related to the services other classes provide. 2) A test engineer

needs to spend more effort and design more test cases for high

CTM class than for a low CTM class because a high CTM value

means more other classes’ methods are involved in the logical

paths of the class. 3) For a maintenance engineer, the higher the

CTM metric value, the more specific methods in other classes

the engineer needs to understand in order to diagnose and fix

problems, or to perform other types of maintenance.

5. CONCLUSION
This paper compares the metrics related to object-oriented

paradigm proposed by Chidamber and Kemerer and then refined

by Li. Chidamber and Kemerer metrics were evaluated using a

framework called as the metric evaluation framework by

Kichenham and her colleagues. Li and other researchers also

made an effort to validate the six metrics theoretically and

empirically. A new suite of object-oriented programming

metrics were proposed later. Some researchers also highlighted

that if a metric is proposed for class method complexity based

on the structure of the class that would be more practical. They

also suggested that NLM should be further divided into two

more comprehensive metrics 1) Number of private methods and

2) Number of public methods with appropriate weight allocation

through empirical validation. They gave their view about the

DIT or NAC metric that provide helpful information in

complexity measure for the class design in object oriented

paradigm. For NOC and NDC they argued that the more

constructive works should focus on the type of inheritance

which comes in two forms: data attributes and methods that are

inheritable from the class by its subclass. This might increase

the accuracy of complexity measure cause by the inheritance

relations among the classes. In case of CBO, CTA and CTM

they found that the definition and theoretical of the metric

doesn’t exclude the non-inheritance related couples. This might

International Journal of Computer Applications (0975 – 8887)

Volume 15– No.8, February 2011

45

create double counting when the class is having the different

inheritance relations which are capturing the same attributes.

6. REFERENCES
[1] [ALB83] Albrecht A. and J. Gaffney, "Software function,

source lines of code and development effort prediction,"

IEEE Transactions on Software Engineering, Vol. 9, 1983,

pp.639-648.

[2] [ANT99] Antoniol G., C. Lokan, G. Caldiera and R.

Fiutem, “A Function Point-Like Measure for Object-

Oriented Software”, Empirical Software Engineering, Vol.

4, Issue 3, September 1999, pp. 263-287.

[3] [BRI01] Briand L. C. and J. Wust, “Modeling Development

Effort in Object-Oriented Systems Using Design

Properties”, IEEE Transactions on Software Engineering,

Vol. 27, No. 11, November 2001, pp. 963-986.

[4] [BRA06] Braz M. R. and S. R. Vergilio, “Software Effort

Estimation Based on Use Cases”, Proceedings of 30th

Annual International Computer Software and Applications

Conference (COMPASAC ’06), IEEE Computer Society,

September 2006, pp. 221-228.

[5] [BRI95] Brito F. e Abreu “Toward the Design Quality

Evaluation of Object-Oriented Software Systems”. In

Proceedings of the 5th International Conference on

Software Quality, Austin, Texas, USA, Oct 1995.

[6] [BAS96] Basili V. L., L. Briand and W. L. Melo, “A

validation of object-oriented Metrics as Quality

Indicators”, IEEE Transaction Software Engineering. Vol.

22, No. 10, 1996, pp. 751-761.

[7] [BOO91] Booch G., “Object-Oriented Design with

Applications” (The Benjamin/Cummings Publishing

Company,Redwood City, CA , 1991; ISBN: 0-8053-0091-

0).

[8] [BRO87] Brooks F.P., No Silver Bullets: Essence and

Accidents of Software Engineering, Computer, Vol. 20,

No. 4 (Apr 1987) pp. 10-19.

[9] [CHU95] Chucher N.I. and M.J. Shepperd, “Comments on

a metrics Suite for Object-oriented Design” IEEE

Transaction on Software Engineering, Vol. 21, No.3, 1995,

pp. 263-265.

[10] [COS05] Costagliola G., F. Ferrucci, G. Tortora, and

G. Vitiello, “Class Point: An Approach for the Size

Estimation of Object- Oriented Systems”, IEEE

Transaction on Software engineering, Vol. 31, No. 1,

January 2005, pp. 52-74

[11] [CHI94] Chidamber S. R. and C. F. Kemerer, “A

Metrics Suite for Object Oriented Design”, IEEE

Transactions on Software Engineering, Vol. 20, No. 6, June

1994, pp. 476-493.

[12] [CHI91] Chidamber S. R. and C. F. Kemerer,

“Towards a Metrics Suite for Object Oriented Design”,

Proceeding on Object Oriented Programming Systems,

Languages and Applications Conference (OOPSLA’91),

ACM, Vol. 26, Issue 11, Nov 1991, pp. 197-211.

[13] [CAB76] McCabe T. “A Complexity Measure”. IEEE

Transactions on Software Engineering, SE-2(4), Dec 1976,

pp. 308-320.

[14] [DIE06] Diev S., "Software estimation in the

maintenance context," ACM Software Engineering Notes,

Vol. 31, No. 2, 2006, pp. 1-8.

[15] [FRA06] Fraternali P., M. Tisi, and A. Bongio,

"Automating function point analysis with model driven

development," Proceedings of the Conference of the Center

for Advanced Studies on Collaborative Research, Toronto,

Canada, ACM Press, New York, 2006, pp. 1-12.

[16] [GRA92] Grady R.B., “Practical Software Metrics for

Project Management and Process Improvement” (Prentice

Hall, Englewood Cliffs, NJ, 1992; ISBN: 0-13-720384-5).

[17] [JON07] Jones C.,”Estimating Software Costs:

Bringing Realism to Estimating”, 2nd Edition, Mc Graw

Hill, New York, 2007.

[18] [LAR90] Laranjeira L. A., “Software Size Estimation

of Object- Oriented Systems”, IEEE Transaction on

Software Engineering, Vol. 16, No. 5, May 1990, pp. 510-

522.

[19] [LI98] Li W., “Another Metric Suite for Object-

oriented Programming”, The Journal of System and

Software, Vol. 44, Issue 2, December 1998, pp. 155-162.

[20] [MIN09] Minkiewicz A., "The evolution of software

size: A search for value," CROSSTALK, Vol. 22, No. 3,

2009 pp. 23-26.

[21] [NES98] Nesi P. and T. Querci, “Effort Estimation

and Prediction of Object-oriented Systems”, The Journal of

Systems and Software, Vol. 42, Issue 1, July 1998, pp. 89-

102.

[22] [NEJ88] Nejmeh B. A., “A measure of execution path

complexity and its applications”. Communications of the

ACM, 31(2), Feb 1988, pp. 188-200.

[23] [TAN06] Tan H. B. K., Y. Zhao, and H. Zhang,

"Estimating LOC for information systems from their

conceptual data models," Proceedings of the 28th

International Conference on Software Engineering,

Shanghai, China, ACM Press, New York, 2006, pp. 321-

330.

