
International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

54

A New Dynamic Round Robin and SRTN Algorithm with
Variable Original Time Slice and Intelligent Time Slice for

Soft Real Time Systems

 H.S. Behera Simpi Patel Bijayalakshmi Panda
 Sr. Lecturer Student Student
Veer Surendra Sai University Of Veer Surendra Sai University Of Veer Surendra Sai University Of
 Technology, Burla Technology, Burla Technology, Burla
 Sambalpur, India Sambalpur, India Sambalpur, India

ABSTRACT

The main objective of the paper is to improve the Round

Robin (RR) algorithm using dynamic ITS by coalescing it

with Shortest Remaining Time Next (SRTN) algorithm thus

reducing the average waiting time, average turnaround time

and the number of context switches. The original time slice

has been calculated for each process based on its burst

time.This is mostly suited for soft real time systems where

meeting of deadlines is desirable to increase its performance.

The advantage is that processes that are closer to their

remaining completion time will get more chances to execute

and leave the ready queue. This will reduce the number of

processes in the ready queue by knocking out short jobs

relatively faster in a hope to reduce the average waiting time,

turn around time and number of context switches. This paper

improves the algorithm [8] and the experimental analysis

shows that the proposed algorithm performs better than

algorithm [6] and [8] when the processes are having an

increasing order, decreasing order and random order of burst

time.

General Terms

Scheduling, Round Robin Scheduling, Shortest Remaining

Time Next Scheduling

Keywords
Process, Real Time Operating System, Waiting Time,
Turnaround Time, Context Switches, Intelligent Time Slice
(ITS)

1. INTRODUCTION
Real time systems are systems which react to the events in the

surrounding by carrying out specific actions within the

specified time. A real-time deadline can be so small that

system reaction appears instantaneous. The term real-time

computing has also been used however, to describe "slow

real-time" output that has a longer, but fixed, time limit. There

are three types of real-time systems. The types of real-time

systems include hard, soft and adaptive real-time systems.

Hard real time system says that all of the deadlines or

temporal constraints have to be resolved. Second type of this

system, which is known as soft real-time system suggests that

missing single deadline should not put the system behaviour

in danger. It often denotes a system that attempts to meet all

time constraints imposed by its tasks or operations or

applications by enjoying the powerful system resources such

as high clock rate, faster processors, speedy cache, and

lightening buses. It is still a 'soft' real-time system because

some critical tasks might be delayed due to some system-

oriented processes that are bulky and time-consuming and not

preemptive.Adaptive real-time system adjusts the internal

strategies by giving response to the changes that are carried

out in the environment.

1.1 Preliminaries
A program in execution is called a process. The processes,

waiting to be assigned to a processor are put in a queue called

ready queue. CPU Utilization is the capacity to keep the CPU

busy as much as possible as long as there are jobs to process.

Throughput is a measure of work in terms of the number of

processes that are completed per unit time for which a process

holds the CPU is known as burst time. The time at which a

process arrives is its arrival time. Turnaround time is the

amount of time to execute a particular process, while waiting

time is the amount of time a process has been waiting in the

ready queue. Time elapsed between the submissions of a

request by the process till its first response is called the

response time. In time sharing system, the CPU executes

multiple processes by switching among them very fast. The

number of times CPU switches from one process to another is

called as the number of context switches.

Scheduling disciplines are algorithms used for distributing

resources among parties which simultaneously and

asynchronously request them. Scheduling disciplines are used

in routers (to handle packet traffic) as well as in operating

systems (to share CPU time among both threads and

processes), disk drives (I/O scheduling), printers (print

spooler), most embedded systems, etc. The main purposes of

scheduling algorithms is to minimize resource starvation, to

ensure fairness amongst the parties utilizing the resources and

to keep the CPU busy as much as possible by executing a

(user) process and then switching to another process .

Scheduling deals with the problem of deciding which of the

outstanding requests is to be allocated resources.

In general, (job) scheduling is performed in three stages:

short-, medium-, and long-term. The activity frequency of

these stages is implied by their names.Long-term (job)

scheduling is done when a new process is created. It initiates

processes and so controls the degree of multi-programming

(number of processes in memory). Medium-term scheduling

involves suspending or resuming processes by swapping

(rolling) them out of or into memory. Short-term (process or

CPU) scheduling occurs most frequently and decides which

process to execute next.

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Router
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/CPU_time
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/I/O_scheduling
http://en.wikipedia.org/wiki/Print_spooler
http://en.wikipedia.org/wiki/Print_spooler
http://en.wikipedia.org/wiki/Print_spooler
http://en.wikipedia.org/wiki/Resource_starvation

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

55

1.2 Scheduling Policies
In general, scheduling policies may be preemptive or non-

preemptive. In a non-preemptive pure multiprogramming

system, the short-term scheduler lets the current process run

until it blocks, waiting for an event or a resource, or it

terminates i.e First-Come-First-Served (FCFS), Shortest Job

first (SJF) policies.

1.2.1 First come first served

It is the simplest scheduling algorithm, FIFO simply queues

processes in the order that they arrive in the ready queue.

1.2.2 Shortest job first
With this strategy the scheduler arranges processes with the

least estimated processing time remaining to be next in the

queue. This requires advance knowledge or estimations about

the time required for a process to complete.

In a preemptive multiprogramming system, the short term

schedular permits a process to be removed from processor

when other high priority process enters into the system.

1.2.3 Fixed priority pre-emptive scheduling

It is a scheduling system commonly used in real-time systems.

With fixed priority pre-emptive scheduling, the scheduler

ensures that at any given time, the processor executes the

highest priority task of all those tasks that are currently ready

to execute.

1.2.4 Rate-monotonic scheduling
A scheduling algorithm used in real-time operating

systems with a static-priority scheduling class. The static

priorities are assigned on the basis of the cycle duration of the

job: the shorter the cycle duration is, the higher is the job's

priority.

1.2.5 Round-robin scheduling
Round-robin (RR) is one of the simplest scheduling

algorithms for processes in an operating system which assigns

time slices to each process in equal portions and in circular

order,handling all the processes without priority (also known

as cyclic executive). Round-robin scheduling is both simple

and easy to implement, and starvation free.

1.2.6 Earliest deadline first
Earliest Deadline First (EDF) or Least Time to Go is a

dynamic scheduling algorithm used in real-time operating

systems. It places processes in a priority queue. Whenever a

scheduling event occurs (task finishes, new task released, etc.)

the queue will be searched for the process closest to its

deadline. This process is the next to be scheduled for

execution.

1.3 Related work
[5]and[6] Yaashuwanth.C & R.Ramesh proposed an

architecture which eliminates the defects of implementing a

simple round robin architecture in real time operating system

by introducing a concept called intelligent time slicing which

depends on three aspects i.e. priority, average CPU burst and

context switch avoidance time.[7] Prof. Rakesh Mohanty,

Prof. H. S. Behera et.al proposed a new Improved-RR

algorithm named Shortest Remaining Burst Round Robin

Scheduling Algorithm(SRBRR). [8] Prof. Rakesh Mohanty,

Prof. H. S. Behera et.al proposed Priority Based Dynamic

Round Robin (PBDRR) Algorithm with Intelligent Time Slice

for Soft Real Time Systems.

1.4 Our Contribution
The original time slice suited to the burst time of each process

as mentioned in [5] has been calculated, The dynamic ITS as

in [6] and [8] has been found out and RR in conjunction with

the SRTN algorithm both of which are pre-emptive in nature

(suitable for soft real time system) have been used and it is

observed that there is a further improvement in the

performance metrics

1.5 Organization of the paper
Section 2 presents the pseudo code and illustration of our

proposed algorithm .In section 3 experimental analysis of the

proposed algorithm and its comparison with the algorithms in

[6] and [8] is presented. Section 4 contains the conclusion and

future work.

2. PROPOSED ALGORITHM

2.1 Uniqueness of the Approach
In the proposed algorithm jobs are assigned original time slice

based on the burst time of each process and intelligent time

slice for each cycle. RR with SRTN has been used because

performance of RR soley depends on time quantum.If it is too

small it causes context switches. If it is very large it

degenerates the algorithm to that of FCFS. Because SRTN

allows the execution of jobs with shortest remaining time first,

hence it allows shorter processes to leave the queue thus

allowing faster execution of fewer processes.

2.2 Detailed Structure of the algorithm
First, the original time slice (OTS) to be allocated to each

process is calculated by using a formula which takes in to

account the range, priority and total number of processes in

the CPU.OTS has been assigned based on the priority of each

process. Then the ITS based on OTS, priority component,

shortest CPU burst time and context switch component has

been found out. RR along with SRTN has been used for

scheduling the processes. Performance of RR depends on the

time quantum while that of SRTN depends on quicker

execution of the processes with least remaining burst time. If

time quantum is too small it results in context switch overhead

resulting in loss of precious CPU time while a large time

quantum degenerates it to FCFS algorithm.

2.2.1 Pseudo code:

1. Let n : number of processes

 bt[i] : burst time of ith process.

 rbt[i] : remaining burst time of ith process

 r : number of the round

 Initialize: cs=0, avgwt=0, avgtat=0,r=1

2. Calculate OTS for all n processes present in the ready

 Queue

 //OTS is the original time slice//

 Range = maximum CPU burst time + minimum

 CPU burst time

 //Range is the range of burst time of n processes//

 OTS = (Range*Total number of processes in the

 System)/ (Priority of the process* Total

 Number of priorities in the system)

 //Priority is the user defined priority of the processes//

2. Calculate the ITS for all n processes in the ready queue

http://en.wikipedia.org/wiki/FIFO
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Real-time_system
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Task_(computing)
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Round-robin_scheduling
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Computer_process
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
http://en.wikipedia.org/wiki/Priority
http://en.wikipedia.org/wiki/Cyclic_executive
http://en.wikipedia.org/wiki/Resource_starvation
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Priority_queue

International Journal of Computer Applications (0975 – 8887)

Volume 16– No1, February 2011

56

 //ITS is the intelligent time slice of the processes//

3. Arrange all the processes in the ready queue in ascending

 order of rbt[i]

4. While (ready queue! = NULL)

 if (r==1)

 ½ ITS, if SC= 0

 TQ =

 ITS, otherwise

 else

 TQ i-1 + ½ TQ i-1, if SC=0

 TQ =

 2 * TQ i-1 ,, otherwise

 if (rbt[i] - TQi) <=2

 TQi= bt[i]

 //TQ is the time quantum assigned to each process//

5. Assign TQ to as the burst time of process i

 bt[i]TQi

6. If (i < n)

 i=i+1

 goto step (4)

 else

 update counter r and goto step (3)

 End of while

7. cs, avgwt, avgtat are calculated.

8. End

.2.3 Illustration

Given the burst sequence: 25 60 12 43 5 with user priority 3 1

2 1 1 respectively. Range was found out by adding the highest

CPU burst time and the smallest CPU burst time and dividing

the result by 2. Original Time Slice (OTS) was then calculated

by dividing the range of processes multiplied to total number

of processes and priority of each process multiplied to total

number of priorities. It was found to be 11 33 17 33 33. The

priority component (PC) is assigned 0 or 1 depending upon

the priority assigned by the user which is inversely

proportional to the priority number .It was calculated as 0 1 0

1 1. Shortness component (SC) difference between burst time

of current process and its previous process is calculated .It is 1

if difference is less than zero,0 otherwise. (SC) was calculated

and was found to be 0 0 1 0 1. If this balance CPU burst is

less than OTS, it will be considered as Context Switch

Component (CSC) otherwise it isn’t considered as CSC. The

CSC was calculated as 0 0 12 9 5. The intelligent time slice

is sumof all the values like OTS, PC, SC and CSC. Intelligent

time slice for individual processes was computed as 11 34 30

43 5.The processes are then arranged in increasing order of

their burst time. In first round, the processes having SC as 1

were assigned time quantum same as intelligent time slice

whereas the processes having SC as 0 were given the time

quantum equal to the roof of the half of the intelligent time

slice. So processes P1, P2, P3, P4, P5 were assigned time

quantum as 6 17 12 22 5.The remaining burst times were

found out and the processes were again arranged in increasing

order of their burst time following the SRTN scheduling . In

next round , processes having SC as 1 were assigned double

slice of its previous round whereas the Processes with SC

equals to 0 were given the time quantum equal to the sum of

the Previous time quantum and roof of the half of the previous

time quantum. Similarly time quantum is assigned to each

process available in each round of execution.

3. EXPERIMENTAL ANALYSIS

3.1 Assumptions
All the experiments are performed is a single processor

environment and all the processes are independent. Attributes

like burst time, priority, number of processes is known before

submitting the processes to the processor. All processes are

CPU bound. No processes are I/O bound.

3.2 Experimental Framework
The experiment consists of several input and output

parameters. The input parameters consist of burst time,

priority and the number of processes. The output parameters

consist of average waiting time, average turnaround time and

number of context switches.

3.3 Data Set
Several experiments have been performed for evaluating

performance of the new proposed algorithm but only three of

them are shown .The data set have been considered for

different processes with increasing, decreasing and random

order of burst time respectively.

3.4 Performance Metrics

The significance of our performance metrics for experimental

analysis is as follows:

1) Turnaround time (TAT): For the better performance of the

algorithm, average turnaround time should be less.

2) Waiting time (WT): For the better performance of the

algorithm, average waiting time should be less.

3) Number of Context Switches (CS): For the better

performance of the algorithm, the number of context switches

should be less.

3.5 Results Obtained

Case 1: Increasing Order of Burst Time
We assume five processes arriving at time=0, with increasing

burst time (P1=5,P2=12,P3=16,P4=21,P5=23) and priority

(P1=2, P2=3, P3=1, P4=4, P5=5). Table-3.1, Table-3.2,Table-

3.3 show the output using algorithm in paper[6],[8] and our

new proposed algorithm respectively. Table3.4 shows the

comparison between table 3.1, 3.2 & 3.3.

Table 3.1 for Data in Increasing Order as Per Paper [6]

PROC

ESS

ID

BURST

TIME

PRIO

RITY
OTS PC SC CSC ITS

P1 5 2 4 0 0 1 5

P2 12 3 4 0 0 0 4

P3 16 1 4 1 0 0 5

P4 21 4 4 0 0 0 4

P5 23 5 4 0 0 0 4

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

57

0 5 9 14 18 22 26 31 35

 39 43 48 52 56 57 61 65

 69 73 74 77

Fig 3.1: Gantt Chart For Table3.1

Table 3.2 For Data In Increasing Order As Per Paper [8]

0 5 7 10 12 14 17 22 25

 28 35 43 48 53 61 69

72 77

Fig 3.2 Gantt Chart For Table 3.2

Table 3.3 For Data In Increasing Order As Per Our

Proposed Algorithm

0 5 8 17 19 21 28 33 36

 39 43 48 53 61 69 72 77

Fig 3.3: Gantt Chart For Table 3.3

Table 3.4 Comparison Among The Algorithm In Paper

[6], [8] And Proposed Method

CASE 2: Decreasing Order of Burst Time

We assume five processes arriving at time=0, with decreasing

burst time (P1=31,P2=23,P3=16,P4=9,P5=1) and priority

(P1=2, P2=1, P3=4, P4=5, P5=3). Table-3.5, Table-3.6,

Table-3.7 show the output using algorithm in paper [6], paper

[8] and the new proposed algorithm. Table 3.8 shows the

comparison between tables 3.5, 3.6 & 3.7.

P1 P2 P3 P4 P5 P2 P3 P4 P5

P 5 P2 P3 P4 P5 P3 P4 P5 P4

P4 P5 P4 P5 ...

PROC

ESS ID

SC ITS ROUNDS

1ST 2ND 3RD 4TH 5TH

P1 0 5 5 0 0 0 0

P2 0 4 2 3 7 0 0

P3 0 5 3 5 8 0 0

P4 0 4 2 3 5 8 3

P5 0 4 2 3 5 8 5

P1 P2 P3 P4 P5 P3 P2 P4 P5

P5 P2 P3 P4 P5 P4 P5 P4 P5

PROC

ESS

ID

OTS CSC ITS

ROUNDS

1ST 2ND 3RD 4TH 5TH

P1 7 5 12 5 0 0 0 0

P2 5 0 5 3 5 4 0 0

P3 14 2 17 9 7 0 0 0

P4 4 0 4 2 3 5 8 3

P5 3 0 3 2 3 5 8 5

P1 P2 P3 P4 P5 P2 P3 P4 P5

P5 P3 P4 P5 P4 P5 P4 P5

Algorithm Avg TAT Avg WT CS

In paper[6] 51.2 35.8 19

In paper [8] 46.4 31 17

In Proposed method 46 30.6 15

International Journal of Computer Applications (0975 – 8887)

Volume 16– No1, February 2011

58

Table 3.5 for Data in Decreasing Order as Per Paper [6]

0 4 10 15 20 21 25 31 36

 40 44 50 56 60 65 69 73

 77 80

Fig 3.4: Gantt Chart For Table 3.5

Table 3.6 For Data In Decreasing Order As Per Paper [8]

 0 2 8 13 18 19 22 34 45

 49 54 59 80

Fig 3.5: Gantt chart for Table 3.6

Table 3.7 for Data in Decreasing Order as Per Proposed

Algorithm

 0 1 5 10 33 37 42 53 59 68 80

Fig3.6: Gantt Chart For Table 3.7

Table 3.8 Comparison Among The Algorithm In Paper

[6], [8] And Proposed Method

CASE 3: Random Order of Burst Time

We assume five processes arriving at time=0, with random

burst time (P1=11,P2=53,P3=8,P4=41,P5=20) and priority

(P1=3, P2=1, P3=2, P4=4, P5=5). Table 3.9, Table-3.10,

Table-3.11 show the output using algorithm in paper [6],

paper [8] and our new proposed algorithm. Table 3.12 shows

the comparison between tables 3.9, 3.10 and 3.11

respectively.

PROC

ESS

ID

BURST

TIME

PRIO

RITY

OTS PC SC CSC ITS

P1 31 2 4 0 0 0 4

P2 23 1 4 1 1 0 6

P3 16 4 4 0 1 0 5

P4 9 5 4 0 1 0 5

P5 1 3 4 0 1 0 1

P1

P2 P3 P4 P5 P1 P2 P3 P4

P4 P1 P2 P3 P1 P2 P1 P1 P1

P1 P1

PROCESS

ID
SC ITS ROUNDS

 1ST 2ND 3RD 4TH

P1 0 4 2 3 5 21

P2 1 6 6 12 5 0

P3 1 5 5 11 0 0

P4 1 5 5 4 0 0

P5 1 1 1 0 0 0

P1 P2 P3 P4 P5 P1 P2 P3 P4

P4 P1 P2 P1

PROCESS

ID
OTS CSC ITS

ROUNDS

1ST 2ND 3RD 4TH

P1 8 0 8 4 6 9 12

P2 16 5 23 23 0 0 0

P3 4 0 5 5 11 0 0

P4 3 0 4 4 5 0 0

P5 5 0 1 1 0 0 0

P5 P4 P3 P2 P1 P4 P3 P1 P1 P1

Algorithm AVG TAT Avg WT CS

In paper[6] 54 38 12

In paper[8] 50.4 34.4 12

In proposed method 41.8 25.8 7

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

59

Table 3.9 For Data In random Order as Per Paper [6]

0 4 9 17 21 26 30 35 39 44

 47 52 56 61 66 70 75 80 84 89

 93 98 102 107 111 116 120 125 130 133

Fig3.7: Gantt Chart For Table 3.9

Table 3.10 For Data In Random Order As Per Paper [8]

 0 2 5 13 15 20 23 28 31 41

 47 55 60 65 77 85 103 115 122 133

Fig 3.8: Gantt Chart For Table 3.10

Table 3.11 For Data In Random Order As Per Proposed

Algorithm

 0 8 14 21 25 52 57 70 96 102

 111 126 133

Fig 3.9: Gantt Chart For Table 3.11

Table 3.12 Comparison Among The Algorithms In Paper

[6], [8] And Proposed Method

PROC

ESS

ID

BURST

TIME

PRIO

RITY
OTS PC SC CSC ITS

P1 `11 3 4 0 0 0 4

P2 53 1 4 1 0 0 5

P3 8 2 4 0 1 3 8

P4 41 4 4 0 0 0 4

P5 20 5 4 0 1 0 5

P1 P2 P3 P4 P5 P1 P2 P4 P5 P1

P1 P2 P4 P5 P2 P4 P5 P2 P4 P2

P4 P2 P4 P2 P4 P2 P4 P2 P4 P2

PROCESS

ID
SC ITS

ROUNDS

1ST 2ND 3RD 4TH 5TH 6TH

P1 0 4 2 3 6 0 0 0

P2 0 5 3 5 8 12 18 7

P3 1 8 8 0 0 0 0 0

P4 0 4 2 3 5 8 12 11

P5 1 5 5 10 5 0 0 0

P1 P2 P3 P4 P5 P1 P2 P4 P5 P1

P1 P2 P4 P5 P2 P4 P2 P4 P2 P4

PROC

ESS

ID

OTS CSC ITS
ROUNDS

1ST 2ND 3RD 4TH 5TH

P1 10 1 11 6 5 0 0 0

P2 31 21 53 27 26 0 0 0

P3 16 8 25 8 0 0 0 0

P4 8 0 8 4 6 9 15 7

P5 6 0 7 7 13 0 0 0

P3 P1 P5 P4 P2 P1 P5 P2 P4 P4

P4 P4 P4

Algorithm Avg TAT Avg WT CS

In Paper[6] 80.8 54.2 29

In Paper[8] 76 49.2 18

In Proposed Method 72.8 36.2 9

International Journal of Computer Applications (0975 – 8887)

Volume 16– No1, February 2011

60

Fig.3.10:Comparison among the average turn around time

.average waiting time and number of context switches of

algorithms in[6],[8] and proposed method for data in

increasing order of burst time

0

10

20

30

40

50

60

Avg TAT Avg WT No of CS

Static ITS

Dynamic ITS in RR

Dynamic ITS in
proposed method

Fig-3.11:Comparison among the average turn around time

.average waiting time and number of context switches of

algorithms in[6],[8] and proposed method for data in

decreasing order of burst time.

0

10

20

30

40

50

60

Avg TAT Avg WT No of CS

Static ITS

Dynamic ITS in RR

Dynamic ITS in
proposed method

Fig-3.12 Comparison among the average turn around time

.average waiting time and number of context switches of

algorithms in[6],[8] and proposed method for data in random

order of burst time.

0

10

20

30

40

50

60

70

80

90

Avg TAT Avg WT No of.CS

Static ITS

Dynamic ITS in RR

Dynamic ITS in
proposed method

4. CONCLUSION AND FUTURE WORK

It is concluded from the above experiments that the proposed

algorithm performs better than the algorithm proposed by

C.Yaashuwanth et.al [6] and prof R. Mohanty and Prof

H.S.Behera et.al [8] in terms of performance metrics such as

average waiting time,average turn around time and total

number of context switches and the time and space

complexity is reduced.

Future work can be enhanced to implement the proposed

algorithm for adaptive and hard real time systems.

5. REFERENCES

[1] Round robin scheduling - a survey Rasmus V. Rasmussen

and Michael A. Trick, USA

[2] A Modified Maximum Urgency First Scheduling

Algorithm for Real-Time Tasks Vahid Salmani, Saman

Taghavi Zargar, and Mahmoud Naghibzadeh-2005

[3] Hierarchical Fixed Priority Pre-emptive Scheduling Robert

Davis and Alan Burns, Real-Time Systems Research

Group, Department of Computer Science, University of

York, YO10 5DD, York (UK)

[4] Burst Round Robin as a Proportional-Share Scheduling

Algorithm Tarek Helmy, Abdelkader Dekdouk, College

of Computer Science & Engineering, King Fahd

University of Petroleum and Minerals, Dhahran 31261,

Saudi Arabia. Computer Science Department, D'Oran Es-

Sénia University, B.P.1524, EL-Mnaour, Algeria.-2010

[5] Design of Real Time scheduler simulator and

Development of Modified Round Robin architecture

Yaashuwanth .C IEEE Member, Dr.R. Ramesh

Department of Electrical and Electronics Engineering,

Anna University Chennai

[6] A New Scheduling Algorithms for Real Time Tasks,

C.Yaashuwanth and Dr.R.Ramesh Department of

Electrical and Electronics Engineering, Anna University

Chennai, Chennai 600 025, India-2009

[7] Design and Performance Evaluation of a New Proposed

Shortest Remaining Burst Round Robin (SRBRR)

Scheduling Algorithm Prof. Rakesh Mohanty, Prof. H. S.

Behera Khusbu Patwari, Manas Ranjan Das, Monisha

Dash, Sudhashree, Department of Computer Science and

Engineering Veer Surendra Sai University of

Technology, Burla, Sambalpur, Orissa, India.-2010

[8] Priority Based Dynamic Round Robin (PBDRR)

Algorithm with Intelligent Time Slice for Soft Real Time

Systems Prof. Rakesh Mohanty, Prof. H. S. Behera,

Khusbu Patwari, Monisha Dash, M. Lakshmi Prasanna,

ICCA-2010

[9] Silberschatz, A., P.B. Galvin and G. Gagne, Operating

Systems Concepts. 7th Edn. John Wiley and Sons, USA

