
International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

11

Virtual Cylindrical View of a Color Image for its

Permutation for an Encryption Purpose

Brahim Nini
Larbi Ben M’hidi University

Constantine Road, PO. BOX 358
04000 Oum El Bouaghi, Algeria

Darine Bouteldja
University M'hamed Bougara of Boumerdes,

Algeria

ABSTRACT
This paper presents a novel algorithm for row and column

permutation of pixels for the purpose of image encryption. The

algorithm introduces a virtual cylinder surrounding an image and

a virtual viewer looking at it but displaced from an original

position. The key idea is based on the assumption that the light

ray of each pixel to the viewer in her/his original position

intersects the cylinder surface at a given point. When the viewer

is displaced, the new position on a perpendicular image plane on

which the pixel is projected should also have its direction

intersecting the cylinder on the same point. As a result, all

projected pixels in the new created image are slid from their

original positions; but, some of them are delayed because they

are piled up or projected out. In order to avoid information loss,

these pixels are projected in the created holes of the new image.

The consequence of such process is the creation of the expected

permutation. Despite its simplicity, the algorithm shows a strong

transformation of images for the purpose of their encryption.

General Terms
Image encryption, Security, Secured transfer, Network.

Keywords
Image permutation, Image transform, nonlinear permutation,

Key.

1. INTRODUCTION
It becomes commonly known that any important data exchange

through a network should be subject to a previous encryption in

order to avoid a misuse by any intruder. The particular case of

images and videos attracts more attention due the bulk of direct

interpreted information they hold. Unfortunately, a totally secure

cryptographic algorithms are difficult to build because solutions

can always be found to defeat any known algorithm. One way to

ensure the efficiency of a cryptographic algorithm is that it must

pass the test of time and general acceptance by cryptographic

communities as shown in the selection of Advanced Encryption

Standard (AES) [5].

The strength of image encryption is based on the strength of the

used techniques in permutation and substitution of pixels. In

general, there are three major kinds of methods used for

constructing secure encryption algorithms: permutation,

substitution, and their combining form. The first kind is image’s

pixels shuffling which makes the content hidden and confusing.

The second one is the encryption of the content of each pixel.

These kinds of algorithms have been extensively addressed in the

literature and many developed systems have proved their

efficiency. Most of them are based on chaotic system [1, 2, 3]

which is mainly used for the substitution process, although some

critics are always done for an improvement purpose [9]. For the

permutation process, a position permutation algorithm by magic

cube transformation was for instance used in [2]. Like existing

similar approaches, it is based on a transformation of magic

cube's faces values. It was [8] who proposed a new method for

the construction of a magic cube through consecutive

improvements. Furthermore, another approach is proposed in [4]

based on combinations of hybrid magic cubes which are

generated from a magic square and two orthogonal Latin squares.

On another hand, a cryptographic algorithm which uses

Maximum Distance Separable (MDS) matrices as part of its

diffusion element is proposed in [6]. Also, [7] uses matrix

scrambling which is based on shifting and exchanging rule of bi-

column bi-row circular queue.

In this paper, we propose a new idea of a color image pixel-

permutation. It is based on a virtual cylinder having its diameter

equal to the image size and centered on its axis of symmetry. It is

assumed that the light ray of any pixel in the image to the viewer

crosses the cylinder surface at the same point whatever the

position of the viewer is. Such assumption is based on another

one which considers that the current view of the image is in a

plane which is perpendicular to the position of the viewer. So,

based on the original image, each point is used to estimate the

position the corresponding pixel takes in a target image when

viewed from a different position. This may lead to a projection of

the original image onto a new one where all projected pixels are

slid from their original positions. What is noticeable, however, is

that some pixels cannot be directly projected. They are delayed

because either they occupy the same positions in the target

image, or they are completely excluded from it, because the

positions they take are out of its boundaries (see Figure 1). As a

result, the new constructed image contains many holes where no

pixel originates from the original one. The used method consists

in refilling those holes by the delayed pixels to avoid information

loss. The process of projection-refilling creates our expected

pixel-permutation.

Even though our approach is based on a permutation-only

algorithm, it holds some important features that make it closer to

a complete encryption method. The only missing operation in the

encryption process is the substitution of pixels’ values. So, when

supported by a substitution algorithm for encryption, our

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

12

algorithm becomes more powerful. Moreover, the mixture does

not require any special changes in both algorithms.

The rest of the paper is organized as follows. The next section

details the principle of a virtual cylinder. It explains the

underneath mathematical basics and how the new image is

generated. The third section goes more in detail to explain how

the scrambling of an image is obtained. It gives the algorithms of

permutation and the reverse processes. The fourth section is

interested in the experimental results. It shows some obtained

results, the analysis of the key and the sensitivity of the results.

Finally, a conclusion is given summarizing the work and its

possible extensions.

2. VIRTUAL CYLINDER PRINCIPLE
A virtual cylinder that surrounds an image is the pillar of the

idea of our pixel-permutation algorithm. It is assumed that, when

looking at an image, the light ray of each pixel crosses the

surface of the cylinder at a specific point. This point's position of

each pixel does not change when the position of the viewer

changes. Based on this assumption, and through the original

image, it becomes possible to deduce any other view of the same

image from another position.

We define first the reference position in relation to the original

image as having its view direction being perpendicular to the

image plane and intersecting its axis of symmetry. Second, it is

assumed that the viewed image from another position is on a

perpendicular plane to the direction of the viewer as if the

original image is rotated about the cylinder's axis. Consequently,

a new image can be generated by the projection of each original

pixel on its corresponding position in the new image. Note that

the algorithm principle supposes that the displacement of the

viewer is done along a perpendicular direction to the axis of the

cylinder (see Figure 1).

Fig 1: Transformation of the original image when viewed

from different positions due to the virtual cylinder.

In order to understand how the image is generated, and how the

process of permutation is done, the next subsections state the

mathematical basics and image projection that are the underneath

of the overall process.

2.1 Mathematical Expressions of a Particular

Position of the Viewer
As stated before, it is assumed that the light ray of any pixel in

the image crosses the surface of the cylinder. So, let us consider

a pixel located at PoPo from the middle of the image and viewed

from the reference position situated at VoVo (see Figure 2). This

pixel has its light ray which is intersecting the cylinder at the

point PP . The position in which it is viewed in the target (or

generated) image depends on the new position of the viewer. So,

if a viewer is at a position VtVt , the pixel is projected on the point

PtPt in the new image. The objective is then to determine the

amount of OPtOPt .

Fig 2: The system of projection that estimates the position of

a pixel in the generated image.

Let the angle between the direction of the reference position and

a new one be µµ. This angle is either directly known or calculated

through the displacement
¡ ¡ !
VoVt

¡ ¡ !
VoVt . Let also rr be the radius of the

cylinder which is the image half size. Let now ¸̧ be ®¡ µ®¡ µ for the

case of figure (2). Using the 4 OPoVo4 OPoVo and based on the fact that

AA is the orthogonal projection of PP onto OVoOVo, it is easy to see

that AP = r: sin ¸AP = r: sin ¸ , and AVo = OVo ¡ r: cos¸AVo = OVo ¡ r: cos¸ . Moreover, the

fraction O P o
A P

= O Vo
A Vo

O P o
A P

= O Vo
A Vo

 being true, it becomes easy to obtain the

expression of OPoOPo:

 OPo =
OVo:r: sin ¸

OVo ¡ r: cos¸
OPo =

OVo:r: sin ¸

OVo ¡ r: cos¸
 (1)

Transformed into an equation, expression (1), where ¸̧ is the

variable, becomes:

 OPo: cos¸ + OVo: sin ¸ =
OPo:OVo

r
OPo: cos¸ + OVo: sin ¸ =

OPo:OVo

r
 (2)

The solutions to equation (2) are those of (3):

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

13

 cos(¸ ¡ ') =
OVo: cos'

r
cos(¸ ¡ ') =

OVo: cos'

r
 (3)

where t an ' = O P o
O Vo

t an ' = O P o
O Vo

.

In the same way of reflection for the establishment of expression

(1), the use of 4 OPt Vt4 OPt Vt and the fact that P BP B is perpendicular to

OVtOVt lead to the equality OPt

B P
= OVt

B Vt

OPt

B P
= OVt

B Vt
 and the expression of OPtOPt :

 OPt =
OVt :r: sin®

OVt ¡ r: cos®
=

OVo:r: sin®

OVo ¡ r: cos®: cosµ
OPt =

OVt :r: sin®

OVt ¡ r: cos®
=

OVo:r: sin®

OVo ¡ r: cos®: cosµ
 (4)

since OVt = OVo=cosµOVt = OVo=cosµ.

As ®® is linked to ¸̧ , the estimation of OPtOPt in expression (4)

depends on the solutions of equation (3). So, the value of ¸̧

which suits the described system is used to deduce the one of ®®.

For this, note that the values of the three angles µµ, ¸̧ , and ®®, are

taken positive, and particularly, the one of µµ should be

0 < µ < ¼=20 < µ < ¼=2; otherwise, the image becomes no longer viewed.

Among the solutions of equation (3), the accurate is the one that

fits the defined system. This means that ®® should be chosen so

that its relation to ¸̧ remains always respected. It is clear that this

relation depends on the position of the point PP on the cylinder.

In fact, there are three cases where ®® is expressed differently

(see Figure 3). So, it is important to determine in the original

image the ranges that specify which expression of ®® should be

used, and to select the part of the target image on which the pixel

should be projected according to each expression.

 ®= µ+ ¸®= µ+ ¸ ®= µ¡ ¸®= µ¡ ¸

®= ¸ ¡ µ®= ¸ ¡ µ

Fig 3: Values of ®® depending on the position of the pixel and

its image on the cylinder.

Figure (3) shows that the junctions of OVoOVo and OVtOVt with the

cylinder define the boundaries of different cases on both images.

When the point of interest is the junction of OVoOVo with the

cylinder, it means that ¸ = 0¸ = 0 and ®= µ®= µ. This defines where the

middle of the original image should be projected in the target

one. Let us call it Pt oPt o
 (see Figure 4). In this case and according

to expression (4), OPt o = OVo :r : sin µ

OVo ¡ r : cos2 µ
OPt o = OVo :r : sin µ

OVo ¡ r : cos2 µ
, and to find OPtOPt of any

other pixel situated on the left half of the original image, the

expression ®= µ+ ¸®= µ+ ¸ is used. So, any calculated value for OPtOPt

is larger than OPt oOPt o. Furthermore, the point which is the junction

of OVtOVt and the cylinder is projected in the middle of the target

image and its position in the original one is r + OPotr + OPot , where

OPot = O Vo : r : si n µ
O Vo ¡ r : cos µ

OPot = O Vo : r : si n µ
O Vo ¡ r : cos µ according to expression (1). In fact, for such

point, it is clear that ¸ = µ¸ = µ. Consequently, for any pixel which is

on the half right side of the original image and on the left side of

OPotOPot , the expression ®= µ¡ ¸®= µ¡ ¸ is used for the sake to

determine the value of ®® which is used in expression (4).

However, in the target image, the position the pixel takes is in

the left half side. Therefore, any other pixel on the right of OPotOPot

has its target position in the half right side of the target image,

and to be determined, the expression ®= ¸ ¡ µ®= ¸ ¡ µ is used.

Fig 4: Where the middle of each image is positioned in the

other one.

The established expressions are all based on the fact that the

viewer is situated on the right side of the reference position. One

can easily verify that every expression remains true for a mirror

view. This means that if the viewer is on the left side, the

reflection is simply done on the symmetrical images to figures (2,

3, and 4). So, any obtained result remains valid.

2.2 New Image Generation
In order not to consider every pixel alone, the generation of the

new image considers a whole line/column of pixels as the unit of

transformation. Furthermore, in order to apply transformations

along the columns and lines, there is a need to consider

respectively vertical and horizontal cylinders, and for both, the

projection is based on the use of the previously established

expressions ((1) to (4)). So, along each direction, the new

position where every line or column in the original image should

take in the new one is evaluated. The parameters this

transformation considers depend then on the position of the

viewer in relation to the axis of symmetry of the original image.

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

14

The transformation of the original image needs then two basic

parameters. They are the side the viewer takes from the reference

position (angle µµ) and her/his distance OVoOVo from the image

which is used to determine OVtOVt . They constitute the most

important parts of the permutation process key. Therefore, since

the permutation is done along horizontal and vertical directions

and requires two virtual cylinders, the distance OVtOVt and the

angle µµ are both formed by two components: the horizontal

(OVoxOVox and µxµx) and vertical (OVoyOVoy and µyµy) displacements.

In addition, there are two types of pixels which are not

preliminary projected onto the new generated image (see Figure

1). The first type is constituted of lines or columns that have

their projection positions out of the boundaries of the image.

They are called PoutPout . The second type includes the several lines

or columns having the same projection positions. They are so,

because the evaluated positions are rounded to their nearest

integers, and some of them become the same. Consequently, any

given position is used for the projection of only one line/column,

and the others are delayed. The latter are called Pr epPr ep. Thus,

because not all lines/columns are projected, some holes appear in

the new image where no information is provided from the

original one.

Based on these considerations, the algorithm of initial

transformation of the original image is as follows:

% Algorithm: New_Image_Gen

for each position (column/line) of the original image

 Evaluate the corresponding OPo;
 phi = atan(OVo/OPo);
 Solve equation (3) and chose the accurate value of lambda;
 Estimate OPt depending on the position in relation to r and r+OPto;
 if OPt is a definite position in the target image

 if OPt is not yet used

 Copy the column/line at OPo to the position OPt in the new image
 Mark OPt as used;
 else

 Mark OPo as repeated and add it to Prep;

 end

 else

 Mark OPo as out and add it to Pout;
 end

end

 (a) Original (b) Transformed

(c) Transformed and filled

Fig 5: Application of "New_Image_Gen" algorithm on an

image with OVo = 1:5£ ColOVo = 1:5£ Col and µx = ¼=12µx = ¼=12

3. IMAGE CONTENT PERMUTATION

3.1 Reintroduction of Delayed Pixels
The second part of the proposed algorithm simply reintroduces

the delayed lines and/or columns so that they occupy the created

holes into the generated image. So, in order to understand how

these pixels are reintroduced, notice three important features in

the projected image. The first one is that PoutPout are all situated on

the border of the image. They are contiguous and form a unique

bloc which disappears completely in the new image. The second

one is that the lines/columns that are projected on the same

positions and delayed are physically dispersed. Finally, a set of

dispersed and undefined lines/pixels appears on the opposite side

of the viewer because this part becomes stretched.

For the reason that the reintroduction should take into account

the original positions in order to separate contiguous pixels from

each other, PoutPout are introduced first. As it is clear in figure

(5(b)), the large hole is on the same side of the viewer. So, it is

important not to reintroduce PoutPout into it. This is important,

because this will be limited in a bloc exchange, which reduces

the capacity of shuffling in the permutation process. For this

reason, PoutPout is introduced in the created holes of the stretched

part. This splits the bloc into separated lines or columns, and

hence, reinforces the shuffling process. To do it, the algorithm

begins by searching from the opposite side of the viewer for

existing holes in order to paste PoutPout into them.

For Pr epPr ep, they are simply pasted into the remaining holes. Since

they are initially not close to each other, they remain dispersed

whatever the positions into which they are pasted. Moreover,

they are reintroduced in the new image in a reverse order from

their initial one (see Figure 5(c)).

3.2 Shuffling Procedure
The target image is shuffled based on repeating the process of

new image generation and reintroduction of delayed pixels

several times. In fact, several repetitions of the generation of a

new image based on a previously generated one are enough to get

a complete ciphered image. However, knowing the basics of this

algorithm, it becomes easy to reconstitute the original image just

by varying and combining different values of µµ and OVoOVo . So, in

order to make such operation difficult, the algorithm combines

the parameters in different ways. In fact, there are several orders

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

15

on which it is possible to play for the rearrangement of the target

image. The first one is to apply "New_Image_Gen" algorithm

alternatively along the columns and lines directions with

different values of µµ and OVtOVt ,. The second one is to use for each

step of a new generation different values of µµ and OVtOVt , and

alternate between them. Finally, the third one is to apply the

rearrangement to RGB colors order too. These combinations

make the retrieval of the original image very difficult because of

the huge number of possibilities they create.

Furthermore, the permutation of colors from their initial order is

made randomly, and based on µµ and OVoOVo. The first step consists

in transforming the vector Vor der = [0; 1; 2; 3; 4; 5]Vor der = [0; 1; 2; 3; 4; 5] with the same

algorithm "New_Image_Gen". Then, for each pixel, the modulo

of the sum of its line and column to the value 6 is calculated. The

aim is to select an order in which the three colors red, green, and

blue are to be reordered. For this, the following orders are used:

0: do not change the current order

1: R B G

2: G R B

3: G B R

4: B R G

5: B G R

Therefore, the value of the modulo is used as the current index in

Vor derVor der , and its current value is used to choose the order to apply

on the colors.

The overall algorithm becomes:

Image = Original_Image;
Repeat for a given number of permutation

 For each direction do alternatively

 % direction may be lines (dir=y) or columns (dir=x)
 Repeat for nbr_dir_repetition

 Select theta_dir and OVo_dir of the current step;
 Using New_Image_Gen do

 Permute color bytes;

 Permute Image in the direction of dir;
 end

 end

 end

end

3.3 Reconstruction of the Original Image
The reconstruction of the original image is based on a reverse

process of its permutation. Knowing the used values of µµ and

OVoOVo during the first permutation, the reconstruction of the

original image follows exactly the reverse steps.

4. KEY ANALYSIS AND EXPERIMENTAL

RESULTS

4.1 Structure of the Permutation Key
The permutation algorithm which is presented in this paper is

strong enough to make the transformed image very difficult to

reconstitute. In fact, the key of permutation may be as complex as

it is expected. It depends on very simple values, but when

combined together, they become very difficult to untie. For

example, one form of the key may be [400; 3;[400; 3; ¼
8

;¼
8

; ¼
12

;¼
12

; ¼
9

;¼
9

;

1:5; 1:8; 1:0; 4;1:5; 1:8; 1:0; 4; ¼
20

;¼
20

; ¼
15

;¼
15

; ¼
19

;¼
19

; ¼
11

;¼
11

; 1:7; 1:2; 1:4; 1:9]1:7; 1:2; 1:4; 1:9] which is not so

complex. It means that there will be 400 permutations, and at

each one, the image is permuted 3 times along the columns using

respectively the values [¼
8

; ¼
12

; ¼
9

][¼
8

; ¼
12

; ¼
9

] for µxµx , and [1:5; 1:8; 1; 3][1:5; 1:8; 1; 3] for

OVoxOVox
, whereas it is permuted 4 times along the lines using the

values [¼
20

; ¼
15

; ¼
19

; ¼
11

][¼
20

; ¼
15

; ¼
19

; ¼
11

] for µyµy , and [1:7; 1:2; 1:4; 1:9][1:7; 1:2; 1:4; 1:9] for OVoyOVoy
.

The values of OVoxOVox
 and OVoyOVoy

 are multiplied respectively by

nb columnsnb columns and nb linesnb lines which are respectively columns and

lines numbers of the image. Note that at each step, the order of

each pixel’s colors in the image changes depending on its

position.

For instance, figure (6) shows the permutation of the image

shown in figure (5(a)) with different parameters. The image

shown in figure (6(a)) is shuffled using 200 permutations with

two sub-iterations. The one shown in figure (6(b)) is shuffled

using 300 permutations with also two sub iterations. What is

remarkable is that the number of permutations has no great effect

on the result. From the appearance point of view, both images

are completely non-comprehensible. The number of iterations is

important for the purpose to make the rearrangement difficult for

any misuse.

 (a) (b)

Fig 6: Permutation of the image in figure 5(a) using different

values for the key. The values for (a) are: 200 iterations,

µx1 = 16 ¼
180

µx1 = 16 ¼
180

, µx2 =µx2 = 10 ¼
180

10 ¼
180

, OVx1 = 1:4OVx1 = 1:4, OVx2 = 1:8OVx2 = 1:8, µy1 =µy1 =

12 ¼
180

12 ¼
180

, µy2 =µy2 = 17 ¼
180

17 ¼
180

, OVy1 = 1:7OVy1 = 1:7, and OVy2 = 1:1OVy2 = 1:1, and the

values for (b) are: 300 iterations, µx1 =µx1 = 14 ¼
180

14 ¼
180

, µx2 =µx2 = 20 ¼
180

20 ¼
180

,

OVx1 = 1:4OVx1 = 1:4, OVx2 = 1:0OVx2 = 1:0, µy1 =µy1 = 15 ¼
180

15 ¼
180

, µy2 =µy2 = 10 ¼
180

10 ¼
180

,

OVy1 = 1:0OVy1 = 1:0, and OVy2 = 1:5OVy2 = 1:5.

4.2 Space Values of the Key
Depending on the initial values of the chosen key, the reverse

process may be very sensitive. Just one value of µµ which is

different from the one used in the permutation process by 0.0001

blurs the retrieved image (see Figures 7(a) and 7(b)). The

retrieval of the original image is also affected by the values of

OVoOVo, however the sensitivity is about 0.001 (see Figures 7(c) and

7(d)). So, given a RGB 512 £ 512512 £ 512 color image, if we consider

that OVoOVo varies in the interval

[0:5 £ 512::2:5 £ 512] = [256::1280][0:5 £ 512::2:5 £ 512] = [256::1280] and µµ in

[pi=180::pi=4] = [0:0175::0:7854][pi=180::pi=4] = [0:0175::0:7854], and for a number of iterations

equal to 1000, the number of possible permutations is 10250001025000

(= (1280 ¡ 256 + 1) £ 1000)(= (1280 ¡ 256 + 1) £ 1000) £ 7680000£ 7680000

(= (7854 ¡ 175 + 1) £ 1000)(= (7854 ¡ 175 + 1) £ 1000)¼ 7:872 £ 1012¼ 7:872 £ 1012. This number

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

16

increases rapidly when several sub-iterations are used. For

example, the use of just two different values for µxµx and µyµy makes

this number becoming 6:1968£ 10256:1968£ 1025, because the same number

of combinations is obtained on both directions, i.e., horizontal

and vertical.

The size of the key depends on the chosen intended security for

the permutation. The more there are local permutations within

the same step, the more the key size is bigger. However, the

more the key is longer, the more the permutation becomes secure

from attacks.

Moreover, together with an encryption algorithm, this

permutation algorithm becomes more powerful. In fact, the

reconstruction of the original image becomes almost impossible.

Even though the used combinations of the different values of µµ

and/or OVoOVo may be deduced, the pixels themselves should be

decrypted in order for the image to be understood. Moreover, the

decryption process should substitute the correct pixels values in

the correct order for the image to be viewed.

 (a) (b)

 (c) (d)

Fig 7: Reconstruction of the image in figure 6(b) having all

values of the key equal to the original one except for

(respectively from (a) to (d)): µxµx (µx1u sed
= 14 ¼

180
+ 0:0001µx1u sed

= 14 ¼
180

+ 0:0001),

µyµy (µy1u sed
= 15 ¼

180
+ 0:0001µy1u sed

= 15 ¼
180

+ 0:0001), OVoxOVox

(OVox 1u sed
= 1:5+ 0:001OVox 1u sed
= 1:5+ 0:001), and OVoyOVoy

(VOy1u sed
= 1:0+ 0:001VOy1u sed
= 1:0+ 0:001)

4.3 Experimental Results

 (a) (b)

Fig 8: The same image used in [2] permuted using 500

iterations, µx1 = 0:3491µx1 = 0:3491, µx2 = 0:2443µx2 = 0:2443, µy1 = 0:3316µy1 = 0:3316,

µy2 = 0:2094µy2 = 0:2094, µy3 = 0:2618µy3 = 0:2618, OVox 1 = 945OVox 1 = 945, OVox 2 = 1215OVox 2 = 1215,

OVoy 1 = 776:1OVoy 1 = 776:1, OVoy 2 = 1014:9OVoy 2 = 1014:9, and OVoy 3 = 1194OVoy 3 = 1194.

Figure (8(b)) shows the permutation process applied on the same

image (Figure 8(a)) used in [2] for an encryption purpose. The

result shows that when the colors are spread out in the image, the

latter becomes completely blurred without being encrypted. In

addition, the histograms of the two images show that, from

statistical point of view, they are significantly different. Whereas,

in figure (8(b)), the obtained histograms in [2] for the encrypted

image are flat, the ones obtained in our case are not, but very

misguiding. Note that this result is with no encryption involved.

 (a) (b) (c)

 (d) (e) (f)

Fig 9: Histograms of the two previous images: (a), (b), and

(c) of 8(a) and (d), (e), and (f) of 8(b).

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.1, February 2011

17

5. CONCLUSION
A new algorithm of an image permutation based on a geometrical

projection is presented. The algorithm is based on a virtual

cylinder surrounding the image. Hence, for a viewer looking at

the image from the reference position, s/he sees it as it is, and

the light ray of each pixel intersects the cylinder surface at a

specific point. Therefore, when the viewer looks at the image

from another position, each point is projected on a new

perpendicular image to her/his direction. The new position the

point takes is used to permute the pixel from its original position

to this one. In the resulting image, many holes are then created

due to some projected positions that are outside the target image,

and to the part which becomes stretched. So, the pixels which are

not directly permuted are reintroduced in the created holes. This

process is repeated several times so that the entire image

becomes blurred. This is what creates a permuted image of the

original one.

The algorithm depends heavily on the used key for shuffling. Its

structure is able to make it strong enough to prevent any easy

reconstruction of the original image. The core of the key is based

on the use of two parameters: the angle of view and the distance

from the image of the viewer. These two parameters may be used

with different values at each step of the shuffling operation.

Therefore, a huge number of possible combinations take place

which secures the reconstruction of the original image. What is

also important in this algorithm is that several types of

combinations can be used. It depends on the genuineness of the

user.

The feasibility of our algorithm has been demonstrated. Its

sensitivity to random or planed generated keys is about 0.001 for

the distance of the viewer and 0.0001 for the angle of view. This

sensitivity increases rapidly with the use of sub-parameters.

Also, a permuted image shows that, from statistical point of

view, its histograms are completely different from the original

ones. This is why, it can be stated that the supporting of this

algorithm by an encryption one may multiply its efficiency, and

this without any special transformation. It can be considered as

another layer in an encryption process.

Further extensions of this work may be the study of the algorithm

resistance to different attacks apart from the security

considerations. This may lead to its improvement. For example,

to what extent the permuted image may resist to JPEG

compression in order to reconstruct the original one.

6. REFERENCES
[1] Li C., Li S., Zhang D., and Chen G. 2004. Cryptanalysis of

a Chaotic Neural Network Based Multimedia Encryption

Scheme. In Advances in Multimedia Information Processing

– PCM 2004 Proceedings, Part III, LNCS, vol. 3333,

pp.418-425.

[2] Jianbing Shen, Xiaogang Jin, and Chuan Zhou. 2005. A

Color Image Encryption Algorithm Based on Magic Cube

Transformation and Modular Arithmetic Operation. Y.-S.

Ho and H.J. Kim (Eds.): PCM 2005, Part II, LNCS 3768,

pp. 270-280.

[3] Zhang Linhua, Liao Xiaofeng, and Wang Xuebing. 2005. An

image encryption approach based on chaotic maps. Chaos,

Solitons and Fractals 24, pp.759-765.

[4] Sapiee Jamel, Tutut Herawan, and Mustafa Mat Deris.

2010. A Cryptographic Algorithm Based on Hybrid Cubes.

ICCSA 2010, Part IV, LNCS 6019, pp. 175-187.

[5] National Institute of Standards (NIST): FIPS Pub 197.

Advanced Encryption Standard AES. http://csrc.nist.gov/

[6] Daemen J., and Rijmen V. 2002. The Design of Rijndael:

AES – The Advanced Encryption Standard. Springer-

Verlag.

[7] Wu S., Zhang Y., and Jing X. 2005. A Novel Encryption

Algorithm based on Shifting and Exchanging Rule of Bi-

Column Bi-row Circular Queue. In International Conference

on Computer Science and Software Engineering, IEEE, Los

Alamitos.

[8] Trenkler, M. 2005. An Algorithm for making Magic Cubes',

The Π ME Journal, Vol. 12, No 2, pp.105-106.

[9] Haojiang Gao, Yisheng Zhang, Shuyun Liang, and Dequn

Li. 2006. A new chaotic algorithm for image encryption.

Chaos, Solitons and Fractals 29, pp.393-399.

[10] Chengqing Li. 2008. On the Security of a Class of Image

Encryption Scheme. In Proceedings of 2008 IEEE Int.

Symposium on Circuits and Systems, pp. 3290-3293.

