International Journal of Computer Applications (0975 — 8887)
Volume 16— No.1, February 2011

Improving Performance in Load Balancing Problem on
the Grid Computing System

Prabhat Kr.Srivastava
MCA Department
[IMT College of Engineering
Greater Noida, India

ABSTRACT

Load Balancing is a technique to improve resources, utilizing
parallelism, exploiting throughput managing and to reduce
response time through proper distribution of the application.
Load balancing strategies is always used for the emergence of
Distributed systems. Generally there are three type of phases
related to Load balancing i.e. Information Collection,
Decision Making, Data Migration.

Grid computing is a replica of distributed computing that uses
geographically and disperses resources. To increase
performance and efficiency, the Grid system needs competent
load balancing algorithms for the distribution of tasks. Load
balancing algorithms is of two types, static and dynamic. Our
projected algorithm is based on dynamic strategies.

Keywords
Information Gathering Policy, Firing Triggering Policy,

Hitting Selection Policy

1. INTRODUCTION
Grid computing is a type of parallel and distributed system

that enables the distribution, selection and aggregation of
geologically resources dynamically at run time depending on
their availability, capability, performance, cost, user quality-of
—self-service requirement [1].Grid computing, individual
users can retrieve computers and data, transparently, without
taking into account the location, operating system, account
administration, and other details. In Grid computing, the
details are abstracted, and the resources are virtualized. Grid
Computing should enable the job in question to be run on an
idle machine elsewhere on the network [2]. Grids functionally
bring together globally distributed computers and information
systems for creating a universal source of computing power
and information [3]. A key characteristic of Grids is that
resources (e.g., CPU cycles and network capacities) are
shared among various applications, and therefore, the amount

Sonu Gupta
MCA Department
IIMT College of Engineering
Greater Noida, India

Dheerendra Singh Yadav
MCA Department
Dr. KNMIET
Modinagar, India

of resources available to any given application highly
fluctuates over time. Load balancing is a technique to enhance
resources, utilizing parallelism, exploiting throughput
improvisation, and to reduce response time through an
appropriate distribution of the application [4].

Load balancing algorithm are two type static and dynamic,
Static load balancing algorithms allocate the tasks of a parallel
program to workstations based on either the load at the time
nodes are allocated to some task, or based on an average load
of our workstation cluster. The decisions related to load
balance are made at compile time[5].

A few static load balancing techniques are Round robin
algorithm, Randomized algorithm, simulated annealing or
genetic algorithms, and Dynamic load balancing algorithms
make changes to the distribution of work among workstations
at run-time; they use current or recent load information when
making distribution decisions [6]. Multicomputers with
dynamic load balancing allocate/reallocate resources at
runtime based on no a priori task information, which may
determine when and whose tasks can be migrated [7].

As a result, dynamic load balancing algorithms can provide a
major improvement in performance over static algorithms.
However, this comes at the additional cost of collecting and
maintaining load information, so it is important to keep these
overheads within reasonable limits [8].

There are three major parameters which usually define the
strategy a specific load balancing algorithm will employ [9].
These three parameters answer three important questions:

> Who makes the load balancing decision

> What information is used to make the load
balancing decision, and

> Where the load balancing decision is made.

2. RELATED WORK

Various Load Balancing Algorithms are available now days
but they contain several drawbacks. Such type of problems
can be eradicated by our proposed dynamic load balancing
algorithm [10].

Comparison of Existing and newly Proposed Algorithm are:

Information Firing Hitting
Gathering Triggering Selection
Policy Policy Policy
Load Load Task is
Existing | . Balanc_ing_ Balancing is sek_ected_ for
L oad information is triggered migration
Balancing (_:ompos:ed_ based on using Job
using periodic Queue Length Ler_lgtr] as
approach criteria.
Load Load Task is
Balancing Balancer is selected for
Proposed | information is triggered migration
Load collected based on based upon
Balancing | using Activity | Queue Length CPU
based and current consumption
approach CPU Load of tasks

In Condor (Existing) based algorithm, Information Policy may
be fired by periodic approach while in Proposed algorithm it
may be Activity based.

Triggering Policy in Existing Algorithm is based on Queue
Length while in Proposed Algorithm it is based on Queue
Length and current CPU Length. Selection Policy in Existing
Algorithm is done by Selected Task may be migrated using
Job Length while in Proposed Algorithm Selection Policy
may be fired by Selected task which is migrated based upon
CPU Utilization.

Major purpose of our proposed algorithm is Time Complexity
i.e., in Proposed Algorithm time complexity is 3 while in
Existing Algorithm time complexity is more than newly
proposed algorithm. Execution time in .Net Framework using
our proposed algorithm is too much fast compared to existing
algorithms[11].

3. OUR PROPOSED ALGORITHM

In this paper we propose a dynamic load balancing algorithm
for improving performance of grid computing. In this there

International Journal of Computer Applications (0975 — 8887)
Volume 16— No.1, February 2011

are four basic steps: Monitoring workstation performance
(load monitoring), exchanging this information between
workstations (synchronization), Calculating new distributions
and making the work movement decision (rebalancing
criteria) Actual data movement (job migration). In proposed
load balancing algorithm the activities can be categorized as

following:

Arrival of any new job and queuing of that job to any
particular node, Completion of execution of any job, Arrival
of any new resource, Withdrawal of any existing resource.

Segment of code related to algorithm:-

Function: LoadBalancing_start

Return Type: Boolean

Start:

If (CPU Idle of Node is Min and Free Memory of Node is Min
and Queue Length of Node is Max)

HeavilyLoaded_Node

End if

If (CPU Idle of Node is Max and Free Memory of Node is
Max and Queue Length of Node is Min)

Lightlyloded_Node

End if

Migrate Heavy Loded_Node_Job to Lightly Loded_Node

End

Functions used in the above algorithm are:-

Activity happens (): this function return Boolean value.
If any of above defined activity occurs it returns true
otherwise it returns false.

LoadBalancing_start (): this function also return
Boolean value. If on the basis of given parameters (CPU
utilization and queue length) load balancing will be required it
will return true else it will return false. This function also
updates two lists: HeavilylLoaded_list and LightlylLoaded_list.

4. IMPLEMENTATION AND RESULTS

A Load Balancing component has been developed which
executes in simulated grid environment (i.e., Gridsim toolkit).
This application has been developed using ASP.NET 3.5 and
SQLServer 2005 database server. Following is the snapshot of
the index page.

Home: Show Job ‘Show Resource Show Alocaion Show Staius

Chckare ta alocate you job

he Grid

*“Grid is e of pralel nd dishiated sysem
T enatiss the shanmy, ssetie and
angegaion of geographicaly dstiued
fesutes dramicall sl five desenaing
on thelr szt cxgabit, pemavants,
sl usw mulive —sefsendie

equremest

g}
bt - 1

Loz paancing shou Tk place when e 10ad siuaion has changee. Trers a2 sOme paiuler

‘ariiies which change the luad configuradon in Grid emdrenment.

&] Loca it
nstat o5 Q 7 [pean & Sostticadthi.. | O mcbnetsbmds.. | o Bcerktioodtfd. | ‘gloofbdeargiy.. | 3 loofbdrengab., € R0 @R muzen

Screen Shot 4.1: Home Page

It contains link to different pages: show jobs, show resources,
show allocation and show status. A click on one of the links
will link to the different pages.

3 Load Balancing Rlgrithm - icrossft Internet Explarer

Fo Bl hew Favries Took Hep ¥

Qu-Q HEG Puet rron @ 3-5 F-JEEQ B

List Of Job Generated By Grid The Giid
G 5 e of gt and isadag vsm
Tl anaties he sharng, ssteion and
sppegion of geographicaty dsreed
resourtas dnamicalk 3l nn fime degending

abiiy, pedormane,

gualtyal -sstbsence

&)) A oc vt

9 papaeritit 0 i oadtha.. | o iphmertstionds. . | 3 Bfcerteloadebial . | g Load Baraing iy Juosdpsnamgde. T QR miaen

Screen Shot 4.2: Show Job Page

Screenshot 4.2 shows two columns: first column is JobID and
second is job length. JobID is unique for each job submitted to
Grid. Length is the expected job time length given at the time
of submission.

International Journal of Computer Applications (0975 — 8887)
Volume 16— No.1, February 2011

‘3 Loai Batancing Alogrithm - Wicrosoft Internet Explarer EEK]
e ER Ven Foois Tis WD {'
(A @ 6] D & 3B 5@
O Q MG PV @3-S c-LUEHDS

i flocabest 106DLos P Bt s e v Bo uwis™

Home | Sowob | ShomResterce | ShowAlocain | SowSiaus

List Of Resources Generated By Grid Sim
P Address CPU Speed[Khz] CPU ldie() Total Memory Free Memery Queue Length

masn EE 13z
sz
1z
JEe
T o Feir watabiy, capatly, perumans,

The Grid

“Ge I Wpe of aralel and disibuded sysm
tal enatles e shaing. seecton and
agregation of geograpicaly syt

esaunes manicall at nn ims degendng

10332 oe wser QuilRDT —sefsenite
w3ER
10332
w3ER
wER

8] b hocabost 1060Lood 2B dencny RN St O esaurce. 2

L L T T,

Screen Shot 4.3: Show Resources Page

Screenshot 4.3 is the image of show resources page. This page
shows six fields: IPAddress (resource name), CPUSpeed,
CPUIdle, TotalMemory, FreeMemory and Queuelength.
Three fields CPUldle, FreeMemory and Queuelength are
important because these fields are used to decide that
particular resource is heavily loaded or lightly loaded
resources and is shown in screen Shot 4.4. If any resource is
heavily loaded then the actual load balancing starts.

Load Balancing Algorithm

Mote *fields are mendatory

Subrnit Query

Screen Shot 4.4: Input Field format

3 Load Balancing Alogythe - Microsat nerne Explorer ElEX
0

Fe ER dew Foads Tox e B

Showlob | ShowResowce | SwwMlocation | ShowSizhus

Allocation Of Job Generated By Grid Sim To Resource The Grid

oo Jo Lengtn Resource | L ——
* 1223 ITRILSET tal smalles e st

/e Rasm aegaion o geogaphicaly istitetzd

165 112315141 resqunces dmamicalty a rn tim depending
w5 2asieT

on Mir avilaily, capatiity, pecmmance,
FLEEUEE .

sl user quaitrel

87 ALEEL P
o asE
0 masi
280 TALSSL
1 asz
;e masn
73 aLEE
W 172AST

measa

17235247

TmaLssT

172315247

masar

st w9 " [e & Hiostsiod.. | D npkosidon.., | O Efioetied. | gladBnag. 3 = sunkdrar &) @R wem

Screen Shot 4.5: Show Allocation Page

Screenshot 4.5 shows three fields Jobld, JobLength, Resource.
This is generated after allocation of job to resource.
Allocation is based on free resource according to requirement
of job that has been submitted to resource. This allocation
maximizes the resource utilization. In this screenshot
corresponding to each JoblID, there is a resource name.

P e r—p——

N ¥

Qo - W B P frreen @ 25 F- A QS
1 b AT SR T T
) 1w
L] E
[B BNy ;] 2400 H
[RE RS TR £ 3000 s
REELY [17
108047 [L 1
1Mhae 1g [ATCE) 1
1masn '} T 1
[REET 8 5w 1
Perform Load Balaneing Click Here
] & it

B st 50y Sarvw 8 ot < Moot

Screen Shot 4.6: Show Status Page

Screenshot 4.6 shows information about gathered about Load
Balancing. This page contains two Grids. First Grid contain
name of those resource which is heavily loaded and second
Grid contain those resources which are lightly loaded. These
two Grids are used to decide which resource will act sender
and which resource will act as receiver. Job will be migrated

from sender (heavily loaded) resource to receiver (lightly

International Journal of Computer Applications (0975 — 8887)
Volume 16— No.1, February 2011

loaded) resource if sufficient lightly loaded resources are
available then after load balancing no heavily loaded resource
will be available. Job from all heavily loaded resource will be
migrated to lightly loaded resource. This page also gives
information about which heavily loaded resource will
migrating the Job to which lightly loaded resource. In above
Screenshot resource 172.31.5.22 (name of resource) is heavily
loaded resource which has three Jobs. This Page has a link
button (i.e. perform load balancing) that performs the action
to migrating the job from heavily loaded resource to lightly
loaded resource, which is the main concept of our proposed
algorithm and is demonstrated in our developed application.

3 Load Balancing Hogrthr - icrasat Internt Explorer

Soewlob | ShowRessrce | ShomAlocatin | Show Stalus

Status Of Resources Generated By Grid Sim

he Grid

“Ge s Wpe of parabel and disivued sysm
that enatles e shaing, seection and
sagrenn of gogngricaly dsvhid
restutes shmartical 2t un me degendng
o0 beir araiabily, sspabliy, pedomants,
oet wer qullerl —seffsenite

et

2
&
o
B
80
6

g g

2 0
1malsne b
or jub has been migrated successfully

I
Home

2@ " Mauustesmngaipn.. | 5 towd Bdsnceg s

Screen Shot 4.7: Load Balancing Page

Screenshot 4.7: Load Balancing Page appears after Load
Balancing has been performed and job is migrated to resource
172.31.5.27. This is one particular case when heavily loaded
resource has been finalize and job which should be migrated
has been finalize and no heavily loaded resource is available
If no lightly resource is available then no migration will be
done.

5. CONCLUSION

Through this proposed algorithm, we have described multiple
aspects of load balancing algorithm and introduced numerous
concepts which illustrate its broad capabilities. Proposed
algorithm is definitely a promising tendency to solve high
demanding applications and all kinds of problems. Objective
of the grid environment is to achieve high performance
computing by optimal usage of geographically distributed and

9

heterogeneous resources.

But grid application performance remains a challenge in
dynamic grid environment. Resources can be submitted to
Grid and can be withdrawn from Grid at any moment. This
characteristic of Grid makes Load Balancing one of the
critical features of Grid infrastructure. There are a number of
factors, which can affect the grid application performance like
load balancing, heterogeneity of resources and resource
sharing in the Grid environment. In this we have focused on
Load Balancing and tried to present the impacts of Load
Balancing on grid application performance and finally
proposed an efficient Load Balancing algorithm for Grid
environment. Every Load Balancing algorithm implements
five policies. The efficient implementation of these policies
decides overall performance of Load Balancing algorithm. In
this work we analyzed existing Load Balancing algorithm and
proposed an enhanced algorithm which more efficiently
implements three out of five policies implemented in existing
Load Balancing algorithm. These three policies are:
Information Policy, Triggering Policy and Selection Policy.
Proposed algorithm is executed in simulated Grid
environment. Load Balancing is one of most important
features of Grid Middleware for efficient execution of
compute intensive applications. The efficiency of Load
Balancing Module overall decides the efficiency of Grid
Middleware.

6. REFERENCES

[1] Krishna rams Kenthapadi, Stanford University,
kngk@cs.stanford.edu and Grummet Singh Mankuy,
Google Inc., manku@google.com, Decentralized
Algorithms using both Local and Random Probes for
P2P Load Balancing.

[2] B. Yagoubi , Department of Computer Science, Faculty
of Sciences, University of Oran and Y. Slimani ,
Department of Computer Science, Faculty of Sciences of
Tunis, Task Load Balancing Strategy for Grid
Computing .

[3] Rajkumar Buyya , Grid Computing and Distributed
Systems (GRIDS) Lab., Department of Computer
Science and Software Engineering, University of
Melbourne, Australia and Manzur Murshed, Gippsland
School of comp and IT, Monash University, Gippsland
Campus , GridSim: a toolkit for the modeling and

International Journal of Computer Applications (0975 — 8887)
Volume 16— No.1, February 2011

simulation of distributed resource mgmt and scheduling
for Grid computing.

[4] Dazhang Gu, Lin Yang, Lonnie R. Welch ,Center for
Intelligent, Distributed and Dependable Systems ,School
of Electrical Engineering & Computer Science ,Ohio
University, A Predictive, Decentralized Load Balancing
Approach.

[5] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and
Srikumar Venugopal, “Peer-to-Peer Grid Computing and
a .NET-based Alchemi Framework”, GRIDS Laboratory,
The University of Melbourne, Australia.

[6] Francois Grey, Matti Heikkurinen, Rosy Mondardini,
Robindra Prabhu, “Brief History of Grid”,
http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/history.
html

[71 Rajkumar Buyya and S Venugopal, “A Gentle
Introduction to Grid Computing and Technologies”,
http://www.buyya.com/papers/GridIntroCS12005.pdf

[8] Gregor von laszewaski, lan Foster, Argonne National
Laboratory, Designing Grid Based Problem solving
Environments.

[9] Junwei Caol, Daniel P. Spooner, Stephen A. Jarvis, and
Graham R. Nudd, Grid Load Balancing Using Intelligent
Agents.

[10] Jennifer M. Schopf, Mathematics and ComputerScience
Division, Argonn National Lab, Department of Computer
Science, Northwestern University, Grids: The Top Ten
Questions.

[11] Karl Czajkowski, lan Foster and Carl Kesselman,
Resource Co-Allocation in Computational Grids.

[12] Ann Chervenak, lan Foster, Carl Kesselman, Charles
Salisbury and Steven Tuecke, The Data Grid: Towards
an Architecture for the Distributed Management and
Analysis of Large Scientific Data sets.

[13] Klaus Krauter, Rajkumar Buyya, and Muthucumaru
Maheswaran, a Taxonomy and Survey of Grid Resource
Management Systems.

[14] Arie Shoshani, Alex Sim and Junmin Gu, Lawrence
Berkeley National laboratory, Storage Resource
Managers: Middleware Components for Grid Storage.

[15] Hai Zhuge, Xiaoping Sun, Jie Liu, Erlin Yao, and Xue
Chen, A Scalable P2P Platform for the Knowledge Grid.

10

