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ABSTRACT 
Locally Linear Embedding (LLE) algorithm is the first classic 
nonlinear manifold learning algorithm based on the local structure 
information about the data set, which aims at finding the 
low-dimension intrinsic structure lie in high dimensional data 
space for the purpose of dimensionality reduction. One deficiency 
appeared in this algorithm is that it requires users to give a free 

parameter k which indicates the number of nearest neighbors and 
closely relates to the success of unfolding the true intrinsic 
structure. Here, we present an adaptive neighborhood graph with 
respect to LLE algorithm for learning an adaptive local 
infrastructure in order to avoid the problem of how to 
automatically choosing nearest neighbors existed in manifold 
learning by making use of a novel concept: natural nearest 
neighbor (3N). Experiment results show that LLE algorithm 

without free parameter performs more practical and simple 
algorithm than LLE. 
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1. INTRODUCTION 
Recently years, many efficient manifold learning algorithms with 
respect to dimensionality reduction have been proposed for 
discovering the low dimension intrinsic structure hidden in high 
dimensional input space and trying to preserve some invariant 
properties as accurately as possible between the low and high 
dimensional spaces, such as Isomap[1,2], LLE[3,4], Lapacian 
Eigenmap(LE)[5], LTSA[6], NPE[7], SNE[8], LLP [9], RML[10], 

etc.. Basically, almost all of nonlinear dimensionality reduction 
algorithms usually concerns a foundational concept of 
neighborhood, because it is of central importance not only in 
studies of bijective map between high and low dimensional space 
due to every point in low dimension embedding space has a 
neighborhood homeomorphic to an open set of high dimensional 
real space, but also in the analysis of algorithm’s robustness with 
respect to the problem of topological stability [11,12]. 

LLE algorithm considered as the first and classic locally nonlinear 
manifold learning algorithm provided a primary approach to yield 
the relations between high and low dimensional representations of 
data points with the same locally linear relationships. This ideal 
leads to more other local geometry based learning algorithm as 
described above. Description about locally linear relationship is 

directly related to the size of neighborhood for each data points 
that eventually depends on the determination of the number k of 
nearest neighbors. In the case of learning intrinsic structure, 
neighborhood used in various state-of-the-art approaches is 

determined by the common used concept of k-nn or -nn, but how 

to find an appropriate value of k or  is still an open issue, 

especially for the very high dimensional data, such as face data 

used in [1]. As suggested in [6] that k should be chosen to match 
the sampling density, noise level and the curvature at each data 
points so as to extract an accurate local representations, and 
thought about that it’s worthy of considering variable number of 
neighbors that are adaptively chosen at each data point.  

In this paper we describe a novel strategy to determine the number 
of nearest neighbors automatically for each data points, which 
leads to a novel concept of natural nearest neighbor (3N) in 

contrast to the k-nn or -nn neighbor, and results in an adaptive 

nearest neighborhood that can be easily applied to LLE algorithm 

for manifold learning and has no free parameter selection, it means 
that using LLE to reduce the dimensions of high dimensional data 
does not need any priori information about the intrinsic structure. 
Experiment results show that LLE algorithm without free 
parameter performs more practical and simple algorithm than LLE. 

2. ALGORITHM 

2.1 Determination of Natural Nearest 

Neighbors 
The key idea is inspired from the real world observations that the 
neighbors should be accepted each other, similar to the 
“friendship” relations between individuals, naturally, some person 
have more friends whereas some person have few friends, the 
number of one’s friends is determined by the number of how many 

people are taken him or her as a friends. For data objects, object y 
is one of the neighbors of object x if and only if object x is 
considered as a neighbor of object y. The more the objects like 
object y, the more the neighbors of x should have. In particular, 
data points lying in sparse region should have small number of 
neighbors, whereas data points lying in dense region should have 
large number of neighbors. The relationship between neighbors 
should not only represent the information of the distribution of data 

objects, but also reveal certain mechanism of generating data, such 
as Poisson random process. 

To demonstrate the concept of natural nearest neighbor (3N), we 
introduce an indicator that defines a possible and compact 
super-bound of k as following: 

sup sup { | ( )( (( )(( )

( )( ( )))))}
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where NNr(y) denotes the r-th nearest neighborhood in sense of 
k-nn,  N the set of non-zero nature numbers, and S the data set. 
Clearly, the supremum in the right hand of formula (1) does exist, 

and the fact that the supremum can be taken automatically with 
respect to all possible r is important because one does not need to 
have any priori information on r according to a process of 
searching r-nn in step by step way (Table 1) for all data points. In 
fact, supk indicates a situation in which all data objects within data 
set may be in a well state of connectivity, so we call supk as an 
indicator of saturation connection. For the sake of description 
simplicity, we also call NNr(y) as r-nearest neighbor path (r-NNP) 

of point y. Algorithm 1 provides a process of calculating the 
number of neighbors for every data points that conforms to the 
implications given in (1). 

 

Table 1. Finding 3N and constructing 3NG or SNG for a 

data set S 

Algorithm 1: Definition of 3NG or SNG. Input data set S. 

Output the indicator of saturation connectivity, the number 

of neighbors at each point and the neighbors within 

corresponding neighborhood. 

1. r=1; for all iS, nb(i)=0，ratio_nb(i)=0, NNr(i)=. 

2. For every point iS, calculates the rth nearest neighbor of i: 

nnr(i); NNr(i)= NNr(i){ nnr(i)}. 

3. For every point iS, counts the number of i occurred in all 

NNr(j):nb(i), (j=1,…,N); if  there exist some nb(i) =0 then  
r=r+1 and goto step 2; 

4. supk=r;  

5.For all i, output: nb(i)，ratio_nb(i)=nb(i)/(Nsupk ), NNnb(i)(i) 

or NNsup_k(i). 
6. Define 3NG: connecting each point i to its nb(i) nearest 

neighbors for all data points or SNG: connecting each point 
to the supk or multi- supk nearest neighbors if the 
connectivity of graph is not satisfied the requirements. 

 

Computing supk implies a new strategy of how to automatically 
finding the value of k, i.e. the processes of searching k-nn at each 
point should be completed when points such as outliers which keep 
away from the main data set at least belong to one k-nearest 
neighborhood. 

2.2 Constructing Adaptive neighborhood 

Graph 
Two main ways may be taken into consideration to construct the 
nearest neighbor graph according to the amount of observations. 
One way is to use a same number of neighbors for all points in the 

graph for the requirement of connectivity when the amount of 
sample data is too small, we dub this nearest neighbor graph the 
saturation nearest neighbor graph (SNG). Another way is to use a 
variant number at each point which follows from the new concept 
of 3N and induces a natural nearest neighbor graph (3NG) 
corresponding to the distribution of a sampled data. Given data set, 
the procedure of constructing an adaptive neighborhood graph is 
very simple. As described in algorithm (Table 1), there are two 

kinds of infrastructure representations relevant to any given data 
set, one is 3NG which can be comprised by connecting each point i 
to its nb(i) nearest neighbors (Fig.1, Fig.2, Fig.3), the other is SNG 
which can be comprised by connecting each point i to its supk 
nearest neighbors, in such case, all points have the same number of 

neighbors similar to k-nn graph but k is of the value of supk.  

2.3 LLE Algorithm without Free Parameter k 
Appling 3NG or SNG to the nonlinear local dimensionality 
reduction methods LLE [3] is very simple; the algorithm is 
illustrated in Table 2. In contrast to the LLE, this algorithm does 
not need the user to give the free parameter k which must be 
specified in LLE. We would call this algorithm as 3N-LLE, due to 

the use of novel concept of natural nearest neighbor (3N) that 
makes LLE to have more adaptability and flexibility, and leads to a 
more efficient neighborhood graph for unsupervised learning 
(Fig.3). 

 

Table 2. Adaptive Locally Linear Embedding 

Algorithm 2: 3N-LLE. Input data S={xi|xiR
D
, i=1, 2, …, 

N}, and d: embedding dimension; Output: low-dimensional 

representations Y={yi|yiR
d
, i=1, 2, …, N }. 

Step1. For all data points iS, calculating the number of 

neighbors nb(i)，indicator supk, NNnb(i)(i) or NNsupk(i) by using 

algorithm 1. 

Step2. Calculating the local geometry W={wij| i=1, 2, …, N , 
j=1, 2, …, nb(i) or supk} for all points as following: 

  
( )

2

( )
arg min || ||

nb i
w i ij jj NN i

i

x w x

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Fig.2 3NG with 300 random sampled 
points following normal distribution. 

 
Fig.3 Artificial data points.  Fig.4 3NG relates to the data        

points in Fig.3 

 
Fig.1 3NG with 800 random sampled 

points within region of [0,1][0,1] 
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Step3. For all data point iS, calculating the low-dimensional 

representations Y as following: 
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3. EXPERRIMENT RESULTS 

3.1 Synthetic Data Sets 
Five sets of synthetic data obtained from the MANI demo 

(http://www.math.umn.edu/~wittman/mani/) are used to 

illustrate the low-dimensional intrinsic representations 

induced by 3N-LLE (Fig.4), in which SNG is used for 

represents the infrastructure corresponding to the data, 

i.e., each points have the same number of neighbors supk 

or multiple of supk, and the number of neighbors 

automatically detected are shown under the respective 

embeddings 

3.2  Face Data 
Isomap face data used in [1] is selected to illustrate the 

performance of 3N-LLE algorithm, which consists of 698 images 
presented as a set of 4096-dimensional vectors. Each vector 
represents the bright values of 64 pixels by 64 pixels image of a 
face in a way of rendering with different pose and lighting 
directions. In this experiment, 3NG is used within 3N-LLE 
algorithm, and the 2-D embedding is shown in Fig.5. 

 

3.3 COIL-20 Data Set 
COIL-20 data set (available at ftp:zen.cs.columbia.edu) is also 

used to estimate the efficiency of unsupervised learning algorithm 
3N-LLE, the 2-D embeddings of 3N-LLE with the use of SNG 
graph are illustrated in Fig.6 for six objects in COIL-20 data set. 
Images of the objects were taken at pose intervals of 5 degrees, 
while the object was rotated through 360 degrees with respect to a 
fixed camera, so 72 images were generated relevant to each object. 
As shown in Fig.6, the 3N-LLE’s embeddings reveal much better 

results that conform to the mechanism of generating data. 

4. CONCLUSIONS AND FUTURE WORKS 
Here we present a very simple and general adaptive neighborhood 
graph 3NG or SNG for local manifold learning algorithm LLE 

based on a novel strategy of choosing nearest neighbors, it 
provides a suitable and compactable representation about the 
various kind of data set, which is closely related to the data 
distributions whatever for the high or low dimensional data as 
shown above. Meanwhile, an adaptive unsupervised learning 
algorithm 3N-LLE is proposed which extends the classic LLE 
algorithm to be able to applied in more broad applications, because 
it does not need any other information about the intrinsic structure. 

Observing the result in Fig.4, we find that 3NG itself have certain 
abilities of clustering and classification, it may be considered as a 

           
n=1000            n=1000             n=1000             n=2000         n=1800 

           
supk=8               2*supk=10          supk=4             supk=7          2*supk=22 

Fig.4 3N-LLE embeddings with fixed numbers of neighbors. 

 
Fig.5 3N-LLE 2-D embedding with face data used in [1] 

http://www.math.umn.edu/~wittman/mani/
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promising direction to clustering analysis based on the natural 
nearest neighborhood graph. 

5. KNOWLEDGMENTS 
This project is supported by Guangdong Natural Science Fund, 

China (Grant No. 9151027501000039). The authors are grateful for 
the support of National Natural Science Foundation of 
China (61073058). 

6. REFERENCES 
[1] J. Tenenbaum, V De Silva and J. C. Langford. A global 

geometric framework for nonlinear dimension reduction. 
Science, 290:2319–2323, 2000. 

[2] M. Berstein, V de Silva, J. Langford and J. Tenenbaum. 
Graph approximations to geodesics on embedded manifolds. 
http://isomap.stanford.edu/BdSLT.pdf, 2000. 

[3] S. Roweis and L. Saul. Nonlinear dimensionality reduction by 
locally linear embedding. Science, 290: 2323–2326, 2000. 

[4] L. Saul and S. Roweis, Think Globally, Fit Locally: 
Unsupervised Learning of Low Dimensional Manifolds. 
Journal of Machine Learning Research 4 (2003) 119-155. 

[5] M. Belkin and P. Niyogi, Laplacian eigenmaps for 
dimensionality reduction and data representation. Neural 
Computation, 15(6):1373–1396, June 2003 

[6] Z. Zhang, H. Zha, Principal manifolds and nonlinear 
dimensionality reduction via tangent space alignment, SIAM 
J. Sci. Comput. 26 (1)(2004) 313–338 

[7] X. He, D. Cai, S. Yan, H. Zhang, Neighborhood preserving 
embedding, in: Proceedings of the 10 IEEE International 
Conference on Computer Vision, Beijing, China, October 
2005, pp. 1208–1213. 

[8] G.Hinton, S. Roweis. Stochastic Neighbor Embedding. 
Advances in Neural Information Processing Systems 15 
(NIPS'02). pp. 857--864 

[9] X. He, P. Niyogi, Locality Preserving Projections, 
Proceedings of Advances in Neural Information Processing 
Systems. Cambridge:MIT Press, 2004: 153-160. 

[10] Tony Lin, Hongbin Zha, and Sang Uk Lee. Riemannian 
Manifold Learning for Nonlinear Dimensionality Reduction. 
in ECCV 2006, A. Leonardis, H. Bischof, and A. Prinz (Eds.): 
Part I, LNCS 3951, pp. 44-55, 2006. Springer-Verlag Berlin 
Heidelberg 2006. 

[11] M. Balasubramanian and E. L. Schwartz, The Isomap 
Algorithm and Topological Stability. Science, 295, 7a(2002).  

[12] J. Tenenbaum, V De Silva and J. C. Langford, The isomap 
algorithm and topological stability--response, Science 295, 7a 
(2002). 

 

 

 

 

 
Fig.6 3N-LLE 2-D embeddings for small sample and high-dimensional images corresponding to six objects in Coil-20 data are 

illustrated, where SNG is applied to the 3N-LLE. There are 72 images related to each object. 


