
International Journal of Computer Applications (0975 – 8887)
Volume 16– No.3, February 2011

7

An Ameliorated Methodology for the Abstraction and

Minimization of Functional Dependencies of legacy ‘C’

Program Elements

Dr. Shivanand M. Handigund

Dept. of Computer Science & Engineering.

Bangalore Institute of Technology

Bangalore –560 004

Rajkumar N. Kulkarni
Dept. of Information Science & Engineering

Ballari Institute of Technology & Management

Bellary – 583 104

ABSTRACT
Information systems of many organizations are processed

through system of interrelated „C‟ programs. In a „C‟ program

each statement contains functional dependencies amongst the

attributes. Sometimes these functional dependencies may

redundant in different statements. The existing application

programs used in the maintenance of the information system

are lengthy, and because of the perennial maintenance of the

program, these functional dependencies are unevenly

scattered. Thus, some functional dependencies may be

implicitly present in other statements or sometimes they are

unevenly scattered across the entire program. This situation

creates the complication in the reengineering process which

creates scuffle in selecting the attributes for a class on the

basis of the cohesive property.

While abstracting the object structures, and making

the cohesive groups of attributes, the recursive implicit

containment of one functional dependency within another

creates complication in the granularity of design elements as

the implicit dependencies have ripple effect on the

dependencies of attribute. This paper attempts to propose the

identification of functional dependencies from the realization

of program code, and their minimization through the minimal

cover process. The correctness and completeness of the

abstraction is a straight forward process.

Keywords
Functional dependencies, minimization, abstraction,

reengineering, business rules, legacy systems, reverse

engineering.

1. INTRODUCTION

Information systems of many organizations are processed

through system of interrelated „C‟ programs. Since, the „C‟

programming language was developed in the early second half

of the last century; it couldn‟t incorporate to facilitate the

current day‟s state of the art technology. Therefore, the

programs developed based on legacy „C‟ systems are not

coping with the advancement of technologies in the areas of

Storage, Processing, Graphical user Interfaces. Moreover

since these programs have undergone perennial updations;

and as a result these may be unstructured or containing with

irrelevant documentation. However the legacy „C‟ system

contains accumulated business information of the entire

organization. There is a need to harness the state of the art

technology with the useful business information buried across

these legacy „C‟ systems. On one side it contains business

information accumulated over the years, and on the other side,

it is not coping up with the advancement of the technologies.

As a result, harnessing the state of the art technology with the

existing system is a labyrinth. The following are the different

ways to resolve labyrinth [19].

 The first approach is to discard completely the old

system and develop a totally new system. This discarding

approach suffers from a pitfall of loosing useful business

rules accumulated throughout the development and

maintenance process. Thus, it will not serve the purpose

of developing the new system by incorporating the

buried business rules.

 The second approach is to translate the existing „C‟ code

into the target language code. This translation process

can be carried out in two different ways viz. manual and

automatic approach. The manual approach is time

consuming and error prone approach. Moreover, the

enormity of the stored legacy system compels the

translation process next to impossible. The automatic

translation can be performed by developing a translator

tool, because of the flexibility involved in the program

coding; the correct and complete translator can‟t be

developed. Thus, the developed translator may not

translate the entire code; it may translate the simple code

leaving human to translate the complex code. Thus, the

translation of the legacy system directly to the target

language may not be a good solution for the reuse of

legacy „C‟ systems as it compels the human intervention.

Moreover the translation always takes the taste of the

original language.

 The third approach is the wrapping. In this approach, the

old system is wrapped through the use of emulators so

that at the front end the new system is running but at the

back end the same old system is running with the slow

phase. Thus, the wrapping approach is also not so useful

for the reutilization of the existing code.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.3, February 2011

8

 The best alternate approach is the reverse engineering of

the old system to the text document and then the text

document is reviewed with the state of the art technology

requirements. Then through forward engineering it can

be transformed to the required target language.

We adopt the last option with some minor modification

to propose a new methodology in which we abstract the view

elements of the new system from legacy „C‟ system by

blending the reverse engineering of design process with the

redesign of the forward engineering.

2. TAXONOMY
Referenced Attribute: A variable is said to be

referenced in a statement if the value of that variable is used

during the execution of the statement without getting itself

modified. For ex., A = B + C. The values of B & C are used or

referenced in the statement [1, 16].

Defined Attribute: A variable is said to be defined, in

a statement if the execution of that statement can alter the

value of the variable. For ex., A = B + C. The values of B & C

are referenced or used in the statement, and A is said to be

defined [1, 16].

Preserved Attribute- A variable whose value is

unaltered with the execution of statement, then the attribute

value is preserved in that statement [1]. A variable may be

both referenced and defined in a statement, or may be both

preserved and referenced, but cannot be preserved and defined

in a statement.

Functional Dependency: If R is an entry in the data

flow graph and A and B are non-empty sets of attributes in R,

then B is functionally dependent on A, iff A is referenced and

B is defined in that entry, and the formal notation would be A

 B.

Minimal Cover: The set of dependencies contain or

may contain some implicit dependencies embedded in other

dependencies. If these implicit dependencies are eliminated

the remaining functional dependencies set contain the bare

minimum dependencies required for the information system.

Minimal cover is the process of eliminating these embedded

implicit dependencies.

Legacy Software: The software which is 10 to 15 year

old and is the result of perennial need based updations which

serves the purpose but resists for modification.

Mission Critical: The Information System cannot run

without the presence of software even for a short period.

Abstraction Level: The abstraction level is defined

with respect to the proximity to the machine understanding.

The abstraction levels (Requirement, Design, Implementation)

corresponds to a phase in the software development life cycle

and defines the software system at a particular level of detail

[1].

Software maintenance: The modification of a

software product after delivery to correct faults to improve

performance or to satisfy changing business needs [1].

Restructuring: Restructuring is the transformation from

one representation form to another at the same abstraction

level. The transformation preserves the external behavior of

the system. Restructuring here is used in implementation stage

to transform code from an unstructured form to a structured

form [1].

Reverse Engineering: The reverse engineering is the

process of analyzing the subject system with two goals [1]:

 - To identify the system‟s components and their

interrelationships

 - To create representations of the system in another form at a

higher abstraction level.

Forward engineering: Forwarding engineering is the

traditional process of moving from the requirements of the

system to its design stage, and from design stage to the

concrete implementation of the system. It should be preceded

by the reverse engineering, in the absence of which it is called

software development [1].

Reengineering: The process of re-engineering can be

defined by the simple formula [1]:

Re-engineering = Reverse engineering + Change in

techniques to suit the new target environment + Forward

engineering

3. PROPOSED METHODOLOGY
„C‟ programs do not have strict indentation rules. Because of

the flexibility of indentation in the „C‟ programming language

multiple statements can be placed on a single line or a single

statement can span several lines [18]. All „C‟ statements must

be terminated with a semicolon and the last statement in the

body of the loop may terminate with right brace. Similarly the

beginning of the statement follows either semicolon or a blank

or left brace. So, in the beginning of the process, we are

placing strict indentation rule such as one line one statement,

then assigning the consecutive line numbers to logically

related statements of the „C‟ program except for the blank

lines and the comment lines [12, 13, 14, 15]. This serves as a

moulded input for the next steps in the abstraction of

functional dependencies.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.3, February 2011

9

The methodology for the abstraction of functional

dependencies and the design of object structures from the „C‟

program is explained in the following steps:

3.1 Abstraction Of Control Flow Graph

From ‘C’ Program
The Control Flow Graph (CFG) indicates the execution

control flow of the entire program or system of programs. In

„C‟ program, each line consists of one statement or control

predicate. To represent it as a graph we have to assign one

vertex (node) for each statement. The control flow between

the two logically consecutive statements (but not physically

consecutive) is indicated by an edge between those vertices.

Since, the Legacy „C‟ system contains thousands of lines of

code; the CFG may overflow the available memory. To

reduce the utilization of memory space, the groups of

statements which are both logically and physically in the

control flow order are collapsed to a single node. This CFG is

stored in buffer in the form of Control Flow table, in which

the first and second columns contain statement numbers of

start and end statements of the node. The third and fourth

columns contain statement numbers of alternate control

transits. Here, IF, IF-ELSE, FOR, SWITCH, WHILE, DO-

WHILE, EXIT, RETURN, CONTINUE, and FUNCTION

CALLS are treated as verbs to enable the parser to identify the

beginning of each statement separately. The end of the

program is represented with the statement number followed

by the character E.

We have already developed the automated

methodology in the form of a software tool [14, 15]. The CFG

of the sample C program depicted in Figure 1 is shown in

Table 1 as follows:

Table 1.The control flow table for the program in figure 1

START END Transition 1 /

Next Jump

Transition 2 /

Alternate Jump

1 14 15 19

15 18 14

14 14 15 19

19 23 24 33

24 32 23

23 23 24 33

33 34E

3.2 Abstraction of Data Flow Graph from

‘C’ Program
The above designed CFG is used to design Data Flow Graph

(DFG) in the form of Data Flow Table (DFT). If the control

flow entry doesn‟t contain the same numbers in the first two

columns, then for each consecutive number between the two

numbers there is a consecutive entry in the data flow table.

The sample entries are shown in the Table 2. The data items

in a „C‟ program are defined by scanf, fscanf, gets, fread

statements, the left side attribute of the arithmetic expressions

except stdin, and stdout. The data items in a „C‟ program are

referenced by printf, fprintf, puts, fwrite, statements, the right

side attributes of the arithmetic expressions and the attributes

of control predicates. The DFG for our sample „C‟ program

depicted in figure 1 is represented in Table 2.

Table 2. The data flow table for the program in figure 1.

Statement

Number

Referenced

variable

Defined variable

1 --- ---

2 --- ---

3 --- ---

4 --- ---

5 --- ---

6 --- ---

7 --- ---

8 --- ---

9 --- ---

10 --- ---

11 Filename

12 Filename Fp

13 --- ---

14 I i

15 --- ---

16

ENAME,BS,LIC,

PT,IT,OA

17 ENAME, BS, LIC,

PT, IT, OA

18 --- ---

19 Fp

20 --- ---

21 Filename Fp

22 -- ---

23 I i

24 --- ---

25

ENAME,

BS,LIC,PT,IT,OA

26 BS HRA

27 BS DA

28 BS,DA,HRA,OA GS

29 LIC,PT,IT DED

30 GS,DED NS

31 BS, DA, HRA,

LIC, PT, IT, OA,

GS, DED, NS

32 --- ---

33 Fp

34 --- ---

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.3, February 2011

10

3.3 Abstraction Of Functional

Dependencies From ‘C’ Program
If the statement in the Table-2 contains both referenced and

defined items, then the referenced items determine the defined

items. Thus there is a functional dependency between the

referenced and defined items. The proposed tool developed

here abstracts the functional dependencies from the input „C‟

program shown in Figure-1. The functional dependencies

abstracted from the program are:

 BS HRA

 BS DA

 BS, DA, HRA, OA GS

 LIC, PT, IT DED

 GS, DED NS

 Filename fp

4. ALGORITHM FOR MINIMAL

COVER

Input: Functional Dependencies abstracted from the program

Output: Minimized or minimal cover of Functional

dependencies

1. Sort all the Functional Dependencies in the

Descending Order of number of attributes of LHS

2. Transform the Functional Dependencies in the

canonical form

3. Form a two dimensional table Tij where i represents

functional dependency and j represents the position

of the participating attribute.

4. Fill up all the entries in the table

If tij ∈ LHS of Functional Dependency

Then aijtij and diRHSi

∀ i ∈ Functional Dependencies

tij =
aij if j is present in LHS of ith FD

0 Otherwise

Repeat step 5

for k = 1 to n where k is kth row that represents kth

functional dependency

5. For i = k + 1 to n

Consider tij

do

If ∀ aij ∈ LHS of i
th Functional

Dependency

 aij = akj

Delete ith
 dependency from the further test for retainment

Exclude kth dependency from further retainment test

The set of retained functional dependencies forms the

Minimal Cover.

5. CASE STUDY

5.1 The proposed procedure is implemented for

number of ‘C’ programs and the results we got

are correct and complete. The sample ‘C’

program depicted in figure 1 is the output of

moulding process.

 1 #include <stdio.h>
 2 #include <conio.h>
 3 main()
4 {
 5 FILE *fp;
 6 int number, quantity,BS,DA,HRA,OA,LIC,PT,IT,GS,
DED,NS,i;

 7 float price,value;
 8 char ENAME[10], filename[10];
 9 clrscr();
 10 printf("Input file name\n");
 11 scanf("%s", filename);
 12 fp = fopen(filename, "w");
 13 printf(" ENAME BS LIC PT IT OA\n");
 14 for(i=1; i<=3; i++)
15 {

16 fscanf(stdin, "%s %d %d %d %d %d", ENAME, &BS,
&LIC, &PT, &IT, &OA);
17 fprintf(fp, "%s %d %d %d %d %d", ENAME, BS, LIC,
PT, IT, OA);
18 }
19 fclose(fp);
20 fprintf(stdout, "\n\n");
21 fp = fopen(filename, "r");

22 printf("ENAME BS DA HRA LIC PT IT OA
GROSS DED NET_SAL \n");
23 for(i=1; i<=3; i++)
24 {
25 fscanf(fp, "%s %d %d %d %d %d", ENAME, &BS, &LIC,
&PT, &IT, &OA);
26 HRA = BS * 0.09;
27 DA = BS * 1.14;

28 GS = BS + DA + HRA + OA;
29 DED = LIC + PT + IT;
30 NS = GS - DED;
31 fprintf(stdout, "%s %d %d %d %d %d %d %d %d
%d%d", ENAME, BS, DA, HRA, LIC, PT, IT, OA, GS,
DED, NS);
32 }
33 fclose(fp);

34 }

Figure 1. A sample ‘C’ Program

The output of the steps 1- 4 of the algorithm mentioned in

section 4 is shown in Table-3. The step 5 is applied to the
table, but the table entries are in the normalized form only.
The dependencies cannot be further minimized. So the
minimal cover or minimized functional dependencies in the
abstracted functional dependencies are:

 BS, DA, HRA, OA GS
 LIC, PT, IT DED
 GS, DED NS

 BS HRA
 BS DA
 Filename fp

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.3, February 2011

11

5.2 Consider another set of functional dependencies

given below:

1. A B C D E F

2. A F

3. B G

4. A B D E F

5. A C D F G

Apply all the steps of the Algorithm mentioned in Section – 4
of the paper. The result is shown in Table – 4.
The output generated by the automated tool is shown below:

1. A F

2. A B D E
3. A C D B G
The attributes of RHS grouped on the same set of LHS

attribute form group of attributes for a method.

Table -3: minimization of functional dependencies for the case study 5.1

 Table-4.Minimization of functional dependencies for the case study 5.2

6. CONCLUSION
This paper presents an automatic tool that abstracts attributes

and forms the first cut object classes through the abstraction of

functional dependencies. This procedure is implemented by a

scenario of methods to abstract control flow graph and then to

represent the data flow graph in the form of data flow table.

Using the data flow table of the program and data & control

dependencies concept, the functional dependencies are linked to

form the attributes closure. Repeating this procedure, different

functional dependency sets are obtained, and then the functional

dependencies are minimized using the ameliorated algorithm.

The attributes within each functional dependencies group forms

the first cut object structures. The inheritance property can be

well represented if the implicit dependencies are eliminated.

This structure is based on the formation of cohesive attributes

using good database and software engineering principles.

7. REFERENCES

[01] Shivanand M. Handigund, “Reverse Engineering of

Legacy COBOL systems”, Ph.D. Thesis, 2001, IIT

Bombay, Mumbai

[02] Ronald S. King, James J. Legendre, “Discovery of

Functional and Approximate Functional Dependencies

in Relational Databases”, Journal of Applied

Mathematics And Decision Sciences, 7(1), 49-59, 2003.

[03] Wie Ming LIM, John Harrison, “Discovery of

constraints from data for Information system Reverse

Engineering”, IEEE 1997, 39-48.

[04] Wie Ming LIM, John Harrison, “Parallel approaches for

Discovering Functional Dependencies from Data for

Information System Design Recovery”, IEEE 1997,

254-260.

[05] Victor Matos, Becky Grasser, “SQL-based Discovery of

FD

No.

BS

DA

HRA

OA

LI

C

PT

IT

GS

DED

NS

Filename

Dependenc

y

1 a11 a12 a13 a14 0 0 0 0 0 0 0 GS

2 0 0 0 0 a25 a26 a27 0 0 0 0 DED

3 0 0 0 0 0 0 0 a38 a39 0 0 NS

4 a41 0 0 0 0 0 0 0 0 0 0 HRA

5 a51 0 0 0 0 0 0 0 0 0 0 DA

6 0 0 0 0 0 0 0 0 0 0 a61 Fp

FD No A

B C D E F G Dependency

1 a11 a12 a13 a14 0 0 0 E

2 a21 a22 a23 a24 0 0 0 F

3 a31 a32 0 a34 0 0 0 E

4 a41 a42 0 a44 0 0 0 F

5 a51 0 a53 a54 0 0 0 F

6 a61 0 a63 a64 0 0 0 G

7 a71 0 0 0 0 0 0 E

8 a81 0 0 0 0 0 0 G

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.3, February 2011

12

Exact and Approximate Functional Dependencies”,

SIGCSE Bulletin, Volume 36, Number 4, Dec-2004, 58-

63.

[06] Hong Yao, Howard J. Hamilton, and Cory J. Butz,

“FD_Mine: Discovering Functional Dependencies in a

Database Using Equivalences”.

[07] Jalal Atoum, Dojanah Bader, and Arafat Awajan,

“Mining Functional Dependency from Relational

Databases Using Equivalent Classes and Minimal

cover”, Journal of Computer Science 4(6): 421-426,

2008, Science Publications.

[08] IztokSavnik, Peter A. Flach, “Bottom-up Induction of

Functional Dependencies from relations”, Knowledge

Discovery in Databases Workshop WS-93-02, 174-185.

[09] Herbert Schildt, “C The Complete Reference”, Fourth

Edition, Tata McGraw-Hill Publishing Company

Limited, New Delhi, 2000.

[10] Julian M. Scher, CanghuiQiu, “FD-EXPLORER: A

pedagogical and Design Tool for Functional

Dependency Exploration”, in the proceedings of

ISECON 2004, v21, 1-7.

[11] Mannila, H., and Raiha K.J., “Algorithms for Inferring

Functional Dependencies from relations”, Data and

Knowledge Engineering, 12(1): 83-99, 1994.

[12] Rajkumar N. Kulkarni and Shivanand M. Handigund,

“Abstraction Of Structural Components From Legacy

„C‟ Program”, International Conference on “Advances

in Computer Vision and Information Technology

(ACVIT – 07)”, Aurangabad, India, November 2007,

pp. 1523-1530.

[13] Rajkumar N. Kulkarni and Shivanand M. Handigund,

“Moulding The Legacy „C‟ Programs For

Reengineering”, International Conference on “Advances

in Computer Vision and Information Technology

(ACVIT -07)”, Aurangabad, India, November, 2007, pp-

1531-1537.

[14] Rajkumar N. Kulkarni and Shivanand M. Handigund,

“Abstraction of Structural and Behavioral Components

from Legacy „C‟ Program”, 2nd International Conference

on Advanced Computing and Communication

Technologies (ICACCT 2007), Panipat, Haryana, India,

November, 2007, pp 550-554.

[15] Rajkumar N. Kulkarni and Shivanand M. Handigund,

“Abstraction Of Structural And Behavioral Components

From Legacy „C‟ Program”, International Journal of

Computing Science and Communication Technologies,

Vol. 1, No. 1, July 2008, pp 70 – 75.

[16] K KAggarwal and Yogesh Singh, “Software

Engineering”, Revised second edition, New Age

International(P) Limited, 2005, New Delhi.

[17] E. Balaguruswamy, “Programming in ANSI C”, third

edition, Tata McGraw-Hill Publishing Company

Limited, New Delhi, 2006.

[18] T. D. Brown Jr., “C for Basic Programmers”, Tata

McGraw Hill Publishing Company Limited, New Delhi,

1992.

[19] Dr. Shivanand M. Handigund & Rajkumar N. Kulkarni,

“An Ameliorated Methodology for the design of Object

Structures from legacy „C‟ Program” International

Journal of Computer Applications (0975- 8887),

Volume 1, No. 13, March 2010, Page No. 61-66.

