
International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

13

Survey of Object Oriented Mining for XML Data

T.Sangeetha
PSGR Krishnammal College

for Women
Coimbatore

G.Sophia Reena
HOD – Dept of BCA

PSGR Krishnammal College
for Women
Coimbatore

T.Priya
TamilNadu College of

Engineering
Coimbatore

ABSTRACT

According to the Petr Kuba, to adapt OR-FP for mining in
XML data we preserve basic principles of the algorithm and
modify only the input interface. To map XML data to our
system we can use the following mapping: XML elements can
be processed similarly to the objects in object-oriented data.
The name of element corresponds to the class and the

attributes of element correspond to the attributes of object.
The content of the element (text nodes and elements) can be
stored in a special attribute of the object. The type of this
attribute should be a set or list – depending on whether we
want to deal with an order of nodes. Some specifications
(XPointer, XLink) add one more interesting feature to XML
data – they allow us to use references to another documents or
elements. We can represent this relation as simply as object

references. Our proposal is to mining frequent pattern in
collection of XML documents.

General Terms

Frequent Pattern,XML,XQuery,XQSharp.

Keywords

Object oriented data mining, OR-FP

1. MOTIVATION
Traditionally data mining methods are employed in various
data stored in traditional database management systems and
even to relational database management systems. So here
comes the comparative study between the former and the
latter.

When we compare traditional database management systems
with object oriented database management system the
following are the important factors that are to be resolved.
Object data model solve many limitations of RDBMS. It is

better at modeling complex objects and also better in
performance on certain data structures. No impedance
mismatch between data access language (declarative SQL)
and host language (procedural C or Java).

The Object-oriented approach overcomes the no set-valued

attributes which is one of the shortcomings. Moreover

traditional DBMS is query triggered data exploration whereas

the data mining technology is automatic data exploration.

Secondly we formulate a hypothesis and test it by sifting

through the database for the former part whereas one of the

important task of data mining technology is hypothesis

testing.

One important factor which motivates to work on this paper is

one must know the exact information we are seeking for in the

case of traditional DBMS. But vague information is possible

to know the correlations or patterns.

Hence OODBMS are capable of storing complex objects i.e.,

Objects that are composed of other objects and/or multi-

valued attributes, object oriented data models are often

inspired by OO programming languages C++,C# etc and in

worldwide market OODBMS product records about $30

million. Thus the impact of Object-oriented DBMS paves a

way to employ the mining methods to mine the frequent

patterns in object oriented data.

2. INTRODUCTION

2.1 Conceptual Theory on Discussion

 The Theoretical background of the decision tree, clustering
and other statistical techniques fall into this category.

Fundamental Dependencies – Large volume of database
schema, to predict the occurrence of frequent itemset since it

increases the reliability and robustness. It also reduces the
complexity of handling the data, since the frequent itemset
can predict the customer or client‟s nature in real-world
application.

2.2 Frequent Patterns

The concept of frequent pattern was formulated by Agrawal et
al in 1993. Mining frequent pattern is a pattern that covers at
least a maximum number of objects. A very good example is
Market – Basket problem which helps to find the future
customer behavior. The aim of frequent pattern is to find all
the frequent itemsets, those patterns that appear in at least a
given percentage of all transactions, in other words to find the
relation the set of items in a large collection of transactions.

2.2.1 Why frequent pattern growth is fast?
According to the performance study, frequent pattern growth
is an order of magnitude faster than Apriori and is also faster
than tree-projection.

Reason:
- No candidate generation, no candidate test
- Use compact data structure
- Eliminate repeated database scan
- Basic operation is counting and FP-tree building

2.2.2 Frequent Set
Definition - Let T be the transaction database and  be the

user-specified minimum support. An itemset X A is said to be

a frequent itemset in T with respect to, if S(X) T ≥ 

Example - Let us consider the following set of transactions in
a bookshop.

Solution: The purchases (transactions) are made of books on
Compiler Construction, Databases, Theory of Computations,
Computer Graphics, and Neural Networks. We shall denote
these subjects by CC, D, TC, CG and ANN respectively.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

14

t1:={ANN,CC,TC,CG}
t2:={CC,D,CG}
t3:={ANN,CC,TC,CG}
t4:={ANN,CC,TC,CG}
t5:={ANN,CC,D,TC,CG}

t6:={CC,D,TC}

If we assume  = 50%, then {ANN, CC, TC} is a frequent set

as it is supported by at least 3 out of 6 transactions. We can
see that any subset of this set is also a frequent set. On the
other hand, {ANN, CC, D} is not a frequent set and hence no
set which properly contains this set is a frequent set.
Discovering all frequent itemsets and their supports is a non-
trivial problem if the cardinality of A, the set of items and the
database T are large. It should be noted that a large number of

itemsets would have minimum support. Even if it is
practically feasible, testing support for every possible itemset
results in much wasted effort. On the other hand, we have just
one counter and make a database pass to count the support for
each database. To reduce the combinatorial search space, all
algorithms exploit the two properties like downward closure
property and upward closure property. Thus, this paves the
way for doing research in this domain area.

3 COMPARISONS OF DBMS, RDBMS,

ORDBMS, AND OODBMS

Consider the database models – transitions.

3.1 Relational DBMS Limitations
- Semantic overloading.
- Poor representation of „real world‟ entities
- Poor support for integrity & business constraints.
- Homogeneous data structure.
- Limited operations.
- Difficulty handling recursive queries.

- Difficulty with „Long Transactions‟
- The many - many relationships is difficult to express.
- The RDBMS has domains, keys, multi-valued and join
 dependencies.
- Normalisation (Normal forms and FDs) sometimes lead to
 relations which do not exist or correspond to entities in the
 real world. This compound on the „join‟ feature of query
 processing.

3.2 Advantages of OODBMS
-Enriched modeling capabilities.

-Extensibility.
-Support for schema evolution.
-Application for advanced database applications.
-Improved performance.

3.3 Disadvantages of OODBMS
-Lack of a universal data model is a big question??
-Ad-hoc querying compromises encapsulation.
-Locking at object-level impacts performance
-Complexity
-Lack of support for views
-Lack of support for security

3.4 What is an ORDBMS?
An Object-Relational database adds features associated with
object-oriented systems to a RDBMS (or) Extend the
relational data model by including object orientation and
constructs to deal with added data types.

3.5 Features of Object – Relational DBMS
OODBS support noted by RDBMS vendors include
-User-extensible type system
-Encapsulation
-Inheritance
-Polymorphism
-Dynamic binding of methods

-Complex objects including first normal form objects
-Object Identity

3.6 Drawbacks of ORDBMS
-Complexity
-Increased costs

-Unclear if the ORDBMS will actually combine relationships
 and encapsulated objects to correctly and completely mirror
 the „real world
-Provision of a language(s)which will front end to SQL and
 will provide a migration path for existing SQL users

3.7 Comparison of OODBMS / ORDBMS:

OODBMS put more emphasis on the role of the client side.
This can improve long, process intensive, transactions.

ORDBMS SQL is still the language for data definition,
manipulation and query.

OODBMS have been optimized to directly support object-
oriented applications and specific OO languages.

ORDBMS are supported by most of the „database vendors‟ in
the DBMS market place.

ORDBMS Most third-party database tools are written for the
relational model and will therefore be compatible with SQL3

ORDBMS search, access and manipulate complex data types
in the database with standard (SQL3 ?), without breaking the
rules of the relational data model

OODBMS the ODMG standard group‟s OQL is now the
standard query language amongst OODBMS vendors

3.8 When to use an ODBMS?

In applications that generally retrieve relatively few (generally
physically large) highly complex objects and work on them
for long periods of time.

Hierarchical Data

Model

Network Data

Model

Relational Data

Model

ER Data Model

Semantic Data

Model

Object-Relational

Data Model

Object-Oriented

Data Model

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

15

3.9 When to use an ORDBMS?

In applications that process a large number of short-lived

(generally ad-hoc query) transactions on data items that can be
complex in structure.

Concluding Remarks - OODBMS: Abandon SQL (Use an
Object Oriented Language instead).ORDBMS: Extend SQL
(with Object Oriented feature)

3.10 Object Databases in 2010

The world of data management is changing. The linkage to
service platforms, operation within scalable (cloud) platforms,
object databases, object-relational bindings, No SQL
databases and new approaches to concurrency control are all
becoming hot topics both in academia and industry.
ODBMS.ORG offers educational resources in all of these new
areas.

Object databases (ODBMS) have long been recognized as a
solution to one of the biggest dilemmas in modern object-
oriented programming (OOP): the object-relational (OR)
impedance mismatch. Now that OOP languages like Java and
.NET are finally becoming main stream, this problem rests at
the heart of information technology.

Thus object databases are increasingly established as a
complement to (not a replacement for) relational databases for

efficient resolution of the OR mismatch. ODBMSs are
flourishing as embeddable persistence solutions in devices, on
clients, in packaged software, in real-time control systems,
and to power websites.

The open source community has created a new wave of
enthusiasm that's now fueling the rapid growth of second-
generation, native ODBMSs and demand for appropriate
education.

4 STUDY OF ANALYSIS

Consider the classification diagram of data mining algorithms

Fig 4.1: Classification of Data Mining Algorithms

According to the data mining algorithm classification, since
our discussion is regarding mining the frequent pattern results
in association. We consider the discovery driven method
under which, description category was chosen because it

describes the association which is closely related to our
discussion. Now for our comparative study we consider two
algorithms like Apriori Algorithm (Base algorithm) and OR-
FP Algorithm (Existing algorithm).

4.1 Disadvantages of Apriori Algorithm:

It requires more time.

Large set of candidate key generation.

Requires many database scans.

Large memory requirement.

4.2 Overview of the OR-FP Framework

Farmer and radar showed one of promising directions for
further research. By changing data representation or
restricting the hypotheses language we can speed up mining
process and decrease memory requirements significantly. One
could suppose that another possibility is to integrate data
mining algorithm with a database systems. The reason is that
database systems have long tradition and large effort was
given to develop very efficient methods for dealing with large

data.

The first system which integrated database technology with an
algorithm for mining relational frequent patterns was OR-FP.
The OR-FP system extends the Apriori algorithm for mining
frequent patterns from a data stored in an object-oriented
database. Object-oriented databases are powerful enough for
representing any data and defining relations among the data
and their attributes. It is possible to define a hierarchy of

classes, inheritance of objects, or complex data structures as
lists and sets.

In an object-oriented database each instance is represented as
an object identified by a unique identifier usually called object
identifier (OID). The OID plays the same role as the key
predicate used by ILP systems for mining frequent patterns,
i.e., the support of a candidate rule is computed according to
OID.

Data Mining

Algorithms

Online

Analytical

Processing

Discovery

Driven Methods

SQL

Query

Tools

Description

Prediction

Regression

s

Classificati

on

Decision

Trees

Neural

Networks

Visualizati

on

Clustering

Association

Sequential

Analysis

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

16

OR-FP is the first relational system generating a hypothesis
which is not represented in first-order logic. The frequent
patterns obtained consist of elements called fragments.
Fragment is a pair (X, T) where X is a variable representing an
object and T defines type of that object. The most general

pattern, denoted query class, is specialized by adding a
fragment which introduces another restriction to its subclasses
or attributes. OR-FP uses Apriori-like candidate generation
and pruning function.

The OR-FP system was implemented in JAVA programming
language. It is an application which loads data from Oracle 9i
database server2. Because, the database server provides all the
meta-data necessary for creating new fragments a user does

not have to define any language specification or bias as in the
case of ILP systems. This is an indisputable advantage of that
system. On the other side, background knowledge cannot be
defined. Nonetheless, OR-FP was utilized for solving several
benchmark tasks, e.g., propositionalization of Mutagenesis
and Carcinogenesis data describing structure of chemical
compounds and it beat several well-established systems.

The existing algorithm OR-FP algorithm was introduced as a

modification of inductive logic programming (ILP). It is
possible to use ILP methods to mine the object oriented or
object relational data. However it requires a lot of effort and
experience. Thus it paved a way for new algorithm as a
modification of ILP or an entirely new algorithm.

This algorithm loads the data from the oracle object relational
database system and requires only minimum mandatory
settings. OR-FP algorithm and Linear pattern extension

algorithm was developed from Apriori algorithm, which is the
most popular algorithm to find all the frequent sets.
Proportional algorithms are applied to object oriented and thus
solving classification and regression tasks in these data. This
algorithm was proposed by Peter Kuba and Lubos popelinsky
in 2004.

Working Principle

According to this algorithm linear candidate set is generated
for each object with minimum support. Counter is

incremented for each frequent pattern recognized from the
linear candidate set. Support and Minimum Support is
measured and compare. If the threshold of support is greater
than the threshold of minimum support then the linear
frequent pattern and its subsequent candidate set is also
generated.

Procedures

Consider an object relational database say OR database, query

class Cq, minimum support.

Linear Candidate set LC1 is generated for each object from the
object relational database table.

Counter is incremented for each support.

Comparing the counter values of support and minimum
support, linear frequent pattern and non-linear frequent pattern
is also generated simultaneously.

Moreover that Linear frequent pattern Lk generated is

subjected to the Linear pattern Extension algorithm where the
patterns of itemset are classified into three categories like
simple, class and attribute type.

Finally if the transaction Ti is a set then the new linear pattern
itemset and a new pattern is added to LCk+1 set is generated.

The existing algorithm is based on the Apriori algorithm and
the same is modified to handle object-oriented data.

Given:

Database : D

Query Class : Cq

Minsupp : Requested minimum support for the generated
frequent patterns. It computes a set of frequent patterns. This
is the only input needed.

Factors Involved:

Li : Linear Frequent
Patterns

LCi : Linear Candidate
Patterns

Ni : Non-Linear
Frequent Patterns

NCi : Non-Linear
Candidate Patterns

Execution:

At the beginning, exactly one pattern representing the query
class is generated in the first step.

Second step, the support corresponds to the number of objects

of the query class and its subclasses.

By looping the above process, it is extended to all its
attributes, subclasses etc.

Output: Linear patterns are generated.

4.3 Advantages of the existing system:

OR-FP Algorithm – Successfully applied for ill-structured
data.

Transformation – We do transform data into single table as
in Apriori algorithm. In contrary, we assume that the data
match a database schema. It is an advantage when focusing on
optimization.

Splitting – The labels of nodes cannot be further split into
subparts. On approach is more flexible. We can see labels as
sets of subparts (Ex. Words)

4.4 Flaws of OR-FP Algorithm

- Cannot handle continuous data and it is necessary to
discrete continuous attributes. In implementation, Equal
Frequency Intervals discretization method is used.
-Cannot handle the attributes of type list. However the

algorithm for handling the lists is very similar to the set
algorithm and therefore this drawback can be resolved.
-Cannot handle methods in Object Oriented Data. We could
simply include parameter free functions which could be seen
as virtual attributes due to returning due to returning some
value for each object.

4.5 Comparison of Existing Algorithm (OR

- FP) and Apriori Algorithm

According to this study a new algorithm called OR-FP
algorithm was developed as a modification of Inductive Logic

Programming (ILP) and also derived the features of Apriori

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

17

algorithm which is one of the most popular frequent pattern
algorithms. After the considering the issues of mining the
object oriented or object relational data requires more effort
and experience. They have also developed a linear pattern
extension algorithm as an extension of OR-FP algorithm.

According to Apriori algorithm, initially there is a counter for
each itemset frequent pattern but there are two counters
support and minimum support. The linear frequent pattern
itemset is generated if the value of support is greater than
minimum support.

According to the former one there is no consideration between
linear and non-linear frequent patterns.

Moreover there is no pattern classification in the former

algorithm, but the pattern classification is in the latter one.
This is the important difference between Apriori algorithm
and OR-FP algorithm.

5 RESULTS AND DISCUSSION

5.1 Mining Xml Data

The present dominant data publishing format on the internet is
HTML (a markup language that specifies the rendering of the
web documents). Recently, XML (eXtensible Markup
Language) is gaining popularity as a new standard for data
representation and exchange on the internet. The web is rich

with information. However, the data contained in the web is
not well organized which makes obtaining useful information
from the web a difficult task. The successful development of
XML as a standard to represent semistructured data makes the
data contained in the web more readable and the task of
mining useful information from the web becomes feasible.

Although tools for mining information from XML data are
still in their infancy, they are starting to emerge. As

mentioned in Braga, the fast growing amount of available
XML data, raises a pressing need for languages and tools to
manage collections of XML documents, as well as to mine
interesting information from them. There are developments
like Xyleme which is a huge warehouse integrating XML data
from the web, and also vendors of data management tools
such as Microsoft, Oracle and IBM, who have focused on
incorporating XML technologies in their products.

Therefore, it is essential that direct techniques for mining

XML data are developed. The query language XQuery was
proposed by the W3C and is currently in “last call” status. The
purpose of XQuery is to provide a flexible way to extract
XML data and provide the necessary interaction between the
web world and database world.

XQuery is expected to become the standard query language
for extracting XML data from XML documents. Therefore, if
we can mine XML data using XQuery, then we can integrate

the data mining technique into XML native databases. So, we
are interested to know whether XQuery is expressive enough
to mine XML data. One data mining technique that has proved
popular is association rule mining.

It finds associations between items in a database. In this study
we show that XML data can be mined using XQSharp (similar
to XQuery, which is proposed by Microsoft) and discuss the
XQSharp implementation of the OR-FP algorithm. Moreover,

we discuss other useful capabilities that need to be added into
XQSharp to make association rule mining efficient.

6. IMPLEMENTATION

The following are the implementation screens for our object

oriented xml mining.

Fig 6.1: Object Relational Mapping

The figure 6.1 shows the object relational mapping for the
mutagenesis dataset. In our current implementation will

support only the data which have been configured in
application.

Fig 6.2: Internal Object Oriented Data Structure

The above figure 6.2 shows the design pattern of our
implementation part. It shows the object oriented design for
our mutagenesis dataset. This implementation is considered as
proof of concept. But still needs to be enhanced to handle the
ad hoc document. The xml structure is opted to specify the
data structure of the dataset.

In our implementation, we have given two options. The first
option is synthetic data and real data. For a trial basis simple
random value is generated using the synthetic data. The real
data is an option to handle real-time dataset, which should set
before as xml pattern.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

18

 Fig 6.3 User Interface for Object Oriented Mining
XML Data

In the user interface user can specify the support and
confidence percentage. Further they need to give the data
query as given in the figure 6.3. The show pattern button

executes the process and display frequency pattern.

Time measures have been taken to for the synthetic data
towards minimum support. Our experiment is executed with
windows 7 operating system, Intel Core 2 Duo Processor, 4
GB RAM, 500 GB HDD. It is performed on XQSharp engine
inside the native XML database support.

Fig 6.4 Chart between Time and Minimum Support for
different dataset

We see that the performance of the XQSharp implementation
is dependent on the number of large itemsets found and the
size of the dataset. For example, the number of large itemsets
found from dataset-1 is much more than dataset-2 and dataset-

3 with minimum support 20%. The running time for dataset-1
with minimum support 20% is much higher than the running
time of dataset-2 and dataset-3, since the number of large
itemsets found for dataset-1 is about 2.4 times more than the
other datasets.

We also notice that the majority of the time for the XQSharp
implementation is spent in counting support to find large
itemsets. The XQuery implementation requires that for each

itemset in the Candidate set, it will read the database once to
obtain the support value. Therefore, the number of times
needed to scan the database to obtain the support count for
finding large itemsets is O(2l), where l is the length of the
maximal large itemset.

7. CONCLUSION AND SCOPE FOR

FUTURE WORK

This study reveals that an implementation of the object
oriented mining for xml data. According to the Petr Kuba, to
adapt OR-FP for mining in XML data we preserve basic

principles of the algorithm and modify only the input

interface. To map XML data to our system we can use the
following mapping: XML elements can be processed similarly
to the objects in object-oriented data. The name of element
corresponds to the class and the attributes of element
correspond to the attributes of object.

 The implementation is developed using Visual Studio 2008 in
C# with XQSharp and LINQ. The present implementation is
executed as proof of concept basis. But still it can be enhance
the same idea to apply for any type of dataset. The query part
in this study implementation is more like programmers query,
it is also be further optimized into user preferable pattern.

We ask that authors follow some simple guidelines. In
essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download
the template, and replace the content with your own material.

8. ACKNOWLEDGMENTS
Our sincere thanks to Dr. M. S. Vijaya M.Sc., M.Phil., Ph.D,
Head of the Department, Department of Computer Science

(PG), P.S.G.R.Krishnammal College for Women, Coimbatore
for her valuable guidance and suggestions during the course of
study.

9. REFERENCES

[1] Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P.
From Data Mining to Knowledge Discovery in
Databases. AI Magazine 17, 3 (1996), 37–54.

[2] Famili, A., Shen, W.-M., Weber, R., and Simoudis,
E. Data preprocessing and intelligent data analysis.
Intelligent Data Analysis Journal 1, 1 (1997).

[3] Kramer, S., Lavraˇc, N., and Flach, P.
Propositionalization approaches to relational data
mining. In Relational Data Mining, S. Dˇzeroski
and N. Lavraˇc, Eds. Springer-Verlag, September
2001, pp. 262–291.

[4] Domingos, P. Unifying instance-based and rule-
based induction. Machine Learning 24, 2 (1996),
141–168.

[5] Agrawal, R., Imielinski, T., and Swami, A. N.
Mining association rules between sets of items in
large databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management
of Data, Washington, D.C., May 26–28, 1993

(1993), P. Buneman and S. Jajodia, Eds., ACM
Press, pp. 207–216.

[6] Agrawal, R., and Srikant, R. Fast algorithms for
mining association rules in large databases. In
VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September
12–15, 1994, Santiago de Chile, Chile (1994), J. B.
Bocca, M. Jarke, and C. Zaniolo, Eds., Morgan
Kaufmann, pp. 487–499.

[7] Muggleton, S. Inductive Logic Programming. New
Generation Computing 8, 4 (1991), 295–318.

[8] Muggleton, S., and Raedt, L. D. Inductive logic
programming: Theory and methods. Journal of
Logic Programming 19/20 (1994), 629–679.

[9] Dehaspe, L., and Toivonen, H. Frequent query
discovery: a unifying ILP approach to association

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.4, February 2011

19

rule mining. Tech. Rep. CW 258, Katholieke
Univesiteit Leuven, Departmen of Computer
Science, Celestijnenlaan 200A – B-3001 Heverlee
(Belgium), March 1998.

[10] Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P.

Knowledge Discovery and Data Mining: Towards a
Unifying Framework. In Proceedings of the Second
International Conference on Knowledge Discovery
and Data Mining (KDD-96) (1996), p. 82.

[11] Mannila, H., and Toivonen, H. An algorithm for
finding all interesting sentences. In Proceedings of
the 6th Internation Conference on Database Theory
(1996), pp. 215–229.

[12] Dehaspe, L., and Raedt, L. D. Mining association

rules in multiple relations. In ILP (1997), N. Lavrac
and S. Dzeroski, Eds., vol. 1297 of Lecture Notes in
Computer Science, Springer, pp. 125–132.

