
International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

40

A Hybrid Cache Invalidation Technique for Data
Consistency in MANET

N. Sabiyath Fatima

Department of Computer Science and Engineering
BSA University, Chennai, India.

 Dr. P. Sheik Abdul Khader
Professor & Head Department of Computer

Applications
BSA University, Chennai, India.

ABSTRACT

Recent advances in computer and wireless communication

technologies have led to an increasing interest in ad hoc

networks, which are temporarily constructed by only mobile

hosts. Data accessibility in ad hoc networks is lower than that

in the conventional fixed networks.. Caching the frequently

accessed data items on the client side is an effective technique

for improving the performance in a mobile environment. This

form of data caching significantly improves the efficiency of

information access in a wireless ad hoc network which in turn

reduces the access latency and bandwidth usage. The main

objective is to avoid the stale data using invalidation policy

based on TTL. This paper introduces an Extended Adaptive

TTL (Ex-ATTL) algorithm, in which 1-hop distance nodes to

data cache node maintain a hash table for cache invalidation.

Data item name is used as key and TTL is used as its value.

The network is simulated using NS-2 to evaluate the

performance of the proposed algorithm, also it is compared

with fixed TTL and Adaptive TTL schemes. The simulation

results shows that Ex-ATTL algorithm can cut the query delay

by a factor of 3 and double the throughput compared to the

Adaptive TTL.

Keywords: Invalidation, MANET, Stale Data, TTL,

Cache Consistency.

1. INTRODUCTION
 The recent advancement in computer and wireless

communication technologies have led to an increasing interest

in ad hoc networks, which are temporarily constructed by only

mobile hosts. The ad-hoc network architecture can be used as

a wireless extension for the users to access the Internet in an

area without network infrastructure [1]. The features like

multi-hop message relay, frequent link disconnection and

power-constrained operation, complicate the design of

network protocols [4] and the application development.

 In order to ensure the consistency between source

node and cached data at the clients efficient data cache

invalidation mechanisms are essential. TTL based cache

invalidation problem has been well studied in mobile

computing environments [5] [1]. The Fixed TTL and

Adaptive TTL based techniques are the existing strategies for

cache invalidation. Maintaining cache invalidation process in

cache node produces some additional overhead to cache and

also decrease the performance of the network. Due to changes

such as two nodes moving out of wireless transmission range

of each other cache may become invalid [12]. In the proposed

Ex-ATTL algorithm, cache node broadcast the data item’s

name and data item’s TTL to its 1-hop neighbors. Each node

invalidates the data according to data items TTL stored in

cache invalidation hash table.

 The rest of this paper is organized as follows.

Section 2 reviews the related works for cache invalidation

schemes in mobile ad hoc networks. Section 3, describes the

system model for data service in a mobile ad hoc network

(MANET). Section 4, gives the proposed system architecture

and Extended Adaptive TTL algorithm. Section 5, discusses

the performance evaluation, and simulation results for Ex-

ATTL. Finally, Section 6 concludes the paper.

2. RELATED WORKS

 As categorized in [3], [11], there are two kinds of

cache invalidation methods. Location-dependent invalidation

which is based on the geographical position of the mobile

nodes supports single hop communication only. Temporal

dependent invalidation is carried out by data updates. To carry

out temporal-dependent invalidation, the data source keeps

track of the update history and sends it, in the form of an

invalidation report (IR), to the clients, either by periodic/a

periodic broadcasting or upon individual requests from the

clients [16], [10], [14], [9]. The mobile client, if active,

listens to the IRs and updates its cache accordingly.

According to the authors of [15], [16], caching data

or path of the data at mobile client side is an essential

mechanism for improving system performance in a mobile

computing environment.

 In [6], Cache Path and Cache Data handle cache

consistency using a simple weak consistency model based on

the TTL mechanism. In this model, a routing node considers

a cached copy up-to-date if its TTL hasn’t expired. If the TTL

expires, the node removes the map from its routing table (or

removes the cached data). Author’s of [8] optimize this model

by allowing nodes to refresh a cached data item if a fresh copy

of the same data passes by. In [13] [2] authors use the

Adaptive TTL based cache invalidation scheme for Hybrid

Cache and Cooperative Cache. Caching the data indicates the

mobile node’s interest in it. While performing data

forwarding, if a mobile node finds an invalid copy of that data

in its cache, it deletes the old copy and stores new copy for

future use. If an expired path or data item has not been

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

41

refreshed for the duration of its original TTL time, it is

removed from the cache.

3. NETWORK MODEL
 The system constitutes n mobile nodes. N= {N1, N2,

. . . , Nn} denote the set of mobile nodes. Every node holds a

cache in its local storage, and issues queries for data items

from the data source. The data source is called a server and it

contains a database. It is assumed that there are m data items

in the database. Data items from 1 to m serve as their

identifiers. D= {D1, D2, . . ., Dm} denotes the set of data

items in the database. In order to keep track of the version of a

cached copy of a data item, each copy of a data item is

associated with a TTL and also records the time Tc when the

copy is created in the source, where Tc is a data item copy

creation time.

4. PROPOSED INVALIDATION

ALGORITHM

 Caching is the concept of locally storing copies of

remote data objects for faster retrieval. When multiple nodes

cache the same data item, there is a need to maintain cache

consistency. The policy employed to notify all caches about

an update is called invalidation policy. TTL is a number

indicating the time interval during which the data item is

considered to be fresh. When the data item is to be referenced,

its TTL value is checked and if the TTL is still valid then the

object is retrieved otherwise a new value is requested from the

server. The whether forecast, stock market, sports news and

battle field conditions monitoring update the data item in

every short interval of time periods. Some kind of data items

like video films and geographical information of particular

places are not updated in short time periods. There are two

types of TTL which are categorized based on the updating

nature of data item.

Architectural Overview

In Extended Adaptive TTL scheme, each and every

node maintains the cache invalidation hash table. Tc is the

time when successful copy of the data item is created in a

mobile node. The Fig.1 shows the Architecture of EX-ATTL.

Fig.1. Architecture of EX-ATTL

The proposed scheme is divided into three phases.

First phase of the algorithm does the cache invalidation hash

table verification for current request. Second phase of the

algorithm retrieve the data item from appropriate source. In

third phase cache node broadcasts the data item name and its

current TTL value to its one hop neighbor.

Phase 1

 When a node generates a data request, it is verified

from current nodes hash invalidation hash table. If cache

invalidation hash table contains the requested data item then

the algorithm retrieves the TTL and Tc from cache table. The

request generation time Treq is also cached from the nodes

timer then it subtracts the Treq from Tc. If this subtracted value

is greater than TTL then this also removes the data item, its

TTL and its Tc from hash table and forwards the request to the

data source. The data source calculates the new TTL and

sends with the data item. If the subtracted value is less than

TTL it moves to the next phase.

Phase 2

 Here, the algorithm checks the local cache for node

request. If local cache contains the requested data item, then

the request node simply uses its local cache. Other wise this

phase uses the current implementing cache algorithm and

retrieve the data item from nearest cache node or from the

data source. Again, the TTL of the particular data item is

recalculated.

 New TTL = Treq - Tc

 The new TTL is appended with the corresponding

data item and sends the response to the client node. Data

cache node also updates the new TTL in its cache table only

for the particular data item.

Phase 3

 When a successful copy of the data item is created

in localized cache or in any intermediate cache node for future

requests this phase cache the Tc from the cache node’s timer

and updates this Tc in its cache invalidation hash table. Cache

node also broadcasts the new cached data items id, TTL and

its Tc only to one hop neighbors.

 Pseudo-code of the Algorithm

SET TTL, Tc, Treq /* declaration */

Treq = getCurrentTime () * node’s time when request is

generated */

if (local hash table contains requested data item Di)

{

 /* phase 1*/

 TTL = retrieveFromHashTable (Di’s TTL)

 Tc = retrieveFromHashTable (Di’s Tc)

 if (Treq - Tc > TTL)

 {

 deleteFromHashTable (Di’s id, Di’s TTL, Di’s Tc)
 deleteFromLocalCache (Di)

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

42

 SendRequestToDataSource (Di’s id)

 /* phase2*/

 SET hopcount = 1

 NewTTL = Treq - Tc /* Done by data source*/

 ReplyFromServer (Nj id, Di , newTTL)

 dataCache (Di)

 / phase 3 */

 localHashTableUpdation (Di , newTTL,Tc)

 broadCast (Di , newTTL,Tc , hopcount)

 }

 else /* phase 2 */

 {

 SET newTTL

 if (localCacheContains (Di) == TRUE)

 {

 retriveFromLocalCache (Di)

 }

 else

 {

 SET hopcount = 1

 SendRequestToDataSource (Di’s id)

 newTTL = Treq - Tc /* Done by data

source*/

 ReplyFromServer (Nj id, Di , newTTL)

 dataCache (Di)

 / phase 3 */

 localHashTableUpdation (Di , newTTL,Tc)

 broadCast (Di , newTTL,Tc , hopcount)

 }

 }

}

else

{

 /* phase2*/

 SET hopcount = 1

 newTTL = Treq - Tc /* Done by data source*/

 ReplyFromServer (Nj id, Di , newTTL)

 dataCache (Di)

 / phase 3 */

 localHashTableUpdation (Di , newTTL,Tc)

 broadCast (Di , newTTL,Tc , hopcount)

}

5. PERFORMANCE EVALUATIONS

The Simulation Environment and Parameters

 The system model consists of a single data source

that serves multiple client nodes. The system parameters are

shown in Table 1.

There are 1,000 data items in the database, which is

divided into two subsets: the short TTL data subset and the

Long TTL data subset. The short data subset includes data

items from 1 to 150 (out of 1,000 items) and the long data

subset includes the remaining data tems of the database.

Clients have a large probability (75 percent) to access the data

in the short TTL set and a low probability (20 percent) to

access the data in the Long TTL set.

Table I Parameter Settings

Simulator Network Simulator (NS2)

Simulation time 5000 Sec

Network size 1800m x 800m

Mobility model Random waypoint

Database size n 2000 items

Number of nodes 50 to 100

Transmission range 200m

Speed of mobile host 1~20m/s randomly

Average Query Rate 0.5 / Second

Bandwidth(Mb/s) 2

TTL(secs) 300 to 1000

Client cache size(kb) 100 to 1000

Mean query generate

timeTquery(secs)

1 to 100

Pause time(secs) 200

Results and Discussions

 The performance analysis presented here is

designed to find the effects of different workload parameters

such as mean update arrival time, mean query generate time,

and system parameters such as cache size, replicate times (m),

and short TTL data access probability (pq). Then the

performance comparison is carried out among Adaptive TTL

and Ex-ATTL. The performance is measured by the cache hit

ratio, the query delay, and the throughput. Note that

minimizing the number of uplink requests is a desirable goal

as clients in a mobile environment have limited battery power

and transmitting data requires a large amount of power. The

performance metrics are defined as follows.

Query Delay: The time interval between the request and the

response.

Cache Hit Ratio: The percentage of accesses that result in

cache hits is known as the hit rate or hit ratio of the cache.

Impact of Query Delay

The query delay is measured as a function of the

mean query generates time and the mean update arrival time.

As shown in Fig.2, Ex-ATTL algorithm significantly

outperforms the Adaptive TTL scheme. As explained before,

each client generates queries according to the mean query

generate time. If the queried data is in the local cache, the

client can serve the query locally; otherwise, the client has to

request the data from the server. Since the broadcast

bandwidth is fixed, the server can only transmit a limited

amount of data during one transaction interval, and then it can

only serve a maximum number (α) of queries during one

transaction interval. If the server receives more than (α)

queries during one transaction interval, some queries are

delayed to the next transaction interval. Fig. 2 shows the

query delay as a function of the mean query generate time

with Tu = 10s and c = 100 items. When the query generates

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

43

time is lower than 70s (e.g., 60s), the query delay of the

Adaptive TTL algorithm becomes infinite long. However,

when the query generation time reaches 30s, the query delay

of proposed algorithm is still less than 20s.

Fig.2. Query delay Vs Mean query generate time (Tu =

10s, c = 100 items).

The Query Delay Evaluation Versus Mean Update Arrival

Time

As shown in Fig. 3, as the mean update arrival time increases,

the cache hit ratio increases and the query delay decreases.

Since the proposed algorithm has high cache hit ratio than the

Adaptive TTL algorithm, the query delay of Ex-ATTL

algorithm is shorter than the Adaptive TTL algorithm. For

example, with Tu = 10,000s, Ex-ATTL algorithm reduces the

query delay by a factor of 3 compared to the Adaptive TTL

algorithm. Although the cache hit ratio of the Adaptive TTL

algorithm is doubled from Tu = 10s to Tu = 33s, the query

delay of the Adaptive TTL algorithm does not drop too much

(from 18.7s to 16.1s). Since the query generated time is

exponentially distributed, multiple queries may arrive at a

client during one transactional interval. The requests in the

back end of the queue will have much higher query latency,

and it increases the average query latency.

Fig.3. Query delay Vs Mean update arrival time (Tu =

100s, c = 100 items).

Cache Hit Ratio Comparison with Different Cache Size

The Fig.4. shows the cache hit ratio under different

cache sizes when the number of clients is 100. It is easy to see

that the cache hit ratio of Ex-ATTL algorithm is always

higher than that of the Adaptive TTL algorithm for one

particular cache size (cache size is 50 items, 100 items). For

example, in the Adaptive TTL, when the update arrival time is

1s, the cache hit ratio does not have any difference when the

cache size changes from 50 data items to 100 data items.

However, under the same situation the cache hit ratio

increases from about 40 percent to 58 percent in the proposed

scheme. In Ex-ATTL algorithm, clients may need to

download interested data for future use, so a large cache size

may increase cache hit ratio.

Fig.4. Cache hit ratio Vs Cache sizes (Treq = 100s , c = 100

items).

 As shown in Fig. 4, the cache hit ratio drops as the

update arrival time decreases. When the update arrival time is

10,000s, both algorithms have similar cache hit ratio for one

particular cache size. With c = 300 items, as the update arrival

time reaches 1s, the cache hit ratio of Ex-ATTL algorithm still

keeps around 58 percent. When the update arrival time is very

low (e.g., 1s), most of the cache misses are due to short TTL

data access; when the update arrival time is very high (e.g.,

10,000s), most of the cache misses are due to Long TTL

access. Since Ex-ATTL algorithm is very effective to improve

cache performance when accessing short TTL data, the cache

hit ratio of the proposed scheme can be significantly improved

when the update arrival time is low. However, as the mean

update arrival time drops further (Tu < 1s), the cache hit ratio

of the Ex-ATTL drops much faster than before.

Impact of Number of Uplink Requests

Fig.5. shows the uplink cost of both algorithms.

Since Ex-ATTL algorithm has a lower cache miss rate than

the Adaptive TTL and clients only send uplink requests when

there are cache misses, proposed algorithm has lower uplink

cost compared to the Adaptive TTL.

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.5, February 2011

44

Fig.5. Mean update arrival time Vs the number of uplink

requests per IR interval (Tq = 100s, c = 100 items).

Both the algorithms have similar uplink cost when

the mean update arrival time is very high (e.g., 10,000s), but

there is a significant difference when the mean update arrival

time is 10s. From Fig. 5, it is found that both algorithms have

similar cache miss ratio (1 - cache hit ratio) when

Tu = 10,000s, but a significant difference when Tu = 10s. As

shown in Fig. 6, Ex-ATTL algorithm can cut the uplink cost

by a factor of 3 (with Tu = 10s) and, hence, the clients can

save a large amount of energy and bandwidth.

6. CONCLUSIONS

 TTL based cache invalidation technique is designed

to efficiently support data reliability in ad hoc networks. TTL-

based cache invalidation techniques have received

considerable attention due to its reliability, scalability and

simple implementation mechanism. The problem of cache

staleness are studied and a new scheme called Ex-ATTL is

implemented to overcome the above mentioned problem. The

existing technologies, such as Fixed TTL and Adaptive TTL

do not have clear TTL calculation mechanism and hence it

does not support valid data accessing 100%. In the proposed

scheme if any node caches the data item then it broadcast the

data items id and its current valid TTL to its one hop neighbor

for future request. This advanced mechanism improves the

network performance and also reduces the cache nodes

overhead.

7. ACKNOWLEDGEMENTS

We express our thanks to Dr. P. Kanniappan, the

ViceChancellor, Prof. V. M. Periasamy, the Registrar and

Prof.K.M.Mehtha, the Head, Department of CSE & Dean,

School of Computer and Information Science, B.S.Abdur

Rahman University, Chennai, Tamilnadu, India for the

encouraging environment provided.

8. REFERENCES

[1] L. Yin and G. Cao, Supporting cooperative caching in ad

hoc networks, IEEE Transactions on Mobile

Computing, 5(1), pp.77-89, 2006.

[2] Y. Du, and S. K. S. Gupta, A cooperative caching service

 in MANETs,Autonomous Systems and International

 Conference on Networking and Services, ICAS/ICNS

 2005.

[3] M. Abolhasan, T. Wysocki and E. Dutkiewicz, A review

of routing protocols for mobile ad hoc networks, Ad

Hoc Networks, Vol. 2, pp.1-22, 2004.

[4] G. Cao, L. Lin and C. Das, Cooperative cache-based data

 access in ad hoc networks, IEEE Computer, 37(2), pp.32-

 39, 2004.

[5] S. Lim, W. Lee, G. Cao, and C. Das, Performance

 Comparison of Cache Invalidation Strategies for Internet

 based Mobile Ad Hoc Networks, IEEE International

 Conference on Mobile Ad-hoc and Sensor Systems

 (MASS), pp.104-113, 2004.

[6] I. Chlamtac, M. Conti and J. J.-N Liu, Mobile ad hoc

networking: imperatives and challenges, Ad Hoc

Networks, Vol.1, 13-64, 2003.

[7] A. Kahol, S. Khurana, S.K.S. Gupta, and P.K. Srimani,

“A Strategy to Manage Cache Consistency in a

Distributed Mobile Wireless Environment,” IEEE

Trans. Parallel and Distributed Systems, Vol.12, No.7,

pp. 686-700, July 2001.

[8] G. Cao, “A Scalable Low-Latency Cache Invalidation

Strategy for Mobile Environments,” Proc. Sixth Ann.

ACM/IEEE Int’l Conf. Mobile Computing and

Networking (MobiCom 2000), pp. 200-209, August

2000.

[9] J. Xu, X. Tang, D.L. Lee, and Q.L. Hu, “Cache

Coherency in Location-Dependent Information

Services for Mobile Environments”, Proceedings of

First Int’l Conf. Mobile Data Access (MDA ’99), pp.

182- 193, December1999.

[10] N. Vaidya and S. Hameed, “Scheduling Data Broadcast

in Asymmetric Communication Environments,”

ACM / Baltzer Wireless Networks (WINET),

pp.171-182, May 1999.

[11] S. Acharya and S. Muthukrishnan, “Scheduling On-

Demand Broadcasts: New Metrics and

Algorithms,” Proc. ACM MobiCom ’98, pp. 43-54,

October 1998.

[12] J. Jing, A.K. Elmagarmid, A. Helal, and R. Alonso, “Bit-

Sequences: A New Cache Invalidation Method in Mobile

Environments,” ACM/Baltzer J. Mobile Networks and

Applications. (MONET), Vol. 2, No. 2, pp. 115-127,

1997.

[13] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik,

 “Broadcast Disks: Data Management for Asymmetric

 Communications Environments,” Proc. ACM SIGMOD

 Conf. Management of Data, pp. 199-210, May 1995.

[14] D. Barbara and T. Imielinski, “Sleepers and

Workaholics: Caching Strategies for Mobile

Environments,” Proc. ACM SIGMOD, pp.1- 12, 1994.

[15] G.H. Forman and J. Zahorjan, “The Challenges of

Mobile Computing,” Computer, Vol. 27, No. 6,

pp. 38-47, April 1994.

[16] C.Siva Ram Murthy, and B.S.Manoj. Ad Hoc Wireless

Networks Architectures and Protocols, Pearson

Education, 2005.

