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ABSTRACT 

The classical 0-1 knapsack problem is one of the more studied 

combinatorial optimization problem which belong to the NP 
class of algorithms. A number of its generalized forms have 

been addressed by various researchers using different 

designing techniques. In this paper, we design and analyze the 

Multiple Knapsack Problems (MKP) by using genetic 

algorithms. A modified Genetic Algorithm (mGA) is 
developed with the key focus on efficient encoding scheme 

for binary string representation and a competent dynamic 

programming based method for initial population generation. 

Furthermore transposition is applied in mGA instead of 

crossover for maintaining the population diversity. 

Performance analysis of the mGA, justifies our claims that the 

population incorporates adequate quality and diversity to 

reach a near optimal solution and transposition reduces the 

overall computation time.  

General Terms 

Dynamic Programming, Genetic Algorithms 

Keywords 

Multiple knapsack problem, Genetic algorithm, Dynamic 

programming and transposition. 

 

1. INTRODUCTION 
Genetic algorithms (GAs) have been used to tackle many NP 

problems since they evaluate the space of possible solutions 

and provide a reliable result where often conventional 

algorithms do not. In 1970s, John Holland and his students, 

sets the theoretical foundations of GAs that work on the basis 

of evolutionary biology. The standard GAs starts with the 
randomly generated set of individuals called initial 

population. Initial population evolves through two principles 

i.e. survival of the fittest and natural selection [1]. Several 

mechanisms are adopted to maintain genetic diversity in the 

space of possible solutions. Conventionally crossover and 

mutation are two standard and most widely applied operators 
in GAs to gain diversity in the solution space [2, 3], and an 

objective function is used to evaluate the fitness of each 

individual.  Best fit chromosomes can be used in the mating 

process to produce offspring or they can be included in next 

generation unchanged.  Reproduction and evaluation of 

individuals is an iterative process that continuous until 
acceptable solution produced. 

The classical 0-1 knapsack problem involves the selection 

subset of available items having maximum profit so that the 

total weight of the chosen subset does not exceed the 

knapsack capacity. 0-1 knapsack is one of the most studied 
optimization problem.  During its extensive study, a number 

of extensions and variants have evolved: Multiple knapsack 

problems (MKP), multidimensional knapsack problems 

(MDKP), multi choice knapsack problems (MCKP) and 

multiple choice multidimensional knapsack problems 
(MMKP) [4]. 

In this research we have addressed the MKP extension of the 

0-1 knapsack problem. Given n items, it is required to pack k 

knapsacks having weight capacity of each knapsack Wj where 

j <{1, 2…k}, each item i has a profit pi, j and weight wi. Note 

that profit of each item varies according to knapsacks while 
weight is constant. The problem calls for selecting the disjoint 

subset of items for each knapsack with the objective to 

maximize the total profit of all the items placed in all 

knapsacks. Mathematically this problem can be formulated as 

follows. 
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Equation (1) is used to sum the profit of all the knapsacks, 

equation (2) is making ensure that the total weight of items 

selected for a particular knapsack must be in its limit and 
equation (3) guarantees that one item can belong to at most 

one knapsack during packing.  

At the abstract level, focus of this paper is on three 

components of a GA i.e. efficient encoding strategy, dynamic 

programming based method for initial population generation 

and use of transposition instead of crossover as the genetic 
operator. 

The knapsack problems have many real world applications i.e. 

project selection, cargo loading, industrial production, capital 

budgeting, menu planning and processor allocation in 

distributed environment [1]. 

The rest of this paper is organized as follows. A brief outline 
of GAs and existing techniques for 0-1 knapsack using GAs is 

presented in section 2. We propose mGA for undertaken study 

in section 3. Performance analysis of the newly designed 



International Journal of Computer Applications (0975 – 8887) 

Volume 16– No.7, February 2011 

2 

approach is described in section 4. Finally we present 

conclusions about this research and direction for future work.  

 

2. RELATED WORK: EA AND MKP 

2.1 Overview of Evolutionary Algorithms 

in MKP Context 
Evolutionary algorithms (EA) are search paradigms based on 

the concept of natural selection and evolution which can be 
applied to a number of optimization problems. Conventional 

EA framework consists on fairly simple steps like definition 

of encoding scheme, population generation method, objective 

function, selection strategy, crossover and mutation. 

Two types of encoding schemes or solution representation 

methods are most widely used in EA for MKP i.e. bit string 
and ordered based representation [5, 6]. Capacity constraints 

are ensured by penalizing are repairing the solution in binary 

representation while special purpose heuristic decoders are 

utilized in case of numeric representation [6]. 

Even though, recently in some EA for MKP the pre-optimized 

initial population generation methods [1, 5, 7] are devised but 

the most common method utilized in existing approaches is 

random population generation [8-15]. The use of classical 

population generation method provides less computational 

burden and sufficient diversity in solution space but this 

method can’t guarantee of the generation of even a single 
feasible solution. Infeasible dominated population can lead to 

slow inclusion of feasible solution in search space during 

genetic operations as well as slow convergence towards the 

optimal solution [7]. Moreover, a strategy to handle the 

infeasible solutions must be defined like reject, repair or 

penalized strategy [16]. Hence, execution time for overall 
heuristic will increase while using the conventional method. 

Numerous mutation operators for knapsack problems are 

available in literature. Mutation per bit, swap mutation and 

inverted mutation are commonly used. Hoff et al. [17] suggest 

that inverted mutation, with 1/N mutation rate, is superior 

performer. 

Crossover is known as the power of GAs [18]. As a major 

factor in maintaining the population diversity the crossover is 

utilized. The performance of GAs depends on the particular 

choice of the crossover strategy [1]. A number of crossover 

operators were developed and applied in MKP and other 
combinatorial optimization problems i.e. one-point, two-point, 

m-point and cyclic crossover. Since the introduction of GAs 

crossover and mutation operators are widely used for 

population diversity but several other operators are used in 

nature for diversity i.e. inversion, conjugation, transduction, 

transformation, translocation and transposition [19]. Simoes 

and Costa [2, 20] explores transposition as an alternative to 

crossover. The obtained results show that transposition 

outperforms crossover. Moreover, for knapsack problem 

transposition based GA is compared with classical GA [21] 

and reported results are encouraging for transposition 

utilization. To enhance the transposition performance a 
guideline for its proper parameterization is given by Simoes 

and Costa [22]. To the best of our knowledge transposition in 

history is never applied in any EA for MKP.  

 

2.2 MKP using Evolutionary Algorithms 
Since the introduction of 0-1 knapsack problem in the late 

fifties, a number of algorithms using different designing 

techniques like brute force, conventional algorithms, dynamic 

programming, greedy approach and approximation algorithm 

have been proposed. For larger knapsack problems, the 

efficiency of approximation algorithms is limited in both 

solution quality and computational cost [5]. MKP is 

considered as NP-hard problem hence any dynamic 

programming solution will produce results in exponential time 

[23]. In recent times, the GAs techniques have emerged as 

strong search procedures for large-sized knapsack problems 
[5, 17].  

In the past various researchers employed different 

terminologies for 0-1 multiple knapsack problem. Here 

existing techniques have been reviewed in which the knapsack 

problem is studied involving GAs. 

An improvement in multiple constrained knapsack is 

presented in [5] by using linear programming. Pre-

optimization of initial population, competent repair procedure 

and local improvements operators are major contributions of 

this approach. Better results were obtained for large-sized 

knapsack problem in both optimality and efficiency as 
compared to existing heuristics. 

An evolutionary approach was adapted by [24], where the 

search space was transformed to another space and search for 

final solution was made in transformed space. For space 

transformation purpose Lagrange multiplier was utilized. 

Fitness function was adjusted properly to achieve better 
results. Their heuristic was tested on benchmark data but 

encouraging results were not achieved in comparison with 

existing techniques. 

Another genetic algorithm for multi-objective 0-1 knapsack 

problem was proposed by [8]. For comparison purpose ε-

dominance relation was utilized in this algorithm. 
Implementation results show that proposed algorithm is better 

performer. In [17] it was suggested that if GA is 

parameterized properly then quality results can be obtained. 

Their tuned GA for multidimensional knapsack was tested on 

standard test data and reported results are relatively better. 

In [7] they developed and tested a novel method for 

generating competent diverse and quality initial population. 

For the sake of performance analysis, the developed method 

was applied on two dimensional knapsack problems. 

Implementation results depict that less computational effort is 

required in achieving acceptable solution. 

The GAs involve another type of solution for multiple 

knapsack problems as developed by [13]. Vectors are used to 

encode the solution for the easy application of genetic 

algorithms. Infeasible solutions are allowed to exist in 

population for diversity purpose and fitness function uses 

graded penalty to penalize the infeasible solutions. This GA 
was applied on well known set of test problems and 

encouraging results were reported. The researchers in [12] 

have proposed a most effective genetic algorithm which is 

based loosely on the theory of natural selection and genetic 

process. The outcome of the experiments shows dominating 

results as compared to the existing heuristics. 

Recently in [15] evolutionary algorithms for MKP were 

presented. To approximate the frontiers of MKP they utilized 

favorable weight based evolutionary algorithm.  A Fitness 

function assigns the value to each chromosome on the basis of 

strength of each individual. Binary chromosome 

representation is used and to repair infeasible solution which 

included round-and-repair method in their approach. 
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Implementation results show that this algorithm outperforms 

the best heuristics. 

In literature almost every evolutionary approach for MKP 

uses bit strings for encoding purpose. This scheme is fairly 

simple but requires more space as we keep record of each 

item that is included or excluded. Most of the discussed GAs 

use randomly generated initial populations except [1, 5, 7], 

these require more computational effort to converge on a 

desired solution as compared to some pre-planned method 
based population. Furthermore, traditional crossover operator 

is utilized for generating and maintaining the population 

diversity while in literature a number of other operators are 

available for same purpose with less computational burden. 

Having the aforementioned points in mind, an efficient 

evolutionary algorithm is developed in the next section.  

 

3. MODIFIED GENETIC ALGORITHM 

(MGA) FOR MKP  

3.1 Solution representation 
The way to represent the solutions in population of 

evolutionary approach for a particular problem is the key 

issue and fundamental step that need to be addressed. 

Adaptation of existing or development of new genetic 

operators depends on the representation scheme. Reportedly 

the most common and suitable encoding scheme for MKP 
problems is the binary representation. In mGA the n-bit binary 

strings are used to represent the individuals in solution set. 

Every bit of the string indicates the inclusion (1) or exclusion 

(0) of the certain item in knapsack. Thus, a typical 

representation of an individual for a problem having n items is 

depicted below. 

 

Items 1 2 3 … n-1 n  

Solution 0 1 0 … 1 1 

 

3.2 Dynamic Programming based initial 

population Method 
 

The idea is to (i) apply items partitioning into k equal size 

arrays with respect to profit/weight ratio as formulated in 

pseudo code below:  

Set i=1 

Set j=1 

While (i<n) 

   While (j<k) 

       If (j or j+1∉  Skip []) 

 If (pi,j>pi,j+1) 

    Keep (current_item=i, kp = j) 
 Else 

    Keep (current_item=i, kp = j+1) 

Insert (current_item, KPj) 

If (KPj==Full) 

   Skip [] = (Skip [] U KPj) 

 
(ii) Then to apply classical dynamic programming application 

on each array separately:  

 

V [i, w] = max (V [i-1, w], vi + V [i-1, w –wi])  

For 1 =<i =<n, 0 =<w =<W  

 

On the basis of above formula table 1 is computed. 

 

Table 1. Entire solution representation for knapsack m  

V[i, 

w] 
w=0 w=1 w=2 … w=W 

i=0 V[0, 0] V[0, 1] V[0, 2] 
V[0, 

…] 

V[0, 

W] 

i=1 
V[1, 

w] 

V[1, 

w] 

V[1, 

w] 

V[1, 

…] 

V[1, 

W] 

i=2 
V[2, 

w] 

V[2, 

w] 

V[2, 

w] 

V[2, 

…] 

V[2, 

W] 

… 
V[…, 

w] 

V[…, 

w] 

V[…, 

w] 

V[…, 

…] 

V[…, 

W] 

i=n/k 
V[n/k, 

w] 

V[n/k, 

w] 

V[n/k, 

w] 

V[n/k, 

…] 

V[n/k, 

W] 

 

(iii) Construction of individuals from dynamic programming 

results table: 
 

Population_Construction (DPm) 

{ 

   K=Wm; 

   i=n; 

      Next K=0; 

     Next i=0; 

    For (j=1 up to items) 

   { 

        Solution_Construction (i, K); 
        i=i-1; 

        K=Wm; 

   } 

} 

 
Solution_Construction (i, K) 

{ 

Counter=0; 

For (i down to 1) 

{ 

   If keep [i, K] == 1 

              Output i; 

              K=K-wi; 

                If (counter==0) 

                   Next K = W - wi – 1; 

   Next i=i; 

   Counter++; 

   } 

Solution_Construction (Next i, Next K); 
} 

 

3.3 Fitness Function 
Selection and reproduction need some way to evaluate the 

fitness of each individual so that the best chromosome can be 

reproduced or selected for mating process. Some researchers 

integrate penalty with fitness functions to handle the 

infeasible solutions while others use some repair strategy for 

the same purpose. In proposed approach repair strategy is 

incorporated. Hence, evaluation function is defined as below: 
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Evaluate (solution) =  

ji

n

i

ji xp ,
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=  where j is the 

knapsack. 

Note that the higher the evaluation value indicates that the 

solution quality is better. 

3.4 Selection 
For reproduction purpose every GA include some strategy to 
select the appropriate parents. In this study, the simplest 

selection scheme is chosen that is known as stochastic 

universal sampling. For detail description of stochastic 

universal sampling see [1].  

3.5 Transposition 
The bit string representation is one of the most simple and 

commonly used representations with its problem-independent 

nature. Due to its nature user has freedom to adopt standard 

genetic operators. Evolutionary approaches for combinatorial 

optimization problem are relatively intensive to the crossover 

in context of efficiency. To lessen the computational load, 

standard transposition is adopted as an alternative to crossover 

in mGA for MKP.  

We adopted tournament based transposition due to the 

observation that this type of transposition is closer to the 

biological transposition mechanism. The tournament based 

transposition uses two parents who compete with each other. 

The transposon will be formed in winner candidate and it will 

replace the same amount of genetic material in loser candidate 
because the chromosome length (CL) is fixed (equal to the 

number of items) in our representation. 

The detail functioning mechanism of tournament based 

transposition consists on following steps: 

1. Define the flanking sequence length (FSL) and 

select a bit T randomly in winner parent. 

2. Compute the FSL bits immediately before the T 

which is known as first flanking sequence. 

3. Search second flanking sequence that will be 

identical or inverse sequence of first flanking 

sequence from bit T in a cyclic fashion. 

4. Build transposon which is bits from T to the end of 
second flanking sequence. 

Look for the identical or inverse flanking sequence that is 

replacement point in loser parent. If found, replace the genetic 

material after that with transposon in cyclic fashion otherwise 

randomly define replacement point and replace. 

Example 

100111011110101100010011100: In winner parent 

underlined is flanking sequences, bold is T and italic is 

transposon. 

110100011100111100011010011: Loser, underlined flanking 

sequences shows possible insertion points. 

Let suppose the replacement point is first underlined flanking 

sequence in loser parent then the siblings will be as: 

100111011110101100010011100: sibling 

1110100110111101011001010011:                              sibling 

2 

If there is a visible gap in selection probability of the two 

siblings then best fit child participate in next generation while 

other one will be knocked out. 

3.6 Optimized Transposition Parameters 
Usually GA performance basis on the computational cost of 
crossover and as here we are using transposition as an 

alternative to crossover so the performance of our 

evolutionary approach is depending on transposition’s 

performance. The major performance contributor parameter in 

transposition is FSL which is depending on the chromosome 
length. Reportedly [22] in tournament based transposition the 

chromosomes can be divided into two classes on the basis of 

their size i.e. small: 19-38 genes and large 39-max genes. 

According to this division, if chromosome size is small then 

FSL is (18% * chromosome size) ± 1 otherwise FSL will be 

(5% * chromosome size) ± 1. Another parameter that has 

impact on transposition performance is population size but it 

has secondary importance as compared to FSL. In larger 

population size there is inherently higher the computational 

burden while in smaller size population one can use heuristic 

to adjust the appropriate FSL. 

3.7 Greedy Invert Mutation 
A new mutation operator is utilized which is designed on the 

basis of a reportedly superior performer invert mutation 

operator. Inverted mutation selects a gene randomly in 

individual and assigns an opposite value of current value to 

that gene. The slight modification that has been done is the 

injection of greed instead of randomly mutating the gene. 

After transposition offspring pass through the computation of 

its feasibility which is the underflow or overflow value of the 

knapsack in [-W … -1, 0, 1 …

∑
=

n

i

miw
1

,

]. Feasibility is 

computed as follows: f (s) = Cm - 

∑
=

n

i

miw
1

,

 

Mutation only takes place if the knapsack for that particular 
solution is under flowing. Best fit strategy is applied for the 

gene selection instead of random selection where underflow 

value is compared with the weight of excluded items. 

Mutation probability is adjusted 1/number of items. Table 2 

shows that how greedy invert mutation operates. 

Table 2. Greedy invert mutation mechanism  

 
Feasi

bility 

Solution 

Orig

inal 

-30 1 0 0 1 0 0 0 1 1 0 

wi, j 3

1 

1

2 

2

3 

5 3

1 

2

8 

2

2 

1

9 

7 2

6 

Mut

ated 

-2 1 0 0 1 0 1 0 1 1 0 

 

3.8 Greedy-repair strategy 
Remove items, every time the minimum with respect to 

profit/weight ratio with believe that in subsequent generation 
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it will get an individual again and if the generation is last then 

remove the item having minimum profit. 

 

3.9 Pseudo-Code of Proposed Evolutionary 

Approach  
The detail description of our evolutionary approach is given in 

pseudo code format here: 

 

DPEA for MKP 

{ 

Input C [m x n], W [1 x n], P [m x n];  //required test 

problem data 
Set Gen=0;    //count the 

number of generations for exit criteria 

Max-Gen=1000; 

T-r=0.9;     // 

Transposition rate 

FSL = 3;     // Flanked 

Sequence Length 

M-r=0.8;      // optimized 

mutation rate 

Set Pop-Size = (n (n+1))/2;  // each table row can 

have as many individuals as n 
Item-Partition ();    //see section 

xxx 

Population-Construction (DPm);  //see section 

xxx 

 

While (Not Exit Criteria)   // for exit 
criteria see section xxx 

{ 

Evaluate Fitness ();   //see section xxx 

Selection ();    //selection 

procedure is defined in section xxx 

Transposition ();   //working of 

transposition is given in section xxx 

If (solution = feasible) 

{ 

Mutation ();   // for details see 

section xxx 

 } 
Else 

 { 

 Repair ();   //for details of repair 

strategy see section xxx 

 Mutation ();    
} 

Gen++ 

} 

} 

4. PERFORMANCE ANALYSIS OF 

MGA 

4.1 Development of Transposition 
Djannaty and Doostdar [1] suggested that crossover is major 

contributor in computational cost of genetic approaches for 

any combinatorial optimization problem. Simeos and Costa 

[2, 21-22] proves that transposition is an efficient alternative 

to crossover. In existing evolutionary approaches for MKP [1, 

5, 7, 8-15, 17] the traditional crossover operators are utilized. 

In proposed approach first time transposition is introduced for 

MKP. Hence, mGA reduces the computational burden as 

compared to existing heuristics.  

4.2 Pre-Optimized Initial Population  
Do Classically, randomly generated population is used in 

existing approaches [8-15] except some recent approaches [1, 

5, 7] where methods are devised for effective initial 

population generation. In this research, dynamic programming 
based method for pre-optimized initial population is 

developed. As afore mentioned that the DPIP generates the 

population having sufficient diversity and 100% feasibility 

which requires less computational effort to converge on 

optimal solution. 

Lemma 1: Best case DPIP versus random 

In best case it might be possible that each V [n/k, W] (see 

table 1) remains as the final solution. So in very efficient 

manner DPIP can handle the MKP problem. Best case for 

DPIP in comparison to random method for population 

generation is much more efficient. The probability of having 

best case is high in DPIP as every time it generates feasible 

solutions from partitioned items with respect to profit/ weight 

ratio for each knapsack.  

Lemma 2: Generally DPIP versus random 

Even though items partitioning method can decrease the 

fitness of individuals if suitable division does not exist there. 
But at least all the individuals in DPIP fulfill the feasibility 

criteria while in worst case of random population can lead to 

include all the infeasible solutions in population. Naturally the 

infeasible individuals require much more computational cost 

to converge to a final acceptable solution as compared to 

feasible one. 

4.3 Greedy Invert Mutation 
A novel method for mutation is developed in this approach 

which enhances the fitness value of each individual in a 

greedy fashion. In existing genetic algorithms for MKP, 

conventional mutation operators were utilized which can 

increase of decrease the fitness value but greedy mutation 

guarantees the increment in fitness if it occurs. 

5. CONCLUSION AND FUTURE WORK 
In this article we have developed an innovative evolutionary 

approach for MKP in which the total profit is maximized 

without violating the capacity constraint for each knapsack. 

The algorithm uses dynamic programming based method for 

pre-optimized initial population having sufficient diversity 

and quality in it. In addition, to reducing the execution time 
the traditional crossover operator is replaced by transposition. 

Both the DPIP and transposition achieve significant 

performance in computational burden and solution optimality. 

Comparative analysis is presented to prove the claims and it is 

shown that proposed algorithm is better performer than the 

existing approaches. 

Although current research is developed and applied for the 

particular variant of the knapsack problem, but it can 

incorporate other extensions of the knapsack with slight 

modifications. This aspect has been left for future works. 
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