
International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

17

Multicast Routing Authentication System using
Advanced Tesla

V. Ganesh Babu
Research Scholar

Vinayaka Missions University
 Salem, Tamil Nadu

Dr. T. Senthil Kumar
Anna University-Tiruchirappali

Tiruchirappali, Tamil Nadu

ABSTRACT
The present strategies that reduce the delay associated with

multicast authentication, make more efficient usage of

receiver-side buffers, make delayed key disclosure

authentication more resilient to buffer overflow denial of

service attacks, and allow for multiple levels of trust in

authentication. Throughout this base paper, the main focus of

discussion will be on the popular multicast authentication

scheme Timed Efficient Stream Loss-tolerant Authentication

(TESLA) based upon the delayed key disclosure principle.

Similar to other schemes based upon delayed key disclosure,

TESLA is susceptible to Denial-of-Service (DoS) attacks and

is not well suited for delay-sensitive applications.

Keywords:

Denial-of-Service (DoS) attacks, forge – capable area,

Message Authentication Code (MAC), multigrade source

authentication, Timed Efficient Stream Loss-tolerant

Authentication (TESLA), Packet Interleaving, trust.

1. INTRODUCTION

A multicast protocol enables a sender to efficiently

disseminate digital media data to many receivers. Due to the

time-sensitive requirement of some applications, reliable

transmission protocol like TCP (Transmission Control

Protocol) is impractical for multicast. Therefore, unreliable

transmission protocol such as UDP (User Datagram Protocol)

is generally adopted for multicast applications. Multicast

protocol is suitable for many applications, e.g. video

transmissions, live broadcasts, stock quotes, or news feeds.

These applications may have many receivers or distribute

time-sensitive data. To ensure secure communications

between a sender and its receivers, it is important to

implement security measures in a multicast environment.

An attacker may impersonate a sender to transmit

malicious packets to receivers, causing disruptions in the

communications. Multicast authentication is used to defend

against forged packets injected by the attackers by enabling a

receiver to authenticate the packet source and discard

malicious packets. There have been many multicast

authentication approaches, which can be roughly divided into

two categories: symmetric cryptographic primitives and

asymmetric cryptographic primitives. Symmetric

cryptographic primitives, such as MAC (Message

Authentication Code), generally use a symmetric key to

authenticate a data source. In MAC, an identical secret key is

maintained by the sender and receiver. The sender uses the

secret key to generate a MAC for a packet, and the receiver is

able to authenticate the packet source by verifying the MAC

of the packet with the secret key. Asymmetric cryptographic

primitives, such as digital signatures, use an asymmetric key

pair to authenticate a data source. In general, an asymmetric

key pair consists of two keys; one key is used to generate the

signature, while the other key is used to verify the signature.

Using digital signatures like RSA, for authentication is

popular and believed to be secure; nevertheless, digital

signature generation and verification incur significant

computation overhead.

Signature amortization addresses this concern by

generating a single digital signature for a block of packets.

After verifying the signature, a receiver can consider this

block of packets authentic. Signature amortization makes a

tradeoff between security and computation overhead. Fault-

tolerant coding algorithms, like erasure codes, (Luby. M. G et

al, 2001), (Rabin. M. O, 1989), (Reed et al,1960) or diversity

codes (Ayanoglu et al, 1993), partition information into many

segments and can correctly reconstruct the original

information even though a number of segments, up to a

threshold, may be lost. Although signature amortization with a

fault-tolerant coding algorithm reduces computation overhead

and tolerates packet loss, it suffers from pollution attacks

(Chris Karlof et al, 2004). Pollution attacks occur when an

adversary injects a large quantity of forged packets into a

block of valid packets. The receiver fails to decode a correct

signature using the fault-tolerant coding algorithm, forcing the

receiver to drop the entire block of packets, which may

include valid packets.

Distillation codes (Chris Karlof et al, 2004) have

been proposed for signature amortization to defend against

pollution attack. In distillation codes, the sender augments

each packet with a witness. Distillation codes guarantee that

all valid packets are partitioned into groups that do not contain

forged packets, allowing the receiver to decode the correct

signature from the packets in this group. Unfortunately, the

receiver cannot realize in advance which group contains valid

packets; therefore, it must attempt to decode a valid signature

from each group. Furthermore, the receiver cannot

immediately distinguish between valid and invalid packets,

making it necessary to first buffer all received packets.

Distillation codes incur high computation overhead, storage

space, and verification delay.

2. EFFICIENT MULTICAST PACKET

AUTHENTICATION USING

SIGNATURE AMORTIZATION

2.1 Rationale for this approach
The sender transmits the hash of a packet appended to k other

packets for increased resistance to loss. The authors assume

that a block consists of n packets. If independent packet loss is

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

18

assumed, then the probability that at least one out of the k

packets will reach the destination is 1- qk , where q is the

packet loss probability. The communication overhead would

be kh, where h is the size of the hash. Using the same

overhead, one can encode the hash using IDA and append the

encoded n segments to the n packets of the block (i.e., each

packet in the block would contain one of the encoded

segments). The minimum number of encoded segments

needed for reconstruction of the hash is only ,

where denotes the smallest integer not less than x. The

probability that the hash can be reconstructed successfully at

the receiver is given by

 (1)

 Again, independent packet loss was assumed.

2.2 Signature amortization using IDA

At the receiving end, verification of the packet stream is

straightforward. Assuming that at least m authenticated

packets are received, the receiver can successfully reconstruct

F1 and from any combination of m packets as

follows:

1. Assume that segments are received.

Using the m pieces, it is readily seen that

where A = (aij)1≤ i,j≤ m is an m x m matrix whose

i-th row is ai .

2. Because A is invertible (because of the

independence condition on ai,1≤ i ≤ n), S1 can be

obtained from

3. Using the same procedure, S2,…, SN/m can be

obtained, and F1 is reconstructed by concatenating

these values.

4. The same technique is applied to reconstruct

.

5. Once the reconstruction is complete, all the packets

in G1 can be verified using F1 and .

As already mentioned, SAIDA might not be appropriate

in situations where the data to be sent is generated in real

time is given by (3), and immediate broadcast of it is

crucial. This scheme is most useful in cases where the

sender has a priori knowledge of at least a portion of the

data to be broadcast (e.g., broadcast of prerecorded

material).

3. ENSURING AUTHENTICTION OF

DIGITAL INFORMATION USING

CRYPTOGRAPHIC ACCUMULATORS

3.1 Stream Authentication over Erasure

Channels

In the remaining of this base paper, the authors

work with a unforgeable S-bit long digital signature

(SignSK,VerifyPK) (Stinson, 2006) the key pair of which

(SK,PK) is created by a generator KeyGen and a

cryptographic hash function h′ outputing H′-bit long digests

with H′ = k log2(r).

3.2 Authentication Protocol

The stream is a continuous flow of information.

First, the sender generates the signature σ on the digest h′(P1)

of the first stream packet. He then encodes the concatenation

σ||h′(P1) using a MDS code of length n and dimension n − t.

The corresponding codeword is denoted (C1 ,…,Cn) where

each Ci is - bit long.

Second, the sender buffers the first n packets P1,… , Pn as list

L1. He computes the accumulated value A1 of L1 and builds

the augmented packet: AP1 := 1||P1||A1||C1. Third, when a new

stream packet Pn+j−1 (j ≥ 2) is available, the sender builds the

list Lj := {Pj,…, Pn+j−1} U {h′(P1)}. He computes the

corresponding accumulated value Aj and builds the

augmented packet: APj := j||Pj||Aj||C[j] where [j] denotes the

unique integer in {1, . . . , n} congruent to j modulo n. In

particular: [n] = [2n] = [3n] = · · · = n. We notice that the

delay at the sender is n packets as it sends into the network

APj after Pn+j−1 be available.

3.3 Analysis of the Protocol

Theorem 1 Our authentication scheme is a non-degrading

authentication protocol. The sender processes data with a

delay of n packets throughout streaming while the receiver

can authenticate packets on-the-fly from the (n − t + 1)th

received element.

Remark 1 A single signature is needed to ensure non-

repudiation of the whole stream.

Remark 2 One can notice that, when n is fixed, the lower t is,

the larger the delay gets. This might seem to be surprising at

first but having low t’s implies having small redundancy for

the codeword coordinates as n−t is large. That is why one

requires more codeword information to reconstruct

(C1,…,Cn). The trade-off delay/overhead is an efficiency

trade-off.

4 STREAM AUTHENTICATION OVER

ADVERSARIAL CHANNELS

In this channel model, O can inject bogus data

packets into the network. In this situation, we will process the

whole data stream per block of n packets P1,…, Pn. Each of

these blocks is located within the whole stream using an

identification value BID. This approach is used in the

different schemes designed for adversarial networks including

TWMDS and PRABS. This is to be opposed to the on-the-fly

authentication process from the (n − t + 1)th packet at the

receiver for the protocol.

4.1 Scheme Overview

Due to erasure of information, we want to generate

n augmented packets AP1,…,,APn such that we can

reconstruct all packets P1,…,Pn from any -subset of

{AP1,…,APn}. Therefore, our first step consists of encoding

P1,…,Pn using a [n, , n − + 1] code since it can

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

19

correct up to n − erasures. Note that this approach

implies that the elements of the code alphabet are larger than

the size of a data packet as the message (M1 ,…,M⌈α

n⌉) to be encoded into the codeword (C1,…,Cn) should

represent the concatenation P1||…||Pn.

4.2 Authentication Protocol

We assume that the values α and β are rational

numbers so that we can represent them over a finite number of

bits. In order to run Poly-Reconstruct as a subroutine of MPR,

we have to choose a parameter . Notice that ρ has

to be rational since ρ n is an integer. Without loss of

generality, one can consider that the value ρ is uniquely

determined when n, α and β are known. The scheme

parameters which are assumed to be publicly known. The bit

size S of the signature and its public key PK are also publicly

known. Note that, once r is known, then k is uniquely

determined since the digests of h′ are (k log2(r))-bit long.

4.3 Analysis of the Protocol

Security: As the channel model allows an adversary to

inject bogus elements into the network, we adopt the same

security definition as in (Christophe Tartary et al, 2006).

Here two protocols are presented for the broadcast

authentication problem using a modified version of Nyberg’s

accumulator due to Yum et al. The first scheme was related to

erasure channels. It was shown that its packet overhead was

less than the length of a digest and, in particular, far less than

(Park et al, 2004, Park et al, 2003, Park et al, 2002, Pannetrat

et al, 2002). Even if the sender processes the stream in delay

of n packets, the receivers can authenticate packets on-the-fly

from the (n − t + 1)th received element to the end of the stream

(if any). In addition, a single signature is needed to provide

the non-repudiation of the whole stream. The second scheme

was designed for adversarial networks. It is obvious that the

number of signature queries at the receiver is the same as for

TWMDS due to the use of Poly-Reconstruct in both

constructions. This number turns to be O(1) as a function of

the block length n (Christophe Tartary et al, 2006).

Furthermore, the packet overhead of our new scheme is

smaller than PRABS’ and TWMDS’. Another interesting

result from this comparative study was that we obtained more

a extensive comparison between PRABS and TWMDS

showing that the overhead of TWMDS was smaller.

5 MULTICAST SECURITY: A

TAXONOMY AND SOME EFFICIENT

CONSTRUCTIONS

Multicast communication is becoming the basis for

a growing number of applications. It is therefore critical to

provide sound security mechanisms for multicast

communication. Yet, existing security protocols for multicast

offer only partial solutions. We first present taxonomy of

multicast scenarios on the Internet and point out relevant

security concerns. Next we address two major security

problems of multicast communication: source authentication,

and key revocation. Maintaining authenticity in multicast

protocols is a much more complex problem than for unicast;

in particular, known solutions are prohibitively inefficient in

many cases.

5.1 Multicast Security issues

We overview salient characteristics of multicast

scenarios, and discuss the relevant security concerns. The

various scenarios and concerns are quite diverse in character

(sometimes they are even contradictory). Thus it seems

unlikely that a single solution will be satisfactory for all

multicast scenarios. This situation leads us to suggest two

benchmark scenarios for developing secure multicast

solutions

5.2 Efficient Authentication Schemes Per-

message unforgability of MAC schemes:

We distinguish between two types of attacks against

a MAC scheme. One is a complete break, where the attacker

can authenticate any message of its choice (e.g., a key

recovery attack). The other attack allows the attacker to

randomly authenticate false messages; here the attacker can

authenticate a given message with some fixed and small

probability (but does not know a-priori whether it will be able

to authenticate the message). Our schemes do not allow

complete break with higher probability than the underlying

MAC scheme. Yet, we do allow for random authentication

errors with non-negligible probability (say, 2-20 up to 2-10).

5.3 The Basic Authentication Scheme for a

Single Source

Let w be the maximum number of corrupted users. The

basic scheme proceeds as follows:

 The source of the transmissions (S) knows a set of l

= e (w + 1) ln (1/q) keys,

 Each recipient u knows a subset of keys Ru R.

Every key Ki is included in Ru with probability

1/(w+1) , independently for every i and u.

 Message M is authenticated by S with each key Ki

using a MAC and

is transmitted together with the message.

Each recipient u verifies all the MACs which were created

using the keys in its subset Ru. If any of these MACs is

incorrect then u rejects the message

5.4 Smaller Communication Overhead

We now describe a scheme with a lower

communication overhead. The idea behind it is that using just

four times as many keys as in the basic scheme, one can

ensure that the coalition does not know log (1/q) of the user’s

keys. Each key can therefore be used to produce a MAC with

a single bit output and the communication overhead is

improved. The coalition would have to guess log (1/q) bits to

create a false authentication and

its probability of success is as before.

Recall the basic scheme: it limits the success probability of a

corrupt coalition to be q+q’, where q’ is the per-message

unforgeability. The MAC output must be at least log 2 (1/q’)

bits long. Therefore, assuming q=q’, the communication

overhead is bits. The improved

scheme achieves a communication overhead smaller than

 bits.

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

20

5.5 Multiple Dynamic Sources

It supports a dynamic set of sources and has the following

properties:

 The total number of keys is as in schemes for a

single source, but every party can send

authenticated messages.

 The scheme does not require the set of sources to be

defined in advance or to contain all parties. Rather,

it allows to dynamically add sources.

 The scheme distinguishes between the set of sources

and the set of receivers. Only coalitions of more

than w receivers can send false authenticated

messages. The keys of sources do not help such

coalitions. This property is especially useful if

receivers are more trusted than senders, as might be

the case for example if the receivers are network

routers.

 The scheme provides a computational (rather than

information theoretic) security against revealing to a

coalition all the keys in the intersection of a source

and a receiver’s subsets.

The scheme uses a family of pseudo-random

functions { fk } (see (Luby.M, 1996) for a discussion of

pseudo-random functions). It is based on a single source

scheme and can be built upon the basic scheme or the

communication efficient scheme.

5.5.1 Initialization: The scheme uses l primary keys

 , where l is as in the single source schemes (l=O

(w log (1/q))). Each key ki defines a pseudo-random

function .

5.5.2 Receiver Initialization: Each party v which

intends to receive messages obtains a subset Rv of primary

keys. Every primary key ki is included in Rv with probability

1/(w+1).

5.5.3 Source Initialization: Every party u which

wishes to send messages receives a set of secondary keys

 . This set can be sent any

time after the system has been set-up, and the identity or the

number of sources does not have to be defined in advance.

5.5.4 Message Authentication: When a party u

sends a message M it authenticates it with all the secondary

keys in Su. That is k € Su, it computes and attaches a MAC

of M with k.

5.6 Signatures vs. MACs: a rough

performance comparison

Compared to the performance of public key

signatures, our authentication schemes dramatically reduce

the running time of the authenticator. The running time of the

verifier and the communication overhead are of the same

order as public key signatures (the exact comparison depends

on the size of the corrupt coalitions against which the schemes

operate).

It is seen that the signing time is much shorter in our

scheme than with public key given (8)signatures. The

verification time is comparable to (highly optimized) RSA

and much faster than DSS.

Table 1. A Performance Comparison

of Authentication Schemes

Auth

.
Ver.

Com

m.

Source

Key

Receive

r Key

Units
(ops/

sec)

(ops/s

ec)
(bits)

RSA 1024

bits
50 30000 1024

2048

bits

1024

bits

DSS, 768

bits
70 40 1536

1536

bits

1536

bits

Basic

scheme,

w=10,

q=10-3

2650 26500 1900

190

MAC

keys

19

MAC

keys

Low

Comm.

w=10,

q=10-3

660 6600 760

760

MAC

keys

76

MAC

keys

Perfect

Sec.

n=104,

q=10-3

200 2000 25000

2500

MAC

keys

250

MAC

keys

5.7 Dynamic Secrecy – User Revocation

We survey some solutions for the member deletion

problem, describe a particularly appealing construction from

(Wallner et al), (Wong et al, 1998) based on binary trees, and

present an improved construction with reduced

communication overhead. They also show how our

construction is more resistant to a certain kind of attack

5.8 A Tree Based Scheme

Tree based group rekeying schemes were suggested

by Wallner et al. (Wallner et al) (who used binary trees), and

independently by Wong et al. (Wong et al, 1998) (who

consider the degree of the nodes of the tree as a parameter).

We concentrate on the scheme of (Wallner et al) since it

requires a smaller communication overhead per user

revocation. This scheme applied to a group of n users requires

each user to store log n+1 keys. It uses a message with 2log n

-1 key encryptions in order to delete a user and generate a new

group key. This process should be repeated for every deleted

user. The scheme has better performance than the Fiat-Naor

scheme when the number of deletions is not too big. It is also

secure against any number of corrupt users (they can all be

deleted from the group, no matter how many they are). A

drawback of this scheme is that if a user misses some control

packet relative to a user deletion operation (e.g., if it

temporarily gets disconnected from the network), it needs to

either ask for all the missed control packets, or incur in a

communication overhead comparable to a user addition

operation.

5.9 The Improved Scheme

The improved scheme reduces the communication

overhead of (Wallner et al) by a factor of two, from 2 log n to

only log n. The initialization of the scheme is the same as in

(Wallner et al). The authors now describe the user revocation

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

21

procedure. Let G be pseudo-random generator which doubles

the size of its input (Blum et al, 1984). Denote by L(x), R(x)

the left and right halves of the output of G(x), i.e., G(x) = L(x)

R(x) where |L(x)| = |R(x)| = |x|. To remove a user u, the group

controller associates a value rv to every node v along the path

from u to the root as follows: It chooses rp(u) = r at random

and sets rp(v) = R(rv) = R|u|-|v|(r) for all other v (where p(v)

denotes the parent of v). The new keys are defined by

 . Notice that from rv, one

can easily compute all keys up to the root

key k’. Finally each value rp(v) is encrypted with key ks(v)

Fig1.1 The tree key data structure (the keys of uo are

encircled).

Fig1.2 Key revocation in the basic scheme.

5.10 Advantages of the new scheme

 This construction halves the communication

overhead of the basic scheme to only log n and its security can

be rigorously proven. It has an additional advantage: In the

scheme of Wallner et al the group controller chooses the

group key (the root key), whereas is our construction this key

is the output of a pseudo-random generator. Suppose that

there is an adversary which can break encryptions performed

with a subset of the key space (for example keys in which

certain bits have a linear dependency), and furthermore that

this adversary has gained temporary control over the group

controller (e.g. when the controller was manufactured). Then

if the scheme of (Wallner et al) is used, the adversary might

corrupt the method by which the group controller generates

keys in such a way that the root key would always be chosen

from the “weak” subspace. However, if our scheme is used,

and the pseudo-random generator G(x) = L(x) R(x) is

cryptographically strong, then it will be hard to find values r

such that the root key k = L (R (R(…(r) …))) is weak.

Fig: 1.3Key revocation in the improved scheme.

6 EFFICIENT AND SECURE SOURCE

AUTHENTICATION FOR MULTI-CAST

One of the main challenges of securing multicast

communication is source authentication, or enabling receivers

of multicast data to verify that the received data originated

with the claimed source and was not modified enroute. The

problem becomes more complex in common settings where

other receivers of the data are not trusted, and where lost

packets are not retransmitted. Several source authentication

schemes for multicast have been suggested in the past, but

none of these schemes is satisfactorily efficient in all

prominent parameters. We recently proposed a very efficient

scheme, TESLA that is based on initial loose time

synchronization between the sender and the receivers,

followed by delayed release of keys by the sender. This paper

proposes several substantial modifications and improvements

to TESLA. One modification allows receivers to authenticate

most packets as soon as they arrive (whereas TESLA requires

buffering packets at the receiver side, and provides delayed

authentication only). Other modifications improve the

scalability of the scheme, reduce the space overhead for

multiple instances, increase its resistance to denial-of-service

attacks, and more.

Another approach to providing source

authentication uses only symmetric cryptography, more

specifically on message authentication codes (MACs), and is

based on delayed disclosure of keys by the sender. This

technique was first used by Cheung (Cheung, 1997) in the

context of authenticating communication among routers. It

was then used in the Guy Fawkes protocol (Anderson et al,

1998) for interactive unicast communication. In the context of

multicast streamed data it was proposed by several authors

(Briscoe, 2000), (Bergadano et al, 2000a), (Bergadano et al,

2000b), (Perrig et al, 2000a). In particular, the TESLA

scheme described in (Perrig et al, 2000a) was presented to the

reliable multicast transport (RMT) working group of the IETF

and the secure multicast (SMuG) working group of the IRTF

and was favorably received. TESLA is particularly well suited

to provide the source authentication functionality for the

MESP header (Canetti et al, 2000), or for the ALC protocol

proposed by the RMT (Luby et al, 2000) is given by (10).

Consequently, an Internet-Draft describing the scheme was

recently written (Perrig et al, 2000b).

6.1 An Overview of TESLA

The security property TESLA guarantees is that the receiver

never accepts Mi as an authentic message unless Mi was

actually sent by the sender. Note that TESLA does not

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

22

provide non-repudiation, that is, the receiver cannot convince

a third party that the stream arrived from the claimed source.

TESLA is efficient and has a low space overhead

mainly because it is based on symmetric-key cryptography.

Since source authentication is an inherently asymmetric

property (all the receivers can verify the authenticity but they

cannot produce an authentic data packet), we use a delayed

disclosure of keys to achieve this property. Similarly, the data

authentication is delayed as well. In practice, the

authentication delay is on the order of one roundtrip- time

(RTT).

TESLA has the following properties. First, it has a

low computation overhead, which is typically only one MAC

function computation per packet, for both sender and receiver.

TESLA also has a low per-packet communication

overhead, which is about 20 bytes per packet. In addition,

TESLA tolerates arbitrary packet loss. Each packet that is

received in time can be authenticated. Except for initial time

synchronization, it has only unidirectional data flow from the

sender to the receiver. No acknowledgments or other

messages are necessary. This implies that the sender’s stream

authentication overhead is independent of the number of

receivers, hence TESLA is very scalable. TESLA can be used

both in the network layer and in the application layer. The

delayed authentication, however, requires buffering of packets

until authentication is completed.

6.2 Bootstrapping a new Receiver

TESLA requires an initially authenticated data

packet to bootstrap a new receiver. This authentication is

achieved with a digital signature scheme, such as RSA (Rivest

et al, 1978), or DSA (NIST, 1991). We consider two options

for synchronizing the time, direct and indirect

synchronization. Whichever time synchronization mechanism

is used, the receiver only needs to know an upper bound on

the sender time.

The initial authenticated packet contains the following

information about the time intervals and key chain:

 The beginning time of a specific interval Tj , along

with its id Ij

 The interval duration Tint

 Key disclosure delay d (unit is interval)

 A commitment to the key chain Ki (i < j -d where j

is the current interval index)

6.3 Sending Authenticated Packets

Each key of the key chain is used in one time

interval. However many messages are sent in each interval,

the key which corresponds to that interval is used to compute

the MAC of all those messages. This allows the sender to send

packets at any rate and to adapt the sending rate dynamically.

The key remains secret for d-1 future intervals. Packets sent in

interval Ij can hence disclose key Kj-d. As soon as the receivers

receive that key, they can verify the authenticity of the

packets sent in interval Ij-d.

6.4 Receiver Tasks

Since the security of TESLA depends on keys that remain

secret until a pre-determined time period, the receiver must

verify for each packet that the key, which is used to compute

the MAC of that packet, is not yet disclosed by the sender.

Otherwise, an attacker could have changed the message data

and re-computed the MAC. This motivates the security

condition, which the receiver must verify for each packet it

receives

6.5 Authors Extensions

The authors extend TESLA in a number of ways to

make it more efficient and practical. First, we present a new

method to support immediate authentication, meaning that the

receiver can authenticate packets as soon as they arrive.

Second, they propose optimizations concerning key

chains. In particular, for applications that use multiple

authentication chains with different disclosure delays, we

present a new algorithm that reduces the communication

overhead.

6.6 Immediate Authentication

A drawback of the original TESLA protocol is that

the receiver needs to buffer packets during one disclosure

delay before it can authenticate them. This might not be

practical for certain applications if the receivers cannot afford

much buffer space and bursty traffic might cause the receivers

to drop packets due to insufficient buffer space. Moreover, as

we show later in section 2.5.4.1, the requirement of receiver

buffering introduces a vulnerability to a denial-of-service

attack. To solve these problems caused by receiver-buffering,

we propose a new method to support immediate

authentication, which allows the receiver to authenticate

packets as soon as they arrive.

Fig: 1.4:TESLA key chain and the derivedMAC keys

Fig: 1.5Immediate authentication packet example.Dj =

H(Mj+vd) | Mj and Dj+vd =

H (Mj+2vd) | Mj+vd.

If each packet can only carry the hash of one other packet, it is

clear that the sending rate needs to remain constant. Also it is

clear that if a packet is lost, the corresponding packet cannot

be immediately authenticated. To achieve flexibility for

dynamic sending rate and robustness to packet loss, the sender

can add the hash values of multiple future packets to a packet,

similar to the EMSS scheme is given by (11) (Perrig et al,

2000a).

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

23

6.7 Concurrent TESLA instances

In this section, the authors present a space optimization

technique in the case the sender uses multiple TESLA

instances for one stream.

Choosing the disclosure delay involves a tradeoff.

Receivers with a low network delay welcome short key

disclosure delays because that translates into a short

authentication delay. Unfortunately, receivers with a long

network delay could not operate with a short disclosure delay

because most of the packets will violate the security condition

and hence cannot be authenticated. Conversely, a long

disclosure delay would suit the long delay receivers, but

causes unnecessarily long authentication delay for the

receivers with short network delay. The solution is to use

multiple instances of TESLA with different disclosure delays

simultaneously, and each receiver can decide which disclosure

delay, and hence, which instance to use. A simple approach to

use concurrent TESLA instances is to treat each TESLA

instance independently, with one key chain per instance. The

problem for this approach is that each extra TESLA instance

also causes extra space overhead in each packet. If each

instance requires 20 bytes per packet (80 bit for key disclosure

and 80 bit for the MAC value), using three instances results in

60 bytes space overhead per packet. We present a new

optimization which reduces the space overhead of concurrent

instances.

6.8 Time Synchronization Issues

Loose time synchronization is an important component in

TESLA. Although sophisticated time synchronization

protocols exist, they usually require considerable management

overhead. Furthermore, they generally have a high complexity

and achieve properties that TESLA does not require. An

example is the network time protocol (NTP) by Mills (Mills,

1992). Bishop performs a detailed security analysis of NTP

(Bishop, 1990). For these reasons, we outline a simple and

secure time synchronization protocol that suffices the humble

requirements of TESLA.

Direct Time Synchronization

Fig: 1.6Multiple TESLA instances

key chain optimization.

Figure :1.7 is shows sample time synchronization between the

receiver and the sender. Upon receiving the signed response,

the receiver checks the validity of the signature and the

matching of the nonce and computes Δ = tS - tR. It is easy to

see that the Δ computed this way satisfies the requirement that

Δ ≥ δ. Because Δ = tS - tR = (tS - t3) + (t3 - tR), tS - t3 = δ, and t3

- tR is the network delay for sending the request from the

receiver to the sender which is greater or equal to 0, hence Δ ≥

δ. An interesting point is that the network delay of the

response packet and the delay caused by the computation of

the digital signature do not influence Δ at all. Since only the

initial timestamp matters, it is important that the sender

immediately stores the arrival time tS of the time

synchronization request packet. The subsequent processing

and propagation delay does not matter.

Fig:1.7The receiver synchronizes its

time with the sender.

6.9 Indirect Time Synchronization

In indirect time synchronization, both the sender

and the receivers synchronize their time with a time reference

and hence the sender and the receiver can reach implicit time

synchronization. This approach is favorable especially in

cases where the application needs time synchronization with a

time reference anyhow. Let denote the measured

upper bound of the difference of the sender’s time and the

time reference’s time with as the maximum error, and

let denote the measured upper bound of the

difference of the time reference’s time and the receiver’s time

with as the maximum error. Thus the receiver could

reach implicit time synchronization with the sender as

 with

as the maximum error.

6.10 Delayed Time Synchronization

Another interesting relaxation of the time

synchronization requirement is that, if we assume that the

receiver’s clock drift is negligible during a period of time,

then the receiver can receive the data stream from the sender

before doing a time synchronization and authenticate the data

later after a time synchronization. The receiver only needs to

store the arrival time of each packet, so that it can evaluate the

security condition after it performed the time synchronization.

This is highly useful for many applications, for example a

router can use TESLA to authenticate itrace messages

(Bellovin, 2000), and the victim can authenticate the routers’

IP markings afterwards when it wants to trace an attacker by

performing approximate time synchronization with the router

(Song et al, 2000).

6.11 Determining the Key Disclosure Delay

An important parameter to determine for TESLA is

the key disclosure delay d. A short disclosure delay will cause

packets to violate the security condition and cause packet

drop, while a long disclosure delay causes a long

authentication delay. Note that although the choice of the

disclosure delay does not affect the security of the system, it is

an important performance factor. We describe a new method

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

24

on how to choose a good disclosure delay d. In particular, we

show as follows that if RTT is a reasonable upper bound on

the round trip time between the receiver and the sender, then

in case of using direct time synchronization, we can choose

, where Tint is the interval duration. In

case of indirect time synchronization, we can choose

, where is the sum of both the

sender and receiver time synchronization error, and DSR is a

reasonable upper bound on the network delay of a packet

traveling from the sender to the receiver.

6.12 Security Discussion and Robustness to

DoS

In an IP multicast environment, however, DoS is a

considerable threat and requires careful consideration. We

discuss potential security problems in this section and show

how to strengthen TESLA to thwart them. In particular, we

show that there is no DoS attack on the sender if the receivers

perform indirect time synchronization. In case of direct time

synchronization, we show how to mitigate DoS attacks on the

sender. Although there are some potential DoS attacks on the

receiver side, we show that TESLA does not add any

additional vulnerability to DoS attacks if the receiver has a

reasonable amount of buffer space, otherwise we describe

schemes that alleviate the exposure to DoS.

6.13 DoS Attack on the Sender

A DoS attack on the sender is not possible if

TESLA is used with indirect time synchronization, because

the sender does not keep per-receiver state or perform

perreceiver operations. In the case of direct time

synchronization, a DoS attack is possible, since the sender is

required to digitally sign each nonce included in a time

synchronization request. An attacker can perform a DoS by

flooding the sender with requests.

Fig:1.8Hash tree over receiver nonces refer(13).

Node Hab =H(Na, Nb). Had = H(Hab,Hcd).

6.14 DoS Attack on the Receiver

In this section, we discuss two DoS attacks on the

client. Since we assume the attacker could have full control of

the network, some DoS attacks such as delay or drop packets

are always possible. Delay packets could cause packets to

violate the security condition and hence not to be

authenticated. On the other hand, speeding up packets does

not do anything at all. The receiver even benefits from this

since she might be able to use a chain with a short disclosure

delay that she could not use otherwise. We can show that

replay packets cannot do much harm either. First, a duplicated

packet is only accepted by the receiver within a short time

period, since the security condition drops packets if they are

replayed with a long delay. Second we can prevent the replay

attack by adding a sequence number to each packet and by

including the sequence number in the MAC. The TESLA

protocol in the network layer or in the application layer will

filter out duplicate packets.

6.15 DoS on the Packet Buffer

An powerful attack is to flood the multicast group

with bogus traffic. This attack is serious because current

multicast protocols do not enforce sending access control. The

solution we propose involves a weak but efficient and

immediate authentication method that offers some protection

against a flooding attack. First if the receiver has a certain size

buffer, we show that flooding cannot do much harm. Because

the scheme only requires the receiver to buffer packets for the

duration of one disclosure delay until the authenticity of the

packets can be verified, hence the buffer size only needs to be

the multiplication of the network bandwidth and the

disclosure delay time. Assuming that the receiver has a

10Mbps network connection and a 500ms disclosure delay,

the required buffer size is around 640kB, which should in

general not be a major concern with today’s workstations.

Assuming 512byte network packets, the computation

overhead to authenticate the packets is on the order of 1280

HMAC computations per second. Since the openssl HMAC-

MD5 implementation processes on the order of 120; 000 512-

byte blocks per second on a 500MHz Pentium III Linux

workstation, the estimated processor overhead for TESLA

authentication is on the order of 1% of the CPU time.

6.16 DoS on the Key Chain

Another DoS attack is specific to how the TESLA

receiver reconstructs the key chain. If an attacker could fool a

receiver to believe that a packet was sent out far in the future,

and the receiver would try to verify the key disclosed in the

packet by applying the pseudo-random function until the last

committed key chain value. This attack can be easily

prevented by checking that the packet interval is less or equal

the latest interval that the sender can possibly be in. For an

incoming packet sent in interval I j , the receiver can verify if

the interval Ij is not in the future, i.e. if the sender can already

be in that interval. The verification condition is that

, where ti is an upper bound on the

sender’s time that the receiver computes at the arrival of the

packet.

6.17 Related Work

Researchers have proposed signing data packets to

achieve source authentication. Since a digital signature

achieves non-repudiation, a signature is much stronger than

just authentication. As we mentioned in the introduction, the

communication and computation overhead of current

signature schemes is more expensive than schemes that are

based on symmetric cryptography. We will review only the

schemes that provide source authentication and not the

schemes providing non-repudiation, i.e. (Gennaro et al, 1997),

(Rohatgi, 1999), (Wong et al, 1998), (Perrig et al, 2000a).

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.7, February 2011

25

7. CONCLUSION

To summarize, authentication in multicast applications is an

important security measure that cannot be neglected.

However, signing every multicast packet with a digital

signature incurs high overhead, which may be impractical for

many resource-limited devices. Signature amortization can

reduce the computation and communication overhead, and a

fault-tolerance coding algorithm can help tolerate packet loss.

Despite these countermeasures, a signature amortization

scheme still suffers pollution attack. To solve this problem, a

lightweight and pollution attack resistant multicast

authentication protocol (PARM) have been designed which is

fast and lightweight and ideal for multicast applications with

time-sensitive requirements or devices with limited

computational power. In contrast to distillation codes, this

scheme requires less computation overhead and storage space.

8. REFERENCES

[1] Alon.N (1991), “Probabilistic Methods in Extremal

Finite Set Theory”, in Extremal Problems for Finite

Sets, 39–57.

[2] Anderson. R. J, F. Bergadano, B. Crispo, J.-H. Lee, C.

Manifavas, and R. M. Needham (1998). A new family

of authentication protocols. Operating Systems

Review, 32(4):9–20.

[3] Anna Lysyanskaya, Roberto Tamassia, and Nikos

Triandopoulos (2003). Multicast authentication in

fully adversarial networks. In IEEE Symposium on

Security and Privacy, pages 241 – 253, Oakland,

USA, IEEE Press.

[4] Ayanoglu. E, I. Chih-Lin, R.D. Gitlin, J.E. Mazo

(1993). Diversity Coding for Transparent Self-

Healing and Fault-Tolerant Communication

Networks. IEEE Transactions on Communications,

41(11).

[5] Ballardie. A. J (1995), “A New Approach to Multicast

Communication in a Datagram Network”, Ph.D.

Thesis, University College London.

[6] Bellare. M, R. Canetti and H. Krawczyk (1996),

“Keying Hash Functions for Message

Authentication”, Advances in Cryptology – Crypto

’96, LNCS vol. 1109, Springer-Verlag.

[7] Bellare. M, R. Canetti, and H. Krawczyk (1997).

HMAC: Keyedhashing for message authentication.

Internet Request for Comment RFC 2104, Internet

Engineering Task Force.

[8] Bellovin. S (2000). The icmp traceback message.

http:// www.research.att.com / ˜smb.

[9] Bergadano. F, D. Cavagnino, and B. Crispo (2000a),

"Individual single source authentication on the

mbone," in Proc. IEEE Int. Conf. Mutlimedia Expo.

pp. 541-544.

[10] Bergadano. F, D. Cavagnino, and B. Crispo (2000b).

Chained stream authentication. In Selected Areas in

Cryptography 2000, Waterloo, Canada.

[11] Bhaskar. N and I. Kouvelas (2000). Source-specific

protocol independent multicast. Internet Draft,

Internet Engineering Task Force.

[12] Bishop. M (1990). A Security Analysis of the NTP

Protocol Version 2. In Sixth Annual Computer

Security Applications Conference.

[13] Brown, C. Perkins, and J. Crowcroft, “Watercasting:

Distributed Watermarking of Multicast Media,”

Networked Group Commun. ’99, Pisa, Italy, Nov.

1999, pp. 286–300.

[14] C. K. Wong, M. Goudo, and S. S. Lam, "Secure

Group Communication Using Key Graphs." Prac.

ACM SIGCOMM 1998.

[15] D. Bolenron, D. McGrew, and A. Sheimon,

"Keyhkgement for Large Dynamic Groups: One-way

Function Trees and Amortized Initialization," IETF

Internet droft (work in progrerr], Feb. 1999

[16] D. M. Wollner, E. J. Harder, and R. C. Agee, "Key

Management forMulti-cast: Issues and Architectures,"

IETF Info. RFC, Sept. 1998.

[17] H. Chu, L. Qiao, and K. Nahrstedt, “A Secure

Multicast Protocol with Copyright Protection,” Proc.

IS&T/SPIE’s Symp. Elect. Imaging: Sci. and Tech.,

Jan. 1999.

[18] I.Chang et al, “A toolkit for Secure Multicast Services

over the Internet”, IBM tech rep., l998.

[19] P. Q. Judge and M. H. Ammar, “WHIM:

Watermarking Multicast Videowith a Hierarchy of

Intermediaries,” Proc. NOSSDAV, Chapel Hill, NC,

June 2000.

[20] Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient

authenticationand signing of multicast streams over

lossy channels. In IEEE Symposium on Security and

Privacy, May 2000.

[21] T. Hardjono and B. Cain, “Key establishment for

IGMP authentication in IP multicast,” in IEEE

European Conference on Universal Multiservice

Networks(ECUMN), CREF, Colmar, France, 2000.

