
International Journal of Computer Applications (0975 – 8887) 

Volume 16– No.7, February 2011 

17 

Multicast Routing Authentication System using 
Advanced Tesla 

 

 

V. Ganesh Babu  
Research Scholar  

Vinayaka Missions University 
 Salem, Tamil Nadu 

 
 

 

Dr. T. Senthil Kumar 
Anna University-Tiruchirappali 

Tiruchirappali, Tamil Nadu 

 

ABSTRACT 
The present strategies that reduce the delay associated with 

multicast authentication, make more efficient usage of 

receiver-side buffers, make delayed key disclosure 

authentication more resilient to buffer overflow denial of 

service attacks, and allow for multiple levels of trust in 

authentication. Throughout this base paper, the main focus of 

discussion will be on the popular multicast authentication 

scheme Timed Efficient Stream Loss-tolerant Authentication 

(TESLA) based upon the delayed key disclosure principle. 

Similar to other schemes based upon delayed key disclosure, 

TESLA is susceptible to Denial-of-Service (DoS) attacks and 

is not well suited for delay-sensitive applications. 
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1. INTRODUCTION 

A multicast protocol enables a sender to efficiently 

disseminate digital media data to many receivers. Due to the 

time-sensitive requirement of some applications, reliable 

transmission protocol like TCP (Transmission Control 

Protocol) is impractical for multicast. Therefore, unreliable 

transmission protocol such as UDP (User Datagram Protocol) 

is generally adopted for multicast applications. Multicast 

protocol is suitable for many applications, e.g. video 

transmissions, live broadcasts, stock quotes, or news feeds. 

These applications may have many receivers or distribute 

time-sensitive data. To ensure secure communications 

between a sender and its receivers, it is important to 

implement security measures in a multicast environment. 

 

An attacker may impersonate a sender to transmit 

malicious packets to receivers, causing disruptions in the 

communications. Multicast authentication is used to defend 

against forged packets injected by the attackers by enabling a 

receiver to authenticate the packet source and discard 

malicious packets. There have been many multicast 

authentication approaches, which can be roughly divided into 

two categories: symmetric cryptographic primitives and 

asymmetric cryptographic primitives. Symmetric 

cryptographic primitives, such as MAC (Message 

Authentication Code), generally use a symmetric key to 

authenticate a data source. In MAC, an identical secret key is 

maintained by the sender and receiver. The sender uses the 

secret key to generate a MAC for a packet, and the receiver is 

able to authenticate the packet source by verifying the MAC 

of the packet with the secret key. Asymmetric cryptographic 

primitives, such as digital signatures, use an asymmetric key 

pair to authenticate a data source. In general, an asymmetric 

key pair consists of two keys; one key is used to generate the 

signature, while the other key is used to verify the signature. 

Using digital signatures like RSA, for authentication is 

popular and believed to be secure; nevertheless, digital 

signature generation and verification incur significant 

computation overhead. 

 

Signature amortization addresses this concern by 

generating a single digital signature for a block of packets. 

After verifying the signature, a receiver can consider this 

block of packets authentic. Signature amortization makes a 

tradeoff between security and computation overhead. Fault-

tolerant coding algorithms, like erasure codes, (Luby. M. G et 

al, 2001), (Rabin. M. O, 1989), (Reed et al,1960) or diversity 

codes (Ayanoglu et al, 1993), partition information into many 

segments and can correctly reconstruct the original 

information even though a number of segments, up to a 

threshold, may be lost. Although signature amortization with a 

fault-tolerant coding algorithm reduces computation overhead 

and tolerates packet loss, it suffers from pollution attacks 

(Chris Karlof et al, 2004). Pollution attacks occur when an 

adversary injects a large quantity of forged packets into a 

block of valid packets. The receiver fails to decode a correct 

signature using the fault-tolerant coding algorithm, forcing the 

receiver to drop the entire block of packets, which may 

include valid packets. 

 

Distillation codes (Chris Karlof et al, 2004) have 

been proposed for signature amortization to defend against 

pollution attack. In distillation codes, the sender augments 

each packet with a witness. Distillation codes guarantee that 

all valid packets are partitioned into groups that do not contain 

forged packets, allowing the receiver to decode the correct 

signature from the packets in this group. Unfortunately, the 

receiver cannot realize in advance which group contains valid 

packets; therefore, it must attempt to decode a valid signature 

from each group. Furthermore, the receiver cannot 

immediately distinguish between valid and invalid packets, 

making it necessary to first buffer all received packets. 

Distillation codes incur high computation overhead, storage 

space, and verification delay. 

 

2. EFFICIENT MULTICAST PACKET 

AUTHENTICATION USING 

SIGNATURE AMORTIZATION 

2.1 Rationale for this approach 
The sender transmits the hash of a packet appended to k other 

packets for increased resistance to loss. The authors assume 

that a block consists of n packets. If independent packet loss is 
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assumed, then the probability that at least one out of the k 

packets will reach the destination is 1- qk , where q is the 

packet loss probability. The communication overhead would 

be kh, where h is the size of the hash. Using the same 

overhead, one can encode the hash using IDA and append the 

encoded n segments to the n packets of the block (i.e., each 

packet in the block would contain one of the encoded 

segments). The minimum number of encoded segments 

needed for reconstruction of the hash is only , 

where  denotes the smallest integer not less than x. The 

probability that the hash can be reconstructed successfully at 

the receiver is given by 

 

  (1) 

 

   Again, independent packet loss was assumed. 

 

2.2 Signature amortization using IDA 

At the receiving end, verification of the packet stream is 

straightforward. Assuming that at least m authenticated 

packets are received, the receiver can successfully reconstruct 

F1 and  from any combination of m packets as 

follows: 

1. Assume that segments  are received. 

Using the m pieces, it is readily seen that 

 

 

where A = (aij )1≤ i,j≤ m is an m x m matrix whose 

i-th row is ai . 

2.  Because A is invertible (because of the 

independence condition on ai,1≤ i ≤ n ), S1  can be 

obtained from 

 

3. Using the same procedure, S2,…, SN/m  can be 

obtained, and F1 is reconstructed by concatenating 

these values. 

4. The same technique is applied to reconstruct 

. 

5. Once the reconstruction is complete, all the packets 

in G1 can be verified using F1 and . 

As already mentioned, SAIDA might not be appropriate 

in situations where the data to be sent is generated in real 

time is given by (3), and immediate broadcast of it is 

crucial. This scheme is most useful in cases where the 

sender has a priori knowledge of at least a portion of the 

data to be broadcast (e.g., broadcast of prerecorded 

material). 

 

3. ENSURING AUTHENTICTION OF 

DIGITAL INFORMATION USING 

CRYPTOGRAPHIC ACCUMULATORS 

3.1 Stream Authentication over Erasure 

Channels 

In the remaining of this base paper, the authors 

work with a unforgeable S-bit long digital signature 

(SignSK,VerifyPK) (Stinson, 2006) the key pair of which 

(SK,PK) is created by a generator KeyGen and a 

cryptographic hash function h′ outputing H′-bit long digests 

with H′ = k log2(r). 

 

3.2 Authentication Protocol 

The stream is a continuous flow of information. 

First, the sender generates the signature σ on the digest h′(P1) 

of the first stream packet. He then encodes the concatenation 

σ||h′(P1) using a MDS code of length n and dimension n − t. 

The corresponding codeword is denoted (C1 ,…,Cn) where 

each Ci is  - bit long. 

 

Second, the sender buffers the first n packets P1,… , Pn as list 

L1. He computes the accumulated value A1 of L1 and builds 

the augmented packet: AP1 := 1||P1||A1||C1. Third, when a new 

stream packet Pn+j−1 (j ≥ 2) is available, the sender builds the 

list Lj := {Pj,…,  Pn+j−1} U {h′(P1)}. He computes the 

corresponding accumulated value Aj and builds the 

augmented packet: APj := j||Pj||Aj||C[j] where [j] denotes the 

unique integer in {1, . . . , n} congruent to j modulo n. In 

particular: [n] = [2n] = [3n] = · · · = n. We notice that the 

delay at the sender is n packets as it sends into the network 

APj after Pn+j−1 be available. 

 

3.3 Analysis of the Protocol 

Theorem 1 Our authentication scheme is a non-degrading 

authentication protocol. The sender processes data with a 

delay of n packets throughout streaming while the receiver 

can authenticate packets on-the-fly from the (n − t + 1)th 

received element. 

 

Remark 1 A single signature is needed to ensure non-

repudiation of the whole stream. 

 

Remark 2 One can notice that, when n is fixed, the lower t is, 

the larger the delay gets. This might seem to be surprising at 

first but having low t’s implies having small redundancy for 

the codeword coordinates as n−t is large. That is why one 

requires more codeword information to reconstruct 

(C1,…,Cn). The trade-off delay/overhead is an efficiency 

trade-off. 

 

4 STREAM AUTHENTICATION OVER 

ADVERSARIAL CHANNELS 

In this channel model, O can inject bogus data 

packets into the network. In this situation, we will process the 

whole data stream per block of n packets P1,…, Pn. Each of 

these blocks is located within the whole stream using an 

identification value BID. This approach is used in the 

different schemes designed for adversarial networks including 

TWMDS and PRABS. This is to be opposed to the on-the-fly 

authentication process from the (n − t + 1)th packet at the 

receiver for the protocol. 

 

4.1 Scheme Overview 

Due to erasure of information, we want to generate 

n augmented packets AP1,…,,APn such that we can 

reconstruct all packets P1,…,Pn from any  -subset of 

{AP1,…,APn}. Therefore, our first step consists of encoding 

P1,…,Pn using a [n, , n −  + 1] code since it can 
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correct up to n −  erasures. Note that this approach 

implies that the elements of the code alphabet are larger than 

the size of a data packet as the message                (M1 ,…,M⌈α 

n⌉) to be encoded into the codeword (C1,…,Cn) should 

represent the concatenation P1||…||Pn. 

 

4.2  Authentication Protocol 

We assume that the values α and β are rational 

numbers so that we can represent them over a finite number of 

bits. In order to run Poly-Reconstruct as a subroutine of MPR, 

we have to choose a parameter . Notice that ρ has 

to be rational since ρ n is an integer. Without loss of 

generality, one can consider that the value ρ is uniquely 

determined when n, α and β are known. The scheme 

parameters which are assumed to be publicly known. The bit 

size S of the signature and its public key PK are also publicly 

known. Note that, once r is known, then k is uniquely 

determined since the digests of h′ are (k log2(r))-bit long. 

 

4.3 Analysis of the Protocol 

Security: As the channel model allows an adversary to 

inject bogus elements into the network, we adopt the same 

security definition as in (Christophe Tartary et al, 2006). 

 

Here two protocols are presented for the broadcast 

authentication problem using a modified version of Nyberg’s 

accumulator due to Yum et al. The first scheme was related to 

erasure channels. It was shown that its packet overhead was 

less than the length of a digest and, in particular, far less than 

(Park et al, 2004, Park et al, 2003, Park et al, 2002, Pannetrat 

et al, 2002). Even if the sender processes the stream in delay 

of n packets, the receivers can authenticate packets on-the-fly 

from the (n − t + 1)th received element to the end of the stream 

(if any). In addition, a single signature is needed to provide 

the non-repudiation of the whole stream. The second scheme 

was designed for adversarial networks. It is obvious that the 

number of signature queries at the receiver is the same as for 

TWMDS due to the use of Poly-Reconstruct in both 

constructions. This number turns to be O(1) as a function of 

the block length n (Christophe Tartary et al, 2006). 

Furthermore, the packet overhead of our new scheme is 

smaller than PRABS’ and TWMDS’. Another interesting 

result from this comparative study was that we obtained more 

a extensive comparison between PRABS and TWMDS 

showing that the overhead of TWMDS was smaller. 

 

5 MULTICAST SECURITY: A 

TAXONOMY AND SOME EFFICIENT 

CONSTRUCTIONS 

Multicast communication is becoming the basis for 

a growing number of applications. It is therefore critical to 

provide sound security mechanisms for multicast 

communication. Yet, existing security protocols for multicast 

offer only partial solutions. We first present taxonomy of 

multicast scenarios on the Internet and point out relevant 

security concerns. Next we address two major security 

problems of multicast communication: source authentication, 

and key revocation. Maintaining authenticity in multicast 

protocols is a much more complex problem than for unicast; 

in particular, known solutions are prohibitively inefficient in 

many cases.  

5.1 Multicast Security issues 

We overview salient characteristics of multicast 

scenarios, and discuss the relevant security concerns. The 

various scenarios and concerns are quite diverse in character 

(sometimes they are even contradictory). Thus it seems 

unlikely that a single solution will be satisfactory for all 

multicast scenarios. This situation leads us to suggest two 

benchmark scenarios for developing secure multicast 

solutions 

 

5.2 Efficient Authentication Schemes Per-

message unforgability of MAC schemes:  

 

We distinguish between two types of attacks against 

a MAC scheme. One is a complete break, where the attacker 

can authenticate any message of its choice (e.g., a key 

recovery attack). The other attack allows the attacker to 

randomly authenticate false messages; here the attacker can 

authenticate a given message with some fixed and small 

probability (but does not know a-priori whether it will be able 

to authenticate the message). Our schemes do not allow 

complete break with higher probability than the underlying 

MAC scheme. Yet, we do allow for random authentication 

errors with non-negligible probability (say, 2-20 up to 2-10). 

 

5.3 The Basic Authentication Scheme for a 

Single Source 

Let w be the maximum number of corrupted users. The 

basic scheme proceeds as follows: 

 The source of the transmissions (S) knows a set of l 

= e (w + 1) ln (1/q) keys,  

 Each recipient u knows a subset of keys Ru  R. 

Every key Ki is included in Ru with probability 

1/(w+1) , independently for every i and u.  

 Message M is authenticated by S with each key Ki 

using a MAC and 

 

is transmitted together with the message. 

Each recipient u verifies all the MACs which were created 

using the keys in its subset Ru. If any of these MACs is 

incorrect then u rejects the message 

 

5.4 Smaller Communication Overhead 
 

We now describe a scheme with a lower 

communication overhead. The idea behind it is that using just 

four times as many keys as in the basic scheme, one can 

ensure that the coalition does not know log (1/q) of the user’s 

keys. Each key can therefore be used to produce a MAC with 

a single bit output and the communication overhead is 

improved. The coalition would have to guess log (1/q) bits to 

create a false authentication and 

its probability of success is as before. 

Recall the basic scheme: it limits the success probability of a 

corrupt coalition to be q+q’, where q’ is the per-message 

unforgeability. The MAC output must be at least log 2 (1/q’) 

bits long. Therefore, assuming q=q’, the communication 

overhead is  bits. The improved 

scheme achieves a communication overhead smaller than 

 bits. 
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5.5 Multiple Dynamic Sources 

It supports a dynamic set of sources and has the following 

properties:   

 The total number of keys is as in schemes for a 

single source, but every party can send 

authenticated messages. 

 The scheme does not require the set of sources to be 

defined in advance or to contain all parties. Rather, 

it allows to dynamically add sources. 

 The scheme distinguishes between the set of sources 

and the set of receivers. Only coalitions of more 

than w receivers can send false authenticated 

messages. The keys of sources do not help such 

coalitions. This property is especially useful if 

receivers are more trusted than senders, as might be 

the case for example if the receivers are network 

routers. 

 The scheme provides a computational (rather than 

information theoretic) security against revealing to a 

coalition all the keys in the intersection of a source 

and a receiver’s subsets. 

 

The scheme uses a family of pseudo-random 

functions { fk } (see (Luby.M, 1996) for a discussion of 

pseudo-random functions). It is based on a single source 

scheme and can be built upon the basic scheme or the 

communication efficient scheme. 

 

5.5.1 Initialization: The scheme uses l primary keys  

 , where l is as in the single source schemes (l=O 

(w log (1/q))). Each key ki defines a pseudo-random 

function . 

 

5.5.2 Receiver Initialization: Each party v which 

intends to receive messages obtains a subset Rv of primary 

keys. Every primary key ki is included in Rv with probability 

1/(w+1). 

 

5.5.3 Source Initialization: Every party u which 

wishes to send messages receives a set of secondary keys  

 . This set can be sent any 

time after the system has been set-up, and the identity or the 

number of sources does not have to be defined in advance. 

 

5.5.4 Message Authentication: When a party u 

sends a message M it authenticates it with all the secondary 

keys in Su. That is k € Su, it computes and attaches a MAC 

of M with k. 

 

5.6 Signatures vs. MACs: a rough 

performance comparison 

Compared to the performance of public key 

signatures, our authentication schemes dramatically reduce 

the running time of the authenticator. The running time of the 

verifier and the communication overhead are of the same 

order as public key signatures (the exact comparison depends 

on the size of the corrupt coalitions against which the schemes 

operate). 

 

It is seen that the signing time is much shorter in our 

scheme than with public key given (8)signatures. The 

verification time is comparable to (highly optimized) RSA 

and much faster than DSS. 

 

Table 1.  A Performance Comparison  

of  Authentication Schemes 

 
Auth

. 
Ver. 

Com

m. 

Source 

Key 

Receive

r Key 

Units 
(ops/

sec) 

(ops/s

ec) 
(bits)   

RSA 1024 

bits 
50 30000 1024 

2048 

bits 

1024 

bits 

DSS, 768 

bits 
70 40 1536 

1536 

bits 

1536 

bits 

Basic 

scheme, 

w=10, 

q=10-3 

2650 26500 1900 

190 

MAC 

keys 

19 

MAC 

keys 

Low 

Comm. 

w=10, 

q=10-3 

660 6600 760 

760 

MAC 

keys 

76 

MAC 

keys 

Perfect 

Sec. 

n=104, 

q=10-3 

200 2000 25000 

2500 

MAC 

keys 

250 

MAC 

keys 

 

 

5.7 Dynamic Secrecy – User Revocation 
 

We survey some solutions for the member deletion 

problem, describe a particularly appealing construction from 

(Wallner et al), (Wong et al, 1998) based on binary trees, and 

present an improved construction with reduced 

communication overhead. They also show how our 

construction is more resistant to a certain kind of attack 

 

5.8 A Tree Based Scheme 

Tree based group rekeying schemes were suggested 

by Wallner et al. (Wallner et al) (who used binary trees), and 

independently by Wong et al. (Wong et al, 1998) (who 

consider the degree of the nodes of the tree as a parameter). 

We concentrate on the scheme of (Wallner et al) since it 

requires a smaller communication overhead per user 

revocation. This scheme applied to a group of n users requires 

each user to store log n+1 keys. It uses a message with 2log n 

-1 key encryptions in order to delete a user and generate a new 

group key. This process should be repeated for every deleted 

user. The scheme has better performance than the Fiat-Naor 

scheme when the number of deletions is not too big. It is also 

secure against any number of corrupt users (they can all be 

deleted from the group, no matter how many they are). A 

drawback of this scheme is that if a user misses some control 

packet relative to a user deletion operation (e.g., if it 

temporarily gets disconnected from the network), it needs to 

either ask for all the missed control packets, or incur in a 

communication overhead comparable to a user addition 

operation. 

 

5.9 The Improved Scheme 

The improved scheme reduces the communication 

overhead of (Wallner et al) by a factor of two, from 2 log n to 

only log n. The initialization of the scheme is the same as in 

(Wallner et al). The authors now describe the user revocation 
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procedure. Let G be pseudo-random generator which doubles 

the size of its input (Blum et al, 1984). Denote by L(x), R(x) 

the left and right halves of the output of G(x), i.e., G(x) = L(x) 

R(x) where |L(x)| = |R(x)| = |x|. To remove a user u, the group 

controller associates a value rv  to every node v along the path 

from u to the root as follows: It chooses rp(u) = r at random 

and sets rp(v) = R(rv) = R|u|-|v|(r) for all other v (where p(v) 

denotes the parent of v). The new keys are defined by 

 . Notice that from rv, one 

can easily compute all keys  up to the root 

key k’. Finally each value rp(v) is encrypted with key ks(v)  

 

Fig1.1 The tree key data structure (the keys of uo are 

encircled). 

 
 

Fig1.2 Key revocation in the basic scheme. 

 

5.10 Advantages of the new scheme 
 

 This construction halves the communication 

overhead of the basic scheme to only log n and its security can 

be rigorously proven. It has an additional advantage: In the 

scheme of Wallner et al the group controller chooses the 

group key (the root key), whereas is our construction this key 

is the output of a pseudo-random generator. Suppose that 

there is an adversary which can break encryptions performed 

with a subset of the key space (for example keys in which 

certain bits have a linear dependency), and furthermore that 

this adversary has gained temporary control over the group 

controller (e.g. when the controller was manufactured). Then 

if the scheme of (Wallner et al) is used, the adversary might 

corrupt the method by which the group controller generates 

keys in such a way that the root key would always be chosen 

from the “weak” subspace. However, if our scheme is used, 

and the pseudo-random generator G(x) = L(x) R(x) is 

cryptographically strong, then it will be hard to find values r 

such that the root key k = L ( R ( R(…(r) …)))  is weak. 

 

 
Fig: 1.3Key revocation in the improved scheme. 

 

6   EFFICIENT AND SECURE SOURCE 

AUTHENTICATION FOR MULTI-CAST 

One of the main challenges of securing multicast 

communication is source authentication, or enabling receivers 

of multicast data to verify that the received data originated 

with the claimed source and was not modified enroute. The 

problem becomes more complex in common settings where 

other receivers of the data are not trusted, and where lost 

packets are not retransmitted. Several source authentication 

schemes for multicast have been suggested in the past, but 

none of these schemes is satisfactorily efficient in all 

prominent parameters. We recently proposed a very efficient 

scheme, TESLA that is based on initial loose time 

synchronization between the sender and the receivers, 

followed by delayed release of keys by the sender. This paper 

proposes several substantial modifications and improvements 

to TESLA. One modification allows receivers to authenticate 

most packets as soon as they arrive (whereas TESLA requires 

buffering packets at the receiver side, and provides delayed 

authentication only). Other modifications improve the 

scalability of the scheme, reduce the space overhead for 

multiple instances, increase its resistance to denial-of-service 

attacks, and more. 

 

Another approach to providing source 

authentication uses only symmetric cryptography, more 

specifically on message authentication codes (MACs), and is 

based on delayed disclosure of keys by the sender. This 

technique was first used by Cheung (Cheung, 1997) in the 

context of authenticating communication among routers. It 

was then used in the Guy Fawkes protocol (Anderson et al, 

1998) for interactive unicast communication. In the context of 

multicast streamed data it was proposed by several authors 

(Briscoe, 2000), (Bergadano et al, 2000a), (Bergadano et al, 

2000b), (Perrig et al, 2000a). In particular, the TESLA 

scheme described in (Perrig et al, 2000a) was presented to the 

reliable multicast transport (RMT) working group of the IETF 

and the secure multicast (SMuG) working group of the IRTF 

and was favorably received. TESLA is particularly well suited 

to provide the source authentication functionality for the 

MESP header (Canetti et al, 2000), or for the ALC protocol 

proposed by the RMT (Luby et al, 2000) is given by (10). 

Consequently, an Internet-Draft describing the scheme was 

recently written (Perrig et al, 2000b). 

 

6.1 An Overview of TESLA 

The security property TESLA guarantees is that the receiver 

never accepts Mi as an authentic message unless Mi was 

actually sent by the sender. Note that TESLA does not 
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provide non-repudiation, that is, the receiver cannot convince 

a third party that the stream arrived from the claimed source. 

 

TESLA is efficient and has a low space overhead 

mainly because it is based on symmetric-key cryptography. 

Since source authentication is an inherently asymmetric 

property (all the receivers can verify the authenticity but they 

cannot produce an authentic data packet), we use a delayed 

disclosure of keys to achieve this property. Similarly, the data 

authentication is delayed as well. In practice, the 

authentication delay is on the order of one roundtrip- time 

(RTT). 

 

TESLA has the following properties. First, it has a 

low computation overhead, which is typically only one MAC 

function computation per packet, for both sender and receiver. 

 

TESLA also has a low per-packet communication 

overhead, which is about 20 bytes per packet. In addition, 

TESLA tolerates arbitrary packet loss. Each packet that is 

received in time can be authenticated. Except for initial time 

synchronization, it has only unidirectional data flow from the 

sender to the receiver. No acknowledgments or other 

messages are necessary. This implies that the sender’s stream 

authentication overhead is independent of the number of 

receivers, hence TESLA is very scalable. TESLA can be used 

both in the network layer and in the application layer. The 

delayed authentication, however, requires buffering of packets 

until authentication is completed. 

6.2 Bootstrapping a new Receiver 

TESLA requires an initially authenticated data 

packet to bootstrap a new receiver. This authentication is 

achieved with a digital signature scheme, such as RSA (Rivest 

et al, 1978), or DSA (NIST, 1991). We consider two options 

for synchronizing the time, direct and indirect 

synchronization. Whichever time synchronization mechanism 

is used, the receiver only needs to know an upper bound on 

the sender time. 

 

The initial authenticated packet contains the following 

information about the time intervals and key chain: 

 The beginning time of a specific interval Tj , along 

with its id Ij 

 The interval duration Tint 

 Key disclosure delay d (unit is interval) 

 A commitment to the key chain Ki (i < j -d where j 

is the current interval index) 

 

6.3 Sending Authenticated Packets 

Each key of the key chain is used in one time 

interval. However many messages are sent in each interval, 

the key which corresponds to that interval is used to compute 

the MAC of all those messages. This allows the sender to send 

packets at any rate and to adapt the sending rate dynamically. 

The key remains secret for d-1 future intervals. Packets sent in 

interval Ij can hence disclose key Kj-d. As soon as the receivers 

receive that key, they can verify the authenticity of the 

packets sent in interval Ij-d.  

 

6.4 Receiver Tasks 

Since the security of TESLA depends on keys that remain 

secret until a pre-determined time period, the receiver must 

verify for each packet that the key, which is used to compute 

the MAC of that packet, is not yet disclosed by the sender. 

Otherwise, an attacker could have changed the message data 

and re-computed the MAC. This motivates the security 

condition, which the receiver must verify for each packet it 

receives 

 

6.5 Authors Extensions 

The authors extend TESLA in a number of ways to 

make it more efficient and practical. First, we present a new 

method to support immediate authentication, meaning that the 

receiver can authenticate packets as soon as they arrive.  

 

Second, they propose optimizations concerning key 

chains. In particular, for applications that use multiple 

authentication chains with different disclosure delays, we 

present a new algorithm that reduces the communication 

overhead. 

 

6.6 Immediate Authentication 

A drawback of the original TESLA protocol is that 

the receiver needs to buffer packets during one disclosure 

delay before it can authenticate them. This might not be 

practical for certain applications if the receivers cannot afford 

much buffer space and bursty traffic might cause the receivers 

to drop packets due to insufficient buffer space. Moreover, as 

we show later in section 2.5.4.1, the requirement of receiver 

buffering introduces a vulnerability to a denial-of-service 

attack. To solve these problems caused by receiver-buffering, 

we propose a new method to support immediate 

authentication, which allows the receiver to authenticate 

packets as soon as they arrive.  

 
Fig: 1.4:TESLA key chain and the derivedMAC keys 
 

 
Fig: 1.5Immediate authentication packet example.Dj = 

H(Mj+vd) | Mj and Dj+vd = 

H (Mj+2vd) | Mj+vd. 

If each packet can only carry the hash of one other packet, it is 

clear that the sending rate needs to remain constant. Also it is 

clear that if a packet is lost, the corresponding packet cannot 

be immediately authenticated. To achieve flexibility for 

dynamic sending rate and robustness to packet loss, the sender 

can add the hash values of multiple future packets to a packet, 

similar to the EMSS scheme is given by (11) (Perrig et al, 

2000a). 
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6.7 Concurrent TESLA instances 
 

In this section, the authors present a space optimization 

technique in the case the sender uses multiple TESLA 

instances for one stream. 

 

Choosing the disclosure delay involves a tradeoff. 

Receivers with a low network delay welcome short key 

disclosure delays because that translates into a short 

authentication delay. Unfortunately, receivers with a long 

network delay could not operate with a short disclosure delay 

because most of the packets will violate the security condition 

and hence cannot be authenticated. Conversely, a long 

disclosure delay would suit the long delay receivers, but 

causes unnecessarily long authentication delay for the 

receivers with short network delay. The solution is to use 

multiple instances of TESLA with different disclosure delays 

simultaneously, and each receiver can decide which disclosure 

delay, and hence, which instance to use. A simple approach to 

use concurrent TESLA instances is to treat each TESLA 

instance independently, with one key chain per instance. The 

problem for this approach is that each extra TESLA instance 

also causes extra space overhead in each packet. If each 

instance requires 20 bytes per packet (80 bit for key disclosure 

and 80 bit for the MAC value), using three instances results in 

60 bytes space overhead per packet. We present a new 

optimization which reduces the space overhead of concurrent 

instances.  

6.8 Time Synchronization Issues 

Loose time synchronization is an important component in 

TESLA. Although sophisticated time synchronization 

protocols exist, they usually require considerable management 

overhead. Furthermore, they generally have a high complexity 

and achieve properties that TESLA does not require. An 

example is the network time protocol (NTP) by Mills (Mills, 

1992). Bishop performs a detailed security analysis of NTP 

(Bishop, 1990). For these reasons, we outline a simple and 

secure time synchronization protocol that suffices the humble 

requirements of TESLA.  

Direct Time Synchronization 

 

 

 
 

 

Fig: 1.6Multiple TESLA instances  

key chain optimization. 

 

Figure :1.7 is shows sample time synchronization between the 

receiver and the sender. Upon receiving the signed response, 

the receiver checks the validity of the signature and the 

matching of the nonce and computes Δ = tS - tR. It is easy to 

see that the Δ computed this way satisfies the requirement that 

Δ ≥ δ. Because Δ = tS - tR = (tS - t3) + (t3 - tR), tS - t3 = δ, and t3 

- tR is the network delay for sending the request from the 

receiver to the sender which is greater or equal to 0, hence Δ ≥ 

δ. An interesting point is that the network delay of the 

response packet and the delay caused by the computation of 

the digital signature do not influence Δ  at all. Since only the 

initial timestamp matters, it is important that the sender 

immediately stores the arrival time tS of the time 

synchronization request packet. The subsequent processing 

and propagation delay does not matter.  

 
 

Fig:1.7The receiver synchronizes its 

time with the sender. 

 

 

6.9 Indirect Time Synchronization 
 

In indirect time synchronization, both the sender 

and the receivers synchronize their time with a time reference 

and hence the sender and the receiver can reach implicit time 

synchronization. This approach is favorable especially in 

cases where the application needs time synchronization with a 

time reference anyhow. Let  denote the measured 

upper bound of the difference of the sender’s time and the 

time reference’s time with  as the maximum error, and 

let  denote the measured upper bound of the 

difference of the time reference’s time and the receiver’s time 

with  as the maximum error. Thus the receiver could 

reach implicit time synchronization with the sender as 

 with  

as the maximum error. 

 

6.10 Delayed Time Synchronization 
 

Another interesting relaxation of the time 

synchronization requirement is that, if we assume that the 

receiver’s clock drift is negligible during a period of time, 

then the receiver can receive the data stream from the sender 

before doing a time synchronization and authenticate the data 

later after a time synchronization. The receiver only needs to 

store the arrival time of each packet, so that it can evaluate the 

security condition after it performed the time synchronization. 

This is highly useful for many applications, for example a 

router can use TESLA to authenticate itrace messages 

(Bellovin, 2000), and the victim can authenticate the routers’ 

IP markings afterwards when it wants to trace an attacker by 

performing approximate time synchronization with the router 

(Song et al, 2000). 

 

6.11 Determining the Key Disclosure Delay 

An important parameter to determine for TESLA is 

the key disclosure delay d. A short disclosure delay will cause 

packets to violate the security condition and cause packet 

drop, while a long disclosure delay causes a long 

authentication delay. Note that although the choice of the 

disclosure delay does not affect the security of the system, it is 

an important performance factor. We describe a new method 
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on how to choose a good disclosure delay d. In particular, we 

show as follows that if RTT is a reasonable upper bound on 

the round trip time between the receiver and the sender, then 

in case of using direct time synchronization, we can choose 

, where Tint is the interval duration. In 

case of indirect time synchronization, we can choose 

, where  is the sum of both the 

sender and receiver time synchronization error, and DSR is a 

reasonable upper bound on the network delay of a packet 

traveling from the sender to the receiver. 

 

6.12 Security Discussion and Robustness to 

DoS 

In an IP multicast environment, however, DoS is a 

considerable threat and requires careful consideration. We 

discuss potential security problems in this section and show 

how to strengthen TESLA to thwart them. In particular, we 

show that there is no DoS attack on the sender if the receivers 

perform indirect time synchronization. In case of direct time 

synchronization, we show how to mitigate DoS attacks on the 

sender. Although there are some potential DoS attacks on the 

receiver side, we show that TESLA does not add any 

additional vulnerability to DoS attacks if the receiver has a 

reasonable amount of buffer space, otherwise we describe 

schemes that alleviate the exposure to DoS. 

 

6.13 DoS Attack on the Sender 

A DoS attack on the sender is not possible if 

TESLA is used with indirect time synchronization, because 

the sender does not keep per-receiver state or perform 

perreceiver operations. In the case of direct time 

synchronization, a DoS attack is possible, since the sender is 

required to digitally sign each nonce included in a time 

synchronization request. An attacker can perform a DoS by 

flooding the sender with requests. 

 

 

 
 

 

 

Fig:1.8Hash tree over receiver nonces refer(13).  

Node Hab =H(Na, Nb). Had = H(Hab,Hcd). 
 

6.14 DoS Attack on the Receiver 

In this section, we discuss two DoS attacks on the 

client. Since we assume the attacker could have full control of 

the network, some DoS attacks such as delay or drop packets 

are always possible. Delay packets could cause packets to 

violate the security condition and hence not to be 

authenticated. On the other hand, speeding up packets does 

not do anything at all. The receiver even benefits from this 

since she might be able to use a chain with a short disclosure 

delay that she could not use otherwise. We can show that 

replay packets cannot do much harm either. First, a duplicated 

packet is only accepted by the receiver within a short time 

period, since the security condition drops packets if they are 

replayed with a long delay. Second we can prevent the replay 

attack by adding a sequence number to each packet and by 

including the sequence number in the MAC. The TESLA 

protocol in the network layer or in the application layer will 

filter out duplicate packets. 

 

6.15 DoS on the Packet Buffer 
 

An powerful attack is to flood the multicast group 

with bogus traffic. This attack is serious because current 

multicast protocols do not enforce sending access control. The 

solution we propose involves a weak but efficient and 

immediate authentication method that offers some protection 

against a flooding attack. First if the receiver has a certain size 

buffer, we show that flooding cannot do much harm. Because 

the scheme only requires the receiver to buffer packets for the 

duration of one disclosure delay until the authenticity of the 

packets can be verified, hence the buffer size only needs to be 

the multiplication of the network bandwidth and the 

disclosure delay time. Assuming that the receiver has a 

10Mbps network connection and a 500ms disclosure delay, 

the required buffer size is around 640kB, which should in 

general not be a major concern with today’s workstations. 

Assuming 512byte network packets, the computation 

overhead to authenticate the packets is on the order of 1280 

HMAC computations per second. Since the openssl HMAC-

MD5 implementation processes on the order of 120; 000 512-

byte blocks per second on a 500MHz Pentium III Linux 

workstation, the estimated processor overhead for TESLA 

authentication is on the order of 1% of the CPU time. 

 

6.16 DoS on the Key Chain 
 

Another DoS attack is specific to how the TESLA 

receiver reconstructs the key chain. If an attacker could fool a 

receiver to believe that a packet was sent out far in the future, 

and the receiver would try to verify the key disclosed in the 

packet by applying the pseudo-random function until the last 

committed key chain value. This attack can be easily 

prevented by checking that the packet interval is less or equal 

the latest interval that the sender can possibly be in. For an 

incoming packet sent in interval I j , the receiver can verify if 

the interval Ij is not in the future, i.e. if the sender can already 

be in that interval. The verification condition is that 

, where ti is an upper bound on the 

sender’s time that the receiver computes at the arrival of the 

packet. 

 

6.17 Related Work 

Researchers have proposed signing data packets to 

achieve source authentication. Since a digital signature 

achieves non-repudiation, a signature is much stronger than 

just authentication. As we mentioned in the introduction, the 

communication and computation overhead of current 

signature schemes is more expensive than schemes that are 

based on symmetric cryptography. We will review only the 

schemes that provide source authentication and not the 

schemes providing non-repudiation, i.e. (Gennaro et al, 1997), 

(Rohatgi, 1999), (Wong et al, 1998), (Perrig et al, 2000a). 
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7. CONCLUSION 

To summarize, authentication in multicast applications is an 

important security measure that cannot be neglected. 

However, signing every multicast packet with a digital 

signature incurs high overhead, which may be impractical for 

many resource-limited devices. Signature amortization can 

reduce the computation and communication overhead, and a 

fault-tolerance coding algorithm can help tolerate packet loss. 

Despite these countermeasures, a signature amortization 

scheme still suffers pollution attack. To solve this problem, a 

lightweight and pollution attack resistant multicast 

authentication protocol (PARM) have been designed which is 

fast and lightweight and ideal for multicast applications with 

time-sensitive requirements or devices with limited 

computational power. In contrast to distillation codes, this 

scheme requires less computation overhead and storage space. 
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