
International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

14

Features of Annotations and their Applications

Shiva Prakash

 Department of Computer Science & Engineering,
Madan Mohan Malaviya Engineering College,

Gorakhpur, U.P., INDIA

J.P. Saini
Madan Mohan Malaviya Engineering College

Gorakhpur, U.P., INDIA

R. K. Singh

Department of Electronics & Communication
Engineering, B.C.T. Kumaon Engineering College,

Dwarahat, Uttarakhand, INDIA

Karan Singh
School of ICT, Gautam Buddh University

Greater Noida, U.P., INDIA

ABSTRACT

Annotations are descriptive declarative information that can

be associated with program elements. They can be used to

represent metadata. This is useful in many cases like

providing documentation, connecting to database etc. These

annotations are later read by the execution environment and

appropriate action will be taken. For custom annotations, a

process called reflection is used to take necessary action.

Although Java introduced this feature recently, attributes /

annotations have been a topic of interest for researchers.

There are tools and applications which make use of

annotations. This paper, we will first have a look at

annotations and annotation types. Then we go on to discuss in

detail how annotations support injecting dependencies into

resources like data sources, mail sources, environment entries,

EJBs, web services, and so on. The new features are targeted

to shift the responsibility of writing the boilerplate code from

the programmer to the compiler or other tools. The resulting

code is less likely to be bug-prone.

Keywords

Annotations, Security, Dependency Injection,
Transactions..

1. INTRODUCTION
Annotations were in use for a long time. Researchers have

used annotations for various purposes like optimization,

automatic documentation etc. The oldest publication

regarding the uses of annotations dates back to 1978 in which

the authors use them for automatic documentation of Algol

programs. Annotations were proposed for many languages

like Ada, C etc but they were not implemented. .NET first

implemented them and called them as attributes. It has a very

rich set of attributes. Later on, Java in its latest version J2SE

1.5 introduced annotations [2][4]. One of the important

objectives of Java EE 5 Platform is ease of development [8].

The new features are targeted to shift the responsibility of

writing the boilerplate code from the programmer to the

compiler or other tools. The resulting code is less likely to be

bug-prone. One of these new ease-of-development features is

the metadata facility-annotations. Annotations provide a

mechanism for decorating Java classes, interfaces, fields, and

methods with metadata information. Annotations are

considered an alternative to the XML files required by the

earlier versions of Java EE. Annotations are also used for

dependency injections of resources, web services, and

lifecycle notifications into a Java EE 5 platform application.

In this paper, we will first have a look at annotations and

annotation types. Then we go on to discuss in detail how

annotations support injecting dependencies into resources like

data sources, mail sources, environment entries, EJBs, web

services, and so on.

J2SE 5.0 introduced a new facility known as annotations.

Annotations are a metaprogramming facility that allows you

to mark code with arbitrarily defined tags. The tags

(generally) have no meaning to the Java compiler or runtime

itself. Instead, other tools can interpret these tags. Examples

of tools for which annotations might be useful include IDEs,

testing tools, profiling tools, and code-generation tools

[3][11]. In this paper you will learn to build a testing tool,

similar to JUnit, based upon Java‟s annotation capabilities.

The testing tool, like JUnit, will need to allow developers to

specify assertions. Instead of coding assertion methods, the

Java‟s built-in assertion capabilities are as follows:

• assertions

• annotations and annotation types

• retention policies for annotations

• annotation targets

• member-value pairs

• default values for annotation members

• allowable annotation member types

• package annotations

• compatibility considerations for annotations

JSR 308 extends Java‟s annotation system [17] so that

annotations may appear on nearly any use of a type. This

generalization removes limitations of Java‟s annotation

system, and it enables new uses of annotations. This proposal

also notes a few other possible extensions to annotations. This

paper specifies the syntax of extended Java annotations, but it

makes no commitment as to their semantics. As with Java‟s

existing annotations [17], the semantics is dependent on

annotation processors and not every annotation is necessarily

sensible in every location where it is syntactically permitted to

appear. Common Annotations for the Java Platform [13], and

proposed annotations, such as those to be specified in JSR

305, Annotations for Software Defect Detection [18]. The

proposal merely makes annotations more general and thus

more useful for their current purposes, and also usable for

new purposes that are compatible with the original vision for

annotations [16]. A JSR, or Java Specification Request, is a

proposed specification for some aspect of the Java platform.

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

15

1.1. Why Annotations?

 In programming paradigm, there are two approaches:

imperative programming and declarative programming [1][7].

Imperative programming specifies the algorithm to achieve a

goal, whereas declarative programming specifies the goal and

leaves the implementation of the algorithm to the support

software. In other words, "specifying how" describes

imperative programming and "specifying what is to be done,

not how" describes declarative programming. The Java EE

platform has always been very supportive for using a

declarative approach. Many of the APIs require boilerplate

code, using external files-deployment descriptors-to specify

the declarative information [6]. For example, in an Enterprise

JavaBean (EJB), much of the information about the bean goes

into the deployment descriptor file. It would be better and

more convenient if the code that goes into the deployment

descriptor were to be maintained as part of the program itself,

but in a declarative way. This is where the actual usage of

annotations comes in: they allow us to move the information

into the source code and thus help in avoiding unnecessary

boilerplate code. Writing EJBs using the annotations in EJB

3.0 is much easier compared to in earlier releases.

 Annotations significantly simplify the developer's work-

instead of using an API [1]or creating an additional

deployment descriptor to request the container to do

something, the request for the container can be put in the code

directly. The biggest advantage of annotations is that they

significantly reduce the amount of code a developer needs to

write. Another advantage is that they are very open and

flexible in terms of the functionality they offer, so that types

of logic that were tedious to write using earlier versions can

be written easily using annotations.

1.2 Motivation

 Many APIs require “side files” to be maintained in parallel

with the programs. These are maintained for configuration,

mapping, and documentation purposes. In Hibernate[1], an

XML file which contains mapping information is maintained.

Hibernate is a powerful, ultra – high performance

object/relational persistence and query service for Java.

Hibernate lets us develop persistent classes and along with the

classes their associations can also be persisted. The term

object/relational mapping (ORM) refers to the technique of

mapping a data representation from an object model to a

relational model with a SQL – based schema. It provides

simple „load‟ and „save‟ operations using which complex SQL

statements could be avoided. Hibernate needs to know how to

load and store objects of the persistent class. This is where the

Hibernate mapping XML file is used. The mapping file tells

Hibernate what table in the database it has to access, and what

columns in that table it should use.

We have a class Event which contains the information about

the events like the date and name. To make a class persistent,

it has to contain a unique id. The Event class will look as

follows:

 import java.util.Date;

 public class Event {

 private Long id;

 private String title;

 private Date date;

 protected Event() {}

 public Long getId()

 {

 return id;

 }

 public void setId(Long id)

 {

 this.id = id;

 }

 public Date getDate()

 {

 return date;

 }

 public void setDate(Date date)

 {

 this.date = date;

 }

 public String getTitle()

 {

 return title;

 }

 public void setTitle(String title)

 {

 this.title = title;

 }

}

 The XML mapping file for the above class will look as

follows:

 <hibernate-mapping>

 <class name="Event" table="EVENTS">

 <id name="id" column="EVENT_ID">

 <generator class="increment"/>

 </id>

 <property name=”date” type=”timestamp”

 column=”EVENT_DATE”/>

 <property name="title"/>

 </class>

 </hibernate-mapping>

This shows that the „Event‟ class should be mapped to the

Events relational table „Event‟ and the properties of the class

should be mapped to their respective columns in the table

[1][3]. The id element is the declaration of the identifier

property, name="id" declares the name of the Java property -

Hibernate will use the getter and setter methods to access the

property. The column attribute tells Hibernate which column

of the EVENTS table we use for this primary key. The nested

generator element specifies the identifier generation strategy;

in this case increment was used, which is a very simple in-

memory number increment method useful mostly for testing

(and tutorials). Hibernate also supports database generated,

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

16

globally unique, as well as application assigned identifiers (or

any strategy we have written an extension for).

This XML file was a side file which has to be maintained

along with the program files. The disadvantage with this

approach was that if something was changed in the program

file then the developer should remember to change the XML

mapping file as well. This was the case till Hibernate version

3.0.5. But Hibernate 3.1 used Java annotations for this

mapping making this a simple process. These annotations

could be written along with the source code files. So if there

are any changes to the source code then it becomes easy to

change the mapping part as well. The annotated class „Event‟

[9][10] will look as follows:

 import java.util.Date;

 @Table (name=”Events”)

 public class Event

 {

 private Long id;

 private String title;

 private Date date;

 protected Event() {}

 @Id (generator=GeneratorType.SEQUENCE)

 public Long getId()

 {

 return id;

 }

 public void setId(Long id)

 {

 this.id = id;

 }

 @Column (name=”EVENT_DATE”)

 public Date getDate()

 {

 return date;

 }

 public void setDate(Date date)

 {

 this.date = date;

 }

 @Column (name=”TITLE”)

 public String getTitle()

 {

 return title;

 }

 public void setTitle(String title)

 {

 this.title = title;

 }

}

 The above code looks more compact and it is easy to

maintain it when compared to the XML mapping technique

used previously.

2. ANNOTATIONS
Annotations [2] are declarative and descriptive statements

which represent metadata. In Java, annotations were

introduced in its latest version J2SE 1.5 (called version 5)

code named Tiger [14][17]. In previous versions of Java, there

was a very limited support for including metadata in the form

of javadoc tags. These tags were mainly for documentations

purposes. But with J2SE 5, Java‟s metadata capability went to

a new level. It provides several built-in annotations and we

can create our own annotations as well. These are called

custom annotations.

2.1 Built – in Annotations

There are six built – in annotations. They are:

Overrides: They are used only on methods. They are used to

specify that a method on which it is decorated must override a

method in its superclass.

Documented: This is applied only on other annotations. This

is a meta-annotation. It is used to specify that the annotation

should be documented. This is just a hint.

Deprecated: This is used to give a hint to the compiler to

warn the users who are using the element this was annotated

with. A better alternative for the element would exist.

Inherited: This is a meta-annotation. If an annotation is

decorated with this one then all the subclasses of a class will

also inherit this annotation

Retention: This is also a meta-annotation. This is used to

specify the decorated annotation‟s availability. There are three

values for this one – source, class, runtime.

Target: This annotation is used to indicate the type of

program elements to which the declared annotation is

applicable. The possible program elements to which

annotations can be applied are class, method, field, package

declaration, constructor, parameter, local variable or another

annotation.

 Eg: @Documented

 @Retention(RetentionPolicy.RUNTIME)

 @Target(ElementType.ANNOTATION_TYPE)

 public @interface Target

 {

 ElementType[] value();

 }

 Except for Overrides annotation, all the others can be used

as meta-annotations i.e. they can be used to annotate another

annotation just like meta meta-data.

 2.2 Custom Annotations

Apart from these built-in annotations, we can create our own

annotations which are called custom annotations. The general

syntax for creating an annotation is as follows:

 @Typename

 {

 MemberValuePairs

 }

 Any member can be given a default value.

 Eg: public @interface RequestForEnhancement

 {

 int id();

 String synopsis();

 String engineer();

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

17

 String date();

 }

 This annotation can be used as follows

 @RequestForEnhancement(id=1234, synopsis=“provide

better GUI”,

 engineer=“John”, date=”12/10/2005”);

 public void UIManager()

 { }

 There are other types of annotations called marker

annotations which have no members and single member

annotations which have only a single member.

2.3 Annotations for Transactions

Annotations can be used to specify the transaction

management types [5], instead of writing transaction-related

XML tags in the deployment descriptor. The annotation

@TransactionManagement specifies whether a bean uses

container-managed or bean-managed transactions. The type of

transaction is specified using TransactionManagementType in

the value element of the annotation. The default type is

container-managed transaction. To specify the transaction

attributes to all methods of a business interface or to the

individual methods of the bean class, the

@TransactionAttribute annotation can be used. This

annotation requires a single argument of the enumerated type

TransactionAttributeType, the values of which are

MANDATORY, REQUIRED, REQUIRES_NEW,

SUPPORTS, NOT_SUPPORTED, and NEVER. If the

@TransactionAttribute annotation is not specified, the default

attribute REQUIRED will be applied. These annotations are

defined as part of EJB 3.0 specification available in the

javax.ejb package.

.........

@TransactionManagement

 (value=TransactionManagementType.CONTAINER)

public class StockQuoteImpl implements StockQuote{

@TransactionAttribute(TransactionAttributeType.REQUIRE

D)

 public double getStockQuote(String symbol) {

 }

 }

2.4 Annotations for Security

Security for enterprise applications can be specified using the

deployment descriptors [3], using either the declarative or

programmatic model. Starting with the Java EE 5 platform,

annotations can be used to specify security constraints instead

of using deployment descriptors. To support the declarative

security model, we have annotations defined in JSR 250 to

facilitate the usage of security annotations to all managed

components. The annotation @DeclareRoles is used to

declare security roles. This annotation provides support for

declaring more than one role. Other security related

annotations, including @RolesAllowed, @DenyAll, and

@PermitAll, give permission to the role to invoke the

methods.

@RolesAllowed("admin")

public class Department {

 public void setDeptId () {...}

 public void getDeptId () {...}

 ...

}

public class RegularCourse extends Course {

 @RolesAllowed("courseowner")

 public Course addCourse() {...}

 @RolesAllowed("admin")

 public void removeCourse() {...}

 ...

}

2.4.1 Annotations for Dependency Injection:

 Annotations serve multiple purposes [9][15]. Some

annotations provide an alternative to XML deployment

descriptors, while some annotations allow components to

request the container's help for doing certain tasks that the

components would otherwise have to perform themselves.

While we have already discussed the first type, we will now

look at this second type of annotation. Most enterprise

application components like servlets, JSPs, and EJBs used in

enterprise applications use external resources and services

such as data sources, mail sources, environment entries, and

EJB context. Prior to Java EE 5, applications had to explicitly

declare their dependency on these external resources in the

deployment descriptor files, and obtain a reference to these

resources using JNDI. Developers found it very difficult to

understand this model because of its complexities. To reduce

the complexity of this model, Java EE 5 introduced another

important concept called dependency injection.

 Dependency injection is a mechanism [2] in which a

component's dependencies are supplied by the container. The

dependency on a resource is marked using annotations or

declared in the deployment descriptor file. Dependency

injection (aka "resource injection") is nothing but the inverse

of JNDI. Instead of the component explicitly requesting a

resource, now the Java EE 5.0 container injects an instance of

the resource when it's required. The injection could be at the

field level or at the method level (typically on a setter

method). The Java EE 5 platform defines annotations to

support a variety of injections.

 Dependency injection can be applied to all resources that a

component needs. Dependency injection can be used in EJB

containers, web containers, and application clients. However,

resource injection can be requested only by components that

are managed by the container. To request injection of any type

of resource, a component uses the @Resource and

@Resources (for more than one resource) annotations. These

annotations are defined as part of JSR 250, in the

javax.annotation package. To request injection of an EJB, the

@EJB and @EJBs annotations are used, defined in the

javax.ejb package as part of JSR 220. To request injection for

web services, @WebServiceRef and @WebServiceRefs

annotations are used. Annotations for web services are

defined as part of JSR 224: Java API for XML-Based Web

Services (JAX-WS) 2.0.

 The following resources can be injected using the

@Resource, @EJB, and @WebServiceRef annotations:

2.4.2 Using @EJB

 A client can obtain a session bean's business interface

through dependency injection using the @EJB annotation

instead of using JNDI lookups. Java EE application clients

refer to enterprise bean instances by annotating static fields

with this annotation. For example, the business interface

StockQuote of the bean can be obtained using:

.........

@EJB

StockQuote stockquote;

double amount = stockquote.getStockQuote("INFY");

.........

http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

18

2.4.3 Using @WebServiceRef

 The @WebServiceRef annotation provides a reference to a

web service. The reference to a web service can be declared

as:

.........

@WebServiceRef

(wsdlLocation =

"http://localhost:8080/stockquoteservice/stockquote?wsdl")

.........

2.4.4 Using @Resource

 The @Resource annotation can be used to declare a

reference to any resource that is not annotated using the

@EJB and @WebServiceRef annotations.

 This annotation allows dependencies to be injected directly

into the component [15], avoiding the need for JNDI lookups.

The annotation @Resource can decorate a class, a field, or a

method. The container will inject the resource referred to by

@Resource into the component either at runtime or when the

component is initializing, depending on whether field/method

injection or class injection is used. With field/method-based

injection, the container will inject the resource when the

application is initialized. For class-based injection, the

resource is looked up by the application at runtime.

The annotation@Resource (javax.annotation. Resource) has

the following elements:

name: The JNDI name of the resource.

type: The Java language type of the resource.

authenticationType: The authentication type to use

for the resource.

shareable: Indicates whether the resource can be

shared.

mappedName: A non-portable, implementation-

specific name to which the resource should be

mapped.

description: The description of the resource.

Let us look at how Java EE 5 platform has simplified the

access to resources using @Resource annotation.

2.4.5 Using @Resource for Data Source

The @Resource annotation can be used instead of using JNDI

API to inject a data source into a component that needs to

make a connection to a database. For example, if you have a

data source named StockQuoteDS, you can obtain a reference

to that data source as follows:

.........

@Resource

javax.sql.DataSource stockquoteDS;

public Object getStockTicker() {

 Connection con = stockquoteDS.getConnection();

}

.........

The @Resource annotation allows developers to skip the

boilerplate code that was previously required to get access to a

resource.

2.4.6 Using @Resource for EJB Context

The @Resource annotation can also be used to inject the

bean's context--SessionContext and MessageDrivenContext--

through a dependency injection.

.........

@Resource

javax.ejb.SessionContext ctx;

@Resource

private javax.ejb.MessageDrivenContext mdbCtx;

.........

2.4.7 Using @Resource for JavaMail

The @Resource annotation can be used to inject an instance

of a JavaMail Session into the application. The Session class

represents a mail session, which collects together properties

and defaults used by the mail APIs.

.........

@Resource

private javax.mail.Session session;

.........

2.4.8 Using @Resource for Transactions

The @Resource annotation can be used to inject a

UserTransaction into a component that is managing the

transactions on its own. The

javax.transaction.UserTransaction is an interface to the

underlying JTA transaction manager. After obtaining a

reference to the UserTransaction resource, a component can

invoke the begin, commit, and rollback methods on the

UserTransaction object to mark the boundaries of the

transaction.

.........

@Resource

UserTransaction utx;

.........

try {

 utx.begin();

 utx.commit();

} catch(Exception err) {

 utx.rollback();

}

.........

2.4.9 Using @Resource for Timer Service

Timed notifications can be scheduled for all types of

enterprise beans (except for stateful session beans) with the

help of a timer service provided by the enterprise bean

container. EJB components can access to the container-

managed timer service using javax.ejb.TimerService. The

@Resource annotation can be used to inject a TimerService

into an enterprise bean component.

.........

@Resource

javax.ejb.TimerService timerService;

.........

timerService.createTimer(100, "Sample");

.........

2.4.10 Using @Resource for JMS

The @Resource annotation can be used to inject JMS resource

factories, such as connection factories and JMS destinations

like Queue or Topic. The dependency of the component on

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

19

these resources can be specified using @Resource annotation.

The component can inject the connection factory and the

destination resources using @Resource annotation as

demonstrated below:

.........

@Resource(mappedName = "jms/ConnectionFactory")

private ConnectionFactory connectionFactory;

@Resource(mappedName = "jms/Queue")

private Queue simpleQueue;

@Resource(name="jms/StockTopic", type=javax.jms.Topic)

.........

2.4.11 Using @Resource for Environment Entries

Environment entries are configuration parameters used to

customize the enterprise bean's business logic. For example,

in your application, suppose that you want to give a discount

on the final amount for a user who had purchased items for

more than $1000. It doesn't make sense to hardcode this into

the application, because you might want to change the value

of the discount in the future. The annotation @Resource can

be used to inject simple environment entries into a field or a

method of the bean class as follows.

.........

@Resource

double maxDiscount = 0.2;

@Resource

double minDiscount = 0.05;

.........

Earlier, this was achieved using the XML tags in the

deployment descriptor. However, using the deployment

descriptor is the best suitable solution for using environment

entries, as it doesn't make sense to have annotations to specify

them, because annotations are part of application code.

2.4.12 Using @Resources for Declaring Multiple

Resources

The annotation @Resources can be used to inject multiple

resources or used to group together multiple @Resource

declarations. The following code sample uses the @Resources

annotation to group two @Resource declarations. One is a

JMS message queue connection factory and the other is a data

source.

@Resources ({

@Resource(name="stockQueue", type=

 javax.jms.QueueConnectionFactory),

@Resource(name="sqDB", type=java.sql.DataSource)

})

public class StockMDB {

.........

3. REFLECTION IN HIBERNATE:
 Annotations are compiled into the bytecode and read at

runtime using reflection. Using reflection, Hibernate can read

the annotations present in the program and take appropriate

action. Annotations are present on top of classes and fields,

after reading them Hibernate connects to the database server

and updates the tables [9]. This part is invisible to the users

making the ORM process easy. Normally if Hibernate is not

used, then users themselves have to do these things.

3.1. Reflection:
 The JVM reads the annotations present in the code and

takes action appropriately. But this can only be done for built-

in annotations. For custom annotations, we have to specify

what action should be taken for a particular annotation.

Reflection [3] helps in this regard. Reflection API helps in the

introspection of meta-information in the programs. A program

that can analyze the capabilities of classes is called reflective.

Generally reflection API is used when writing tools such as

debuggers, class browsers and GUI builders. With the

reflection API we can do the following

 Determine the class of an object.

 Get information about a class‟s modifiers, fields,

methods, constructors and superclasses.

 Find out what constants and methods belong to an

interface.

 Create an instance of a class whose name is not

known until runtime.

 Get and set the value of an object‟s field, even if the

field name is unknown to your program until

runtime.

 Invoke a method on an object, even if the method is

not known until runtime.

 Create a new array, whose size and component type

are not known until runtime, and then modify the

array‟s components.

 Read the annotations present in the program and

take appropriate action.

 The main classes in this API are java.lang. Class, Field,

Method, Constructor of the java.lang.reflect package [13].

They describe the class information, fields, methods,

constructors respectively. The interface AnnotatedElement

has been added to Java 5. All the before said classes

implement this interface. This interface specifies methods to

retrieve all the annotations, annotations by type, annotations

declared in a particular class and also a method to query

whether or not a class contains an annotation of a particular

type.

Eg: Suppose an annotation called SampleAnnotation is

created and it is present on the class AnnotatedElementTest

and on method dummy(), then the following code snippet can

be used to read those annotations at runtime.

Class<AnnotatedElementTest> c =

AnnotatedElementTest.class;

 System.out.println(“Is annotation present:” +

c.isAnnotationPresent(SampleAnnotation.class));

System.out.println(c.getAnnotation(SampleAnnotation.class))

;

 Method m = c.getMethod(“dummy”);

 for(Annotation a: m.getAnnotations())

 {

 System.out.println(“Annotation:” + a);

 }

 This code prints all the annotations present on the method

dummy and on the class AnnotatedElementTest. Instead of

printing something more useful can be done like connecting to

the database or producing documentation.

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

20

3.2 .NET Attributes:

 Similar to annotations in Java, there are attributes in .NET.

They are used to represent metadata. .NET supports many

built – in attributes. Unlike in Java, attributes follow the

normal syntax of a class. Fields are defined normally. Some

examples are given below

Eg: A custom attribute called HelpAttribute is made which

points to a URL which contains help topics.

using System;

[AttributeUsage(AttributeTargets.All)]

public class HelpAttribute : System.Attribute

{

 public readonly string Url;

 public string Topic {

 get

 {

 return topic;

 }

 set

 {

 topic = value;

 }

 }

 public HelpAttribute(string url)

 {

 this.Url = url;

 }

 private string topic;

}

Now this attribute can be used as follows:

[HelpAttribute("http://localhost/MyClassInfo")]

class MyClass

{

 }

This specifies the help file of „MyClass‟.

4. APPLICATIONS
 Usage of annotations in Java EE applications introduces a

simpler, POJO-based model and eliminates much of the

boilerplate code that is required in earlier versions.

Annotations make the deployment descriptors

optional][11][16]. Deployment descriptors are typically used

when there is a need to overwrite the value specified by the

annotations. Also, the greatest advantage of the annotation

framework is that it is completely extensible, so future

versions of Java EE can expand the existing annotations and

introduce new ones.

Few other possible applications of annotations:

 Object-relational mapping - support for persistent

objects

@Entity, @Table, @Id, @OneToMany, etc.

 Web services:

@WebService, @WebMethod, etc.

 Remote objects (EJB)

@EJB, @Remote

 Event Handling

@Action,@ActionListenerFor

 Unit testing

@Test

 Concurrency

@ThreadSafe, @GuardedBy

 Static analysis

@NonNull, @PreCondition

 Alloy Annotation Language: The Alloy

Annotation Language (AAL)[4] is a language for

annotating Java code. This was developed before Java

introduced annotations. But this was developed with

the same intention and takes advantage of using

annotations in source code. AAL, in addition to

providing opportunity for generation of runtime

assertions, can be used for automatic compile-time

analysis. It supports several kinds of analysis such as:

 Checking the code of a method against its

specification.

 Checking that the specification of a method in a

subclass is

 compatible with the specification in the superclass.

 Checking properties relating method calls on

different objects such as that the equals method of a

class (and its overridings induce equivalence).

 Using partial models in place of code, it is also

possible to analyze object-oriented designs in the

abstract: investigating, for example, a view

relationship amongst objects.

 AAL provides a light weight approach to code annotation.

It can be used to test pre and post conditions. AAL is based on

simple first-order logic with relational operators, and is thus

more in the tradition of

semantic data modeling (now called “object modeling”). It

can be used to check code against specifications, producing

counterexample traces that show how a method‟s code

misbehaves. It can be used to generate test cases from

invariants and preconditions fully automatically; this is

especially useful for elaborate data structures, such as trees,

which cannot be generated randomly because of intricate

structural constraints, and are tedious to generate manually. It

can also be used for more elaborate checks that are easily

expressed in our logic.

 AAL includes the following parts. Each method may

be annotated with three formulas – a precondition (labeled

requires), a post condition (labeled ensures), and a behavior

model (labeled does) – and a frame condition (labeled

modifies). The precondition, post condition and frame

condition together form a specification, which is used to

check the code of the method. In the checking of a client, the

specification may be used as a surrogate.

 Eg: Here we consider the equals method of java.awt.

Dimension that is a non - final class from the standard Java

library[7]. An object of Dimension class has two integer

fields‟ width and height. AAL can be used to annotate this

method.

class Dimension

 {

 int width, height;

 // @ does

 // @ {

 // @ \ result = (obj instanceof Dimension &&

International Journal of Computer Applications (0975 – 8887)

Volume 16– No.8, February 2011

21

 // @ this.widht = obj.width &&

 // @ this.height = obj.height)

 // @ }

 public boolean equals (Object obj)

 {

 if(!(obj instance of Dimension))

 return false;

Dimension d = (Dimension)obj;

 Return (d.width == this.width && d.height == this.height);

 }

 }

 The does annotation specifies a model for the method.

Such model can be provided by the programmer or can be

generated automatically from the code. A model is a formula

over the method parameters, classes and fields.

 Annotations need not be used in applications which do not

require metadata to be stored or in applications which do not

need configuration or mapping. Stand alone applications like

games – Chess, MineSweeper etc need not use annotations.

But they are useful for client – server, ORM tools, testing

frameworks type of applications.

5. CONCLUSION:
 Attribute-based programming is an emerging field and

many programming languages have only recently added

support for attributes / annotations. Java started supporting it

in its latest version J2SE 1.5 code named Tiger. .NET calls

this feature as attributes. But .NET‟s attribute feature is

advanced when compared to Java‟s annotations. The former

provides many built-in attributes. Annotations are used in

many applications and tools. They are also used for

configuration. Applications which use Java‟s annotations are

starting to come up. Annotations are an important new

language feature in Java, the use of annotations in Java

libraries and tools is rapidly increasing, both in standard Java

APIs and 3rd party add-ons. A number of JSR groups are

working on standard annotations for particular aspects of

Java. The J2SE 6 compiler can be extended by adding

annotation processors to the class path of the compiler,

Annotation processing can also be done at load time, and thus,

the power of annotations is limited only by the imagination of

the annotation creator. In the future, we can see more and

more applications and tools which make use of annotations.

REFERENCES:

[1] Lilian Burdy, Marieke Huisman, and Mariela Pavlova, “

Preliminary design of BML: A behavioral interface

specification language for Java bytecode”, In

Fundamental Approaches to Software Engineering, pages
215–229, Braga, Portugal, March 27–30, 2007.

[2] Sun Documentation on Annotations

http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html

[3] Sun Documentation on Reflection
http://java.sun.com/docs/books/tutorial/reflect

[4] Sarfraz Kurshid, Darkov Morinov, Daniel Jackson, “An

Analyzable Annotation Language.” ACM November,
2002.

[5] Pominville, Feng Qian, Raja Vallee-Rai, Laurie Hendren,

Clark Verbrugge. “A Framework for Optimizing Java
Using Attributes. Patrice ACM November 2000.

[6] Tom Mens, Roel Wuyts, Kris De Volder, Kim Mens,

“Declarative Meta Programming to Support Software

Development: Workshop Report.” ACM SIGSOFT
March 2003.

[7] Michael Thies, “Annotating Java Libraries in Support of
Whole – Program Optimization,” ACM 2002.

[8] " Web Tier to Go With Java EE 5: A Look at Resource
Injection"

[9] Mats Skoglund and Tobias Wrigstad. „A mode system for

read-only references in Java”, In FTfJP‟2001: 3rd

Workshop on Formal Techniques for Java-like Programs,

Glasgow, Scotland, June 18, 2001.

[10] Ma X, Lee H, Bird S, Maeda K, “Models and tools for

collaborative annotation,” In Proceedings of 3rd

Language Resources and Evaluation Conference

(LREC'2002), Gran Canaria, Spain.

[11] Cunningham H, Maynard D, Bontcheva K, Tablan V

“GATE: A framework and graphical development

environment for robust NLP tools and applications”,. In

Proceedings of the 40th Anniversary Meeting of the

Association for Computational Linguistics (ACL’02).
Philadelphia, US.

[12] Chris Male, David Pearce, Alex Potanin, and Constantine

Dymnikov” Java bytecode verification for @NonNull

types”, In Compiler Construction: 14th International

Conference, CC 2008, pages 229–244, Budapest,

Hungary, April 3–4, 2008.

[13] Rajiv Mordani, “JSR 250: Common annotations for the

Java platform”, http://jcp.org/en/jsr/ detail?id=250, May
11, 2006.

[14] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr.,

Jeff H. Perkins, and Michael D. Ernst, “Practical

pluggable types for Java. In ISSTA”, Proceedings of the

2008 International Symposium on Software Testing and

Analysis, pages 201–212, Seattle, WA, USA, July 22–
24, 2008.

[15] An Oracle White Paper, Introduction to Java Platform,
Enterprise Edition 6, April 2010

[16] Trevor Harmon and Raymond Klefstad, “Toward a

unified standard for worst-case execution time

annotations in real-time Java” In WPDRTS 2007,

Fifteenth International Workshop on Parallel and

Distributed Real-Time Systems, Long Beach, CA, USA,
March 2007.

[17] Joshua Bloch, “JSR 175: A metadata facility for the Java

programming language”, http://jcp.org/en/
jsr/detail?id=175, September 30, 2004.

[18] William Pugh, “JSR 305: Annotations for software defect

detection”, http://jcp.org/en/jsr/detail? id=305, August
29, 2006. JSR Review Ballot version.

http://java.sun.com/j2se/1.5.0/docs/guide/language/%20annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/%20annotations.html
http://java.sun.com/docs/books/tutorial/reflect
http://java.sun.com/developer/technicalArticles/J2EE/injection/index.html
http://java.sun.com/developer/technicalArticles/J2EE/injection/index.html
http://jcp.org/en/
http://jcp.org/en/jsr/detail

