
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

13

A Study on Visual Programming Extension of JavaScript

Wajid Ali

National University of Computer
and Emerging Sciences

B-Block, Faisal Town
Lahore, Pakistan

Kanwal Sultana
National University of Computer

and Emerging Sciences
B-Block, Faisal Town

Lahore, Pakistan

Sophia Pervez
National University of Computer

and Emerging Sciences
B-Block, Faisal Town

Lahore, Pakistan

ABSTRACT

Visual programming extension of JavaScript language is

presented and discussed. The aim of designing this language

is to make programming simple, easy and more

understandable to the audience who are fresh or new in

programming, to improve the correctness with which people

perform programming tasks, and/or to improve the speed with

which people perform programming tasks. It provides ease to

programmers, i.e. they are not required to learn or remember

syntax. They will just have to enter the values using visual

constructs. It is an attempt to make programming and

maintenance of programs easier, and therefore cheaper. A

hybrid technique is used to design VPxJavaScript, both

symbols and text will be used to construct a program using

this language. While deciding symbols to be used in, it was

kept in mind that symbols must be as few as possible and

most understandable shapes have been selected to represent

corresponding constructs of JavaScript. The above aspect

helped us in designing visual programming in order to keep

the language more readable, understandable and writable.

This paper highlights the usefulness of each symbol and

discusses visual representation of normal JavaScript code.

This paper also discussed the problems in JavaScript and

proposed solution of problem and its equivalent visual

representation.

General Terms

Visual Programing Language, Theory of Programming

Languages.

Keywords

VPL, Visual Programming Language, JavaScript.

1. INTRODUCTION
Research on visual programming languages (VPL) got started

in an aim at offering possibilities of solving problems by

describing their properties or their behavior using

graphical/iconic definition [8]. It is an attempt to make

programming easy, useful for the people who are new in

programming or they were not to remember syntax. VPL also

makes the maintenance of programs easier, and therefore

cheaper. There is no doubt that programming, especially when

program size grows, is difficult; many books have been

written about the subject. It is also a known fact that program

maintenance is a major contributor to total software costs [3].

Based, at least in part, on the observation that programmers,

when trying to figure out some difficult part of a program,

often resort to drawing pictures [2], early research on visual

programming languages was begun. Even in recent VPL

research, terms like ease of use and intuitive are still used

prominently.

There is not a consensual definition for visual languages (VL).

The intuition says that almost everything that uses

composition of figures, instead of words, in order to transmit a

message, can be considered a VL. In this sense, there are

many types of VL. Examples cover a large range from the

daily used musical scores or traffic signals, and those more

specific like modeling languages for definition of Entity-

Relation Diagrams (ERD), Class Diagrams, and so forth [9].

The idea of visual programming is based on computer

graphics, programming languages, and human-computer

interaction [10]. A visual Language manipulates visual

information or supports visual interaction, or allows

programming with visual expressions. The latter is taken to be

the definition of a visual programming language. Visual

programming environments provide graphical or iconic

elements which can be manipulated by the user in an

interactive way according to some specific spatial grammar

for program construction [4].

VPLs are used in many areas of computing. In databases, the

main usage of visual languages is to help on drawing the

tables and relations between them, rather than using SQL

notation. In software development, they are mostly used to

draw the system’s structure and its behavior with modeling

languages as referred before. In interface design for stand-

alone or web based applications, visual programming

languages that allow the drag, drop and composition of

interface elements like buttons, textboxes, windows, and so on

[9].

The variety of Visual Programing Languages in the history is

summarized in section 2. Section 3 includes the classification

of Visual Programming Languages. Visual Programming

Languages issues are presented in Section 4. The proposed

design of VPxJavaScript is presented in Section 5. The

problem of JavaScript and proposed solutions are discussed in

Section 6. The conclusion words are included in section 7.

2. HISTORY OF VPL
From as early as 1963, visual programming languages

research has spawned a variety of languages for the different

strains of visual programming. I.B. Sutherland introduced

Sketchpad, a visual programming language which is created

using constraint based graphics [6]. The system allowed users

to work with a lightpen to create 2D graphics by creating

simple primitives, like lines and circles, and then applying

operations, such as copy, and constraints on the geometry of

the shapes. Its graphical interface and support for user-

specifiable constraints stand out as Sketchpad’s most

important contributions to visual programming languages

[10]. Ivan Sutherland’s brother, William, also made an

important early contribution to visual programming in 1965,

when he used the TX-2 to develop a simple visual dataflow

language. The system allowed users to create, debug, and

execute dataflow diagrams in a unified visual environment

[12].

The next major milestone in the genesis of VPLs came in

1975 with the publication of David Canfield Smith’s PhD

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

14

dissertation entitled “Pygmalion: A Creative Programming

Environment” [4]. Pygmalion is an icon-based programming

language in which the user created, modified, and linked

together small pictorial objects, called icons, with defined

properties to perform computations [10]. Mark Edel

developed the graphical programming environment for the

language Lisp (used in Artificial Intelligence programming),

called Tinkertoy in 1988 [11]. In 1991, Takayuki Dan Kimura

developed a dataflow language for pen computers called

Hyperflow [13]. Margaret Burnett, Paul Carlson, et. al.

developed Forms /3, a structured form-based object-oriented

language which incorporates spreadsheet based ideas of cells

and formulae [7] in 1992. Prograoh is an object oriented VPL,

created by T. Pietryzkowski and P.T. Cox [14]. It is

commercialized by by Pictorius Inc.

3. CLASSIFICATION OF VPL
The visual programming language are classifies as, purely

visual languages, Hybrid text and visual system, programing

by demonstration, constraint based systems and form based

systems. Of course these paradigms are not mutually

exclusive; one single language may belong to more than one

paradigm. They include, among others, we presents a

summary of the each classification scheme below:

3.1 Purely Visual Languages
Purely visual languages are characterized by their reliance on

visual techniques throughout the programming process. The

programmer manipulates icons or other graphical

representations to create a program which is subsequently

debugged and executed in the same visual environment [10].

Examples of such completely visual systems include VIPR,

Prograph, and PICT.

3.2 Hybrid – Text and Visual System
These hybrid systems include both those in which programs

are created visually and then translated into an underlying

high-level textual language and systems which involve the use

of graphical elements in an otherwise textual language [10].

Examples in this category include Rehearsal World and work

by Erwig et. al.

3.3 Programming by demonstration
It is also known as programming by Example. In this system,

one instructs the computer what to do by showing examples of

proper behavior [8]. Example of these type systems is macro

in Excel.

3.4 Constraint Oriented Systems
Constraint-oriented systems are especially popular for

simulation design, in which a programmer models physical

objects as objects in the visual environment which are subject

to constraints designed to mimic the behavior of natural laws,

like gravity. Constraint-oriented systems have also found

application in the development of graphical user interfaces

[10].

3.5 Form based Systems
Apparently based on spreadsheets, but more generic, since the

program may consist of many forms, which need not be

strictly tabular. Form-based programming uses the filling in,

often with visual elements, of forms [10].

4. DESIGN STRATEGY OF VPL
A common misunderstanding is that the goal of visual

programming research in general and VPLs in particular is to

eliminate text. This is a fallacy in fact, most VPLs include text

to at least some extent, in a multidimensional context. Rather,

the overall goal of VPLs is to strive for improvements in

programming language design. The opportunity to achieve

this comes from the simple fact that VPLs have fewer

syntactic restrictions on the way a program can be expressed

(by the computer or by the human), and this affords a freedom

to explore programming mechanisms that have not previously

been tried because they have not been possible in the past.

The most common specific goals sought with VPL research

have been (1) to make programming more understandable to

some particular audience, (2) to improve the correctness with

which people perform programming tasks, and/or (3) to

improve the speed with which people perform programming

tasks.

5. DESIGN OF VPXJAVASCRIPT
We have used hybrid technique to design VPxJavaScript, both

symbols and text will be used to code a program using this

language. While deciding symbols to be used in, it was kept in

mind that symbols must be as few as possible and most

understandable shapes have been selected to represent

corresponding constructs of JavaScript. The above aspect

helped us in designing visual programming in order to keep

the language more readable, understandable and writable.

5.1 Comments
In JavaScript, there are two methods of writing comments,

one is single-line comments and other is multi-line comments.

The single-line comments begin with flash slash “//” and must

end on same line while multi-line comments may exceed the

length of a line. The opening part is “/*” and the closing part

is “*/”. The equivalent proposed visual representation of

comment is

The above symbol is used for commenting the program where

the user can give his/her desired description regarding the

program. To comment program area that includes constructs,

but that are not part of the program, color of the constructs

will be changed. And light green color is decided for this

purpose, because this color can be used to distinguish between

the included and excluded constructs.

5.2 Variable Declaration

The above construct is used to declare a variable. The

declared variable must have a valid name filed, whereas the

value field is optional. If this value is given in inverted

commas, variable type will be of string and if the variable is

assigned a value of numeric type, the variable will have the

type accordingly. The equivalent JavaScript examples are

Var a;

Var a = 2;

Var

Name

Value

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

15

5.3 Statement

The above construct is used to include assignment statements

in the program. As shown above, there are two drop down

menus, one is for declared variables and the other is for

mathematical operators including library functions. The

rectangular bar inside the box is used to write mathematical

expressions and for assignment purposes. By clicking on the

plus button along the rectangular bar, another bar will appear

where next statement can be written. Only one statement will

be allowed to be written in one rectangular bar. The

JavaScript equivalent code examples are

A = 5 + b – d;

B = 5.5 + “String”

5.4 Connector

By right clicking the above symbol following popup appears.

The above symbol is used to add new constructs in the

program. It performs the following two functions; one is work

as a connector and other works as a terminator. It provides

control to the program, i.e. help programmer, what to do next.

5.5 If-statement

The above construct is used for the if statement, if the

condition in the diamond shaped box will be satisfied ,star

will allow you to add other constructs for further processing,

otherwise in case of unsatisfactory conditions, control will be

given to end if part. The end if part works as parenthesis of

the if-statement. The Java Script equivalent code is

if (condition)

{

Connector to add new construct

}

5.6 If-else-statement

The above construct is designed for if then else condition. In

case of satisfactory conditions, control will be given to the

execution of if part whereas in case of unsatisfactory

condition, control will be given to else part for further

processing. The equivalent Java Script code for if-else

statement is

if (condition)

{

 Connector to add new construct

}

else

{

 Connector to add new construct

}

Nested If-else statement code is

if (condition)

{

 Connector to add new construct

}

else if (condition)

{

 Connector to add new construct

}

else

{

 Connector to add new construct

}

5.7 Switch Statements

Statement: Operator Function Variable

Variable

A

B

.

.

Operator

+

-

*

.

Statement

If-else

Switch

For

While

Do While

End

End If
If

No

Yes

End If
If

No

Yes

Case

Default

Break

Break

End Switch

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

16

The above construct is designed for switch statement, if the

user wants to check more than one cases, it is given the

flexibility of adding another case by clicking on the star in the

switch menu. While including another case, another

parallelogram will be created and further constructs can be

added according to the requirement of the program. After

executing a certain case, break will bring the control to the

end of switch construct. The equivalent Java Script code is

switch (expression)

{

 case label1:

 connector to add new construct

 break;

 case label2:

 connector to add new construct

 break;

 default:

 connector to add new construct

}

5.8 For Loop

The proposed construct above is used to design for loop. In

case of satisfactory condition, further processing can be done

through star. After processing the body of the loop post

assignment is done in order to preserve the structure of for

loop. In case of unsatisfactory condition, loop will be

terminated and the control is given to the end of the loop.

The Java Script equivalent code is

for ([Initial Expression;] [condition;] [operation])

{

 connector to add new construct

}

5.9 While loop
In this construct, while loop is designed by first checking the

condition. In case of true result, control is given to the star for

adding desired constructs. The other possibility, that is,

getting false result, will lead the program to the termination of

while loop.

The Java Script equivalent code is

while (condition)

{

 Connector

}

5.10 Do-While loop

In the below construct, do while loop is designed in a way that

it performs the required operation without checking any

condition. In the end, a condition is checked, if the program

meets the given condition, it will perform the same sequence

until the given condition gives the false value as a result of

execution.

The equivalent Java Script code is

do

{

 Statement

}

while (expression);

5.11 Array
The below construct is designed for array declaration and

initialization. In case of declaration value will not be

mandatory, while when initializing array it will be mandatory.

The Java Script equivalent code

var n_array = new Array(21, 22, 23, 24, 25);

or

var days_of_week = new Array(7);

days_of_week[0] = "Sunday";

days_of_week[1] = "Monday";

days_of_week[2] = "Tuesday";

Var

Name

Value

End Switch

Yes

Post Statement

No

End While

No

Yes

End Do While

No

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

17

days_of_week[3] = "Wednesday";

days_of_week[4] = "Thursday";

days_of_week[5] = "Friday";

days_of_week[6] = "Saturday";

5.12 Function

This symbol represents the FUNCTION in the Visual

JavaScript. It has four parts. First part is reserved word

function. The optional second part is the function's name. The

third part is the set of parameters of the function (zero or more

parameter names). The fourth part is a set of statements

which presented here as connecter. These statements are the

body of the function.

The Java Script equivalent code

function calcDiv(val1, val2)

{

 var myval

 myval = val1/val2

 return myval

}

6. SOLUTIONS TO THE PROBLEMS IN

JAVASCRIPT
There are few problems in the design of JavaScript. We have

identified them and propose solution to them to handle in

VPxJavaScript.

6.1 Case Sensitivity
The JavaScript is a case-sensitive language whereas HTML is

case insensitive. Because of its close association with

JavaScript, it is very easy for the programmer to get confused.

Therefore the program may not be writable. For example, The

statement document.write() is legal, but document.Write() is

not valid. A variable name strname is not the same as a

variable named STRNAME. Case sensitivity in variable

names causes readability problem. For example: if a user

declares sum as integer and Sum as float, later he mistakenly

assigns float value to sum which leads to incorrect results.

The solution to this problem is to make variable names to case

insensitive i.e. strname is the same as STRNAME. To

improve the readability of a program and maintain the

consistency in the program, we chose VPxJavaScript case-

insensitive.

6.2 Data Types
The JavaScript is a "loosely typed" language, means you don't

need to specify the type of data being declared in a variable.

The type of data can be changed later in the script without

causing an error message. The JavaScript interpreter will

determine the data type when it's processed within the script.

There are four basic data types used in JavaScript: Strings,

Numbers, Booleans, and Nulls. A string is enclosed in quotes

(" ") to set it apart from the actual code. Either single or

float quotes can be used but you must be consistent.

JavaScript recognizes two types of numbers: integers and

floating point numbers. Integers are whole numbers (e.g., 1,

20, 546) and floating point numbers are numbers that have a

decimal point (e.g., 23.8, 23.890). Unless otherwise specified,

JavaScript treats all numbers as floating point numbers, but if

a calculation is performed using integers, the answer will be

an integer unless the calculation itself changes it (e.g., the

number is divided unevenly).

There are certain occasions while programming when we need

to change a character into another while programming and

also, assign a certain numeric value to a character type. In

JavaScript this is not possible because of its rule of dealing all

characters as strings. A new “character” data type should be

introduced. A character is enclosed in single quotes and a

string is enclosed in float quotes only. Introducing “character”

data type adds more flexibility in VPxJavaScript for a lot of

programming purposes. Now we have five data types in

VPxJavaScript, String, Character, Integer, Float and Boolean.

6.3 Type Conversions
Data types can be converted automatically as needed during

the course of script execution. A variable may hold a numeric

value at one point of the script and a string at another one. The

following statements constitute a valid JavaScript script:

var myVar = 12

myVar = “university”

JavaScript is a loosely typed language. Therefore, such

conversions are allowed but are not recommended. The

Mixing of strings and numbers is tricky and can generate

unexpected results. When an expression includes both

numbers and strings, the result evaluates to a string.

Converting it to number is usually impossible.

JavaScript interpreter evaluates expressions from left to right,

and only parentheses can change the order of evaluation. Take

a look at the following expressions,

8 + 8 // 16

“8” + 8 // “88”

8 + “8” // “88”

“8” + “8” // “88”

8 + 8 + “8” // “168”

8 + “8” + 8 // “888”

All these expressions use the string concatenation operator

which is also the numeric plus operator.

Array

Name

Dim

Index

Value

Function (name of function)*

Parameter List

Return

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

18

In VPxJavaScript, we define two rules for data type

conversion. The rules are:

1. Strings and numbers cannot concatenate. That is if

the expression contains both strings and numbers,

the result is not evaluated to string instead an error

message will be generated of data type mismatch.

2. Implicit float conversion is also not allowed. It

should throw an exception.

Strings cannot be easily converted to numbers. Also there

would be loss of data, if floats are assigned to integers. In our

proposed language, strings can only be operated with numbers

if numbers are explicitly cast into strings or strings have been

converted into numbers. If this restriction is not imposed,

unintended problems can arise. Floats have to be cast into

integer explicitly, so that the user knows what s/he is doing.

Otherwise, a warning would be generated.

6.4 Octal literal
The Octal digits in JavaScript are written with a leading 0

digit. For example

var oct

oct = 098

Most of the time decimal constants are written with leading

zeros. For example, social security numbers, license plates

and area codes can be written with leading zeros. For

example:

01234 -077 0312

In all such cases, JavaScript interprets them as octal numbers

and this creates a great deal of problem when such numbers

are compared or searched for. To solve this problem, It is

suggested to write octal constants by appending octal

var a = oct312

6.5 Equality and Assignment
In JavaScript if assignment operator “=” is used in place of

equality operator “==”, no error is reported and program

executes normally. The symbol set is overused and highly

error prone. A very common mistake is to use the equal “=”

sign for equality check. For example mistakenly writing

if (a = b)

In the place of an equality test, this is legal and meaningful

statement in JavaScript. It creates a bug that can be hard to

detect. Consider the code given below:

a = 2; b= 3;

if (a = b)

{

 document.write(“Executing IF clause: ”);

 document.write(“a=” + a + “ and b=” + b);

}

else

{

document.write(“Executing ELSE clause: ”);

 document.write(“a=” + a + “ and b=” + b);

}

The output of executing IF clause is: a=3 and b=3. Thus,

nothing is flagged, if you try to evaluate (a = b). b is

assigned to a and, if the b is non-zero it evaluates to true.

To solve this problem, in VPxJS, there will be no operator for

assignment statements, all will be done by using visual

constructs. Only equality operator will be used.

6.6 Control Structure
The Braces are not necessary for control structures in

JavaScript which may create readability and writability

problems e.g.

if(condition)

 stmt1

else

 stmt2

This problem has been solved by giving equivalent visual

representation. Now consider the dangling else problem in

JavaScript.

if(condition)

if(condition)

stmt

else

stmt

This code is ambiguous because the else in this code cannot

be properly connected with any of the if-statements. There are

the following possible paths for this code

Path 1

If(condition)

{

if(condition)

stmt

}

else

stmt

Path 2

If(condition)

{

if(condition)

stmt

else

stmt

}

Introducing brackets would solve ambiguity in such control

structures.

Path 1

if(condition)

{

if(condition)

{

stmt

}

}

else

{

stmt

 }

Path 2

if(condition)

{

if(condition)

{

stmt

}

else

{

stmt

}

 }

6.7 Function Parameters
The JavaScript is forgiving when it comes to number of

parameters. For any function declared in JavaScript, if the

number of parameters are too few compared to the definition

of the function, all the rest would be given NULL value. In

the opposite case, the parameters that have been added as

extra would be included in the defined parameters. It could

result in faulty calculation and malfunctioning. e.g consider

the following function

function calcDiv(val1, val2)

{

 var myval //][integer

 myval = val1/val2

 return myval

}

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.1, March 2011

19

In this case if function is called as

calcDiv(5)

Then in this case no error would be reported and the second

parameter would be assigned a NULL value, resulting in

undefined value in the return value, which might cause the

program to crash.

In VPxJavaScript, we suggest that the grammar should

enforce that the number of parameters in the function should

be same as number of parameters in the called routine.

7. CONCLUSION
The aim of this research is to design Visual Programming

extension of JavaScript language to make programming in

JavaScript more understandable to fresh or new programmer,

to improve the correctness with which people perform

programming tasks, and/or to improve the speed with which

people perform programming tasks. We proposed the

VPxJavaScript by considering the aspect of understandability,

easy to program, readability, writability and correctness. We

also identify the problem in JavaScript design and also try to

solve them in proposed VPxJavaScript.

8. REFERENCES
[1] Eason, G., Noble B., and Sneddon, I. N. , “On certain

integrals of Lipschitz-Hankel type involving products of

Bessel functions,” Phil. Trans. Roy. Soc. London, vol.

A247, pp. 529–551, April 1955. (references)

[2] Christensen, C. “An example of the manipulation of

directed graphs in the ambit/g programming language”.

In M. Klerer and J. Reinfelds, editors, Interactive

Systems for Experimental Applied Mathematics, 1968.

[3] Ghezzi, C., Jazayeri, M., and Mandrioli, D.,

Fundamentals of Software Engineering. Prentice-Hall,

1991.

[4] Smith, D. C., PYGMALION: A Creative Programming

Environment. PhD dissertation, Stanford University,

1975.

[5] Golin, E. J. and Reiss, S. P. “The specification of visual

language syntax” Journal of Visual Languages and

Computing, 2(1):141–157, 1990.

[6] Sutherland, I. B., SKETCHPAD, a man-machine

graphical communication system. In Proceedings of the

Spring Joint Computer Conference, pp. 329–346, 1963.

[7] Burnett, I., Baker, M. J., Bohus, C., Carlson, P., Yang,

S., and Van Zee, P., "Scaling up visual programming

languages.", Computer, Volume: 28, Issue: 3, March

1995, pp. 45 - 54

[8] Shetty, P. , Visual Programming Languages – Efficiency

of the Visual driving Technology, 2004.

[9] Oliveira, N., Henriques, P. R., Cruz, D. da, and Pereira,

M. J. V., "Visuallisa: Visual programming environment

for attribute grammars specification" In Proceedings of

the International Multiconference on Computer Science

and Information Technology - 2nd Workshop on

Advances in Programming Languages (WAPL’2009),

pages 689 – 696,Mragowo, Poland, October 2009.

[10] Boshernitsan, M. and Downes, M., “Visual

programming languages: A survey,” University of

California, Berkeley, California 94720, Tech. Rep.,

December 2004.

[11] Edel, M., "The Tinkertoy graphical programming

environment." IEEE Transactions on Software

Engineering,1988, pp.1110 -1115.

[12] Najork, M., "Visual programming in 3-d". Dr. Dobb’s

Journal, 20(12):18–31, December 1995.

[13] Kimura, T. D., "Hyperflow - a visual programming

language for pen computers.". IEEE Workshop on Visual

Languages, 1992, pp. 125-132

[14] Cox, P. T., Giles, F. R., Pietrzykowski, T., "Prograph: a

step towards liberating programming from textual

conditioning.", IEEE Workshop on Visual Languages,

1989, pp.150 - 156

