
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

48

Minimal Test Case Generation for Effective Program
Test using Control Structure Methods and Test

Effectiveness Ratio

Swathi.J.N
Assistant Professor

SCSE, VIT University
Vellore

Sumaiya Thaseen.I
Assistant Professor
SITE, VIT University

Vellore

 Sangeetha.S
 VIT University

Vellore

ABSTRACT

Software testing is the critical activity in any industrial–strength

software development process. As the software grows in size, its

complexity increases and testing becomes more difficult. Hence

generating test cases manually produces more errors and affects

overall system quality. In this paper, we have proposed a tool for

automatic generation of test cases using the control structure

methods. This tool aims to achieve 100% coverage of a given

structural code by including statement coverage, decision

coverage, and path coverage and branch coverage analysis. It

also helps the developers and testers to measure the

effectiveness of test case generated using a metric called „Test

Effectiveness Ratio‟.

General Terms

Software testing, Structural testing, Test case generation.

Keywords

Testing, Test cases, Control Flow Graph (CFG), Statement

Coverage, Decision Coverage, Path Coverage, Branch

Coverage, Test Effectiveness Ratio

1. INTRODUCTION
Software testing is defined as the process of executing a

program with the intent of finding errors [6]. According to this

definition, a good set of test cases are one that has a high chance

of identifying previously unknown errors, while a successful test

run is one that discovers these errors. In order to detect all

possible errors within a program, exhaustive testing is required

to exercise all possible input and logical execution paths. But in

reality, as the software size grows its complexity increases and

effective and exhaustive testing becomes impossible by human

even for moderately complex systems. The minimum

requirement of software testing would be to ensure correctness

of the software system. Checking correctness of the system can

be achieved by using a set of test cases which helps in

identifying the errors.

Several heuristic methods are available for effective

generation of test cases. The heuristics can be broadly divided

into two categories: Black box testing and White box testing.

Black box testing focuses on test data generated from functional

requirements of the software which describes the behavior of the

system without regard to the structure of the system [7]. Black

box testing is also called as requirements based testing.

The other way of deriving test cases for black box

testing is from formal specification. The formal specification is a

mathematical description of the software that may be used for

development of the product. It is widely used in practice as the

specification would be precise and unambiguous [8]. The formal

specifications are used in traditional as well as in object oriented

approaches. The problem in using formal specification for

generation of test cases is as the customer requirements change

the specification changes and lot of code gets modified resulting

in rework of test cases.

To alleviate this problem, test cases can be generated

from the procedural design or program code which is also called

structural testing or white box testing where the structure and the

flow of the software is visible to the tester.

The paper is structured as described in the following:

In Section 2 the concept of structural testing is discussed briefly.

The proposed work is given in Section 3.In Section 4 the

complete System Architecture and Detailed Design (Class

Diagram) is presented. The Results and their Discussion can be

found in section 5.Finally, Section 6 concludes with a short

summary of the tool along with proposed future work.

2. STRUCTURAL TESTING

Structural testing takes into account internal structure of the

program which in turn is divided into data flow and control flow

criteria. Data flow criteria are based on the investigation of the

ways in which values are associated with variables and how

these associations can affect the execution of the program. A

control flow criterion examines logical expression, which

determine the branch and loop structure of the program.

 Structural testing includes the following aspects of

coverage while generating test cases [2].

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

49

 Statement coverage (SC): every statement in the

program has been executed at least once. The

advantage of the statement coverage is its ability to

identify which blocks of code has not been executed.

 Decision coverage/Branch coverage (DC): every

statement in the program has been executed at least

once, and every decision in the program has taken all

possible outcomes at least once.

 All Path coverage (PC): every possible route through a

given part of the code has been executed at least once.

 Simple Path coverage (SPC): every possible route

through a given part of the code has been executed in

which no program part is executed more than

necessary.

 Condition coverage (CC): every statement in the

program has been executed at least once, and every

condition in each decision has taken all possible

outcomes at least once;

 Decision/condition coverage (D/CC): every statement

in the program has been executed at least once, every

decision in the program has taken all possible

outcomes at least once, and every condition in each

decision has taken all possible outcomes at least once;

 Multiple condition coverage (MCC): every statement

in the program has been executed at least once, and all

possible combinations of condition outcomes in each

decision have been invoked at least once.

Basis path testing method enables us to derive a

logical complexity measure (Cyclomatic complexity) of a

procedural design or program code. The value computed for

cyclomatic complexity is the number of independent paths in the

basis set of program. An independent path is any path through

the program that introduces at least one new set of processing

statements or a new condition [14]. When stated in terms of a

flow graph, an independent path must have atleast one edge that

has not been traversed before the path is defined.

Cyclomatic complexity [2] also provides us with

number of tests that must be conducted to ensure that all

statements have been executed at least once. Complexity can be

computed in any one of the three ways

 The number of regions of the flow graph corresponds

to the cyclomatic complexity.

 Cyclomatic complexity V (G), for a flow graph, G, is

defined as V (G) = E- N+2 , Where E is the number of

flow graph edges and N is the number of flow graph

nodes.

 Cyclomatic complexity V (G), for a flow graph, G, is

also defined as V (G) = P + 1 Where P is the number

of predicate nodes.

3. PROPOSED WORK

Test case generation is the process of identifying a set

of test data which satisfies the selected test criteria. To make

testing successful, a test case generation tool which adopts the

basis path testing method is developed. The tool accepts the

source code or a procedural design as input. The Source code is

considered as a foundation component and corresponding

control flow formula is generated based on the total number of

statements and the predicates in the structural code. The formula

produces a value which gives the minimum number of test cases

for each code coverage type namely statement path, simple path,

all path and branch path coverage. Based on the count value, test

cases are generated in such a manner that will force execution of

each path in the basis set. The effectiveness of the test cases

generated is measured by determining the test effectiveness ratio

(TER) [13].

 Number of statements exercised by the test case

TER=

 Total Number of statements in the source code

4. SYSTEM DESIGN

The proposed system architecture Figure 4.1 and the detailed

design Figure 4.2 in view of classes and their responsibilities is

given below:

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

50

Accept C

Application
Parse the code

Control Flow

Graph Details

Compute

Minimum Number

of test cases

Generate test

cases

Identify Predicates

Calculate Test

Effectiveness

Ratio Generate Control

flow Formula

Figure 4.1 System Architecture

 Figure 4.2 Detailed Design- Class Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

51

5. RESULTS & DISCUSSIONS

Figure 5.1 User Interface to view the Test Cases and Test Effectiveness Ratio-Statement Coverage

Figure 5.2 User Interface to view the Test Cases and Test Effectiveness Ratio-All path Coverage

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

52

Figure 5.3 User Interface to view the Test Cases and Test Effectiveness Ratio-Branch Coverage

Figure 5.4 User Interface to view the Test Cases and Test Effectiveness Ratio-Simple Path Coverage

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

53

Generating Minimal Test Cases for effective program test

method first identifies a set of paths in the program‟s flow

graph, which covers all branches, paths and statements. It

guarantees that all independent paths within the module have

been exercised at least once, exercised all logical decisions on

their true and false sides, and execute all loops at their

boundaries and within their operational bounds. Then, it

identifies the test data such that every selected path is executed.

In this approach, test case exercises every branch in a program

with numeric input, arrays, assignments, conditionals and loops.

Comparative Study:

The tabu search algorithm [7] use the control flow graph, which

stores relevant information (for example the best tests and their

costs). The goal is to automatically obtain branch coverage. In

scatter search [16] test case generator uses the control flow

graph in order to determine the covered branches. Each node has

a solution set and the algorithm will try to make the sets as

diverse as possible, using a diversity function to generate

solutions that can cover different branches of the program,

whereas the proposed tool uses the control flow graph to

generate test case and test data in order to cover all branches,

statements, paths and decisions by visiting all the nodes and the

edges.

6. CONCLUSION
The proposed tool has been designed and developed after a

detailed investigation of the „C‟ code. The outcome of this tool

is to assist the tester to test the code in efficient manner. The

generated test cases will cover the code with maximum extent

which is the major criterion for testing. The Test Effectiveness

Ratio helps the tester in measuring the effectiveness of the test

cases. The future work would be to generate test cases by

including other code coverage analysis techniques like

Condition coverage, Multiple Condition coverage etc. Another

future work would be to trace the control flows between the

function calls and to generate the test cases for the same.

7. REFERENCES
[1] Andreas S. Andreou, “An Automatic test-data generation

scheme based on data flow criteria and genetic algorithms”,

Third International Conference on Natural Computation

(ICNC) Vol. 1, pp. 2, 2007.

[2] A. H. Watson and T. J. McCabe, “Structured Testing: A

Testing Methodology Using the Cyclomatic Complexity

Metric”, Computer Systems Laboratory, National Institute

of Standards and Technology, September 1996. NIST

Special Publication 500-235.

[3] Beizer Boris, "Software Testing Techniques", 2nd edition,

New York: Van Nostrand Reinhold, 1990.

[4] Carlos Urias Munoz,“An approach to software Product

testing”, IEEE Transactions on Software Engineering, Vol

14, No.11,pp.1589-1596, November 1988.

[5] Christophe Paoli, Marie Laure Nivet, Jean Francosis

Santucci, Antoine Campana, “Path Oriented Test Data

Generation of Behavioral VHDL Description”, IEEE

Transactions on Software Engineering, March 2002

[6] G. J. Myers, “The Art of Software Testing”, John Wiley &

Sons, Inc., Second edition, New York, July2004.

[7] Geetha Devasena M.S. and Valarmathi M.L., “Optimized

test suite generation using tabu search technique”,

International Journal of Computational Intelligence

Techniques, ISSN: 0976–0466, Vol 1, Issue 2, pp.10-14,

2010.

[8] Hung Tran, “Test Generation using Model Checking”,

Technical Report.

[9] Harman M, Hu, L, Hierons R., Wegener, J. Sthamer, H,

Baresel, A & Roper, M, “Testability transformation”, IEEE

Transactions on Software Engineering, Vol 30, Issue 1,

pp.3-16, Jan.2004

[10] Korel B,”Automated Software Test Data Generation” IEEE

Transactions on Software Engineering, Vol 16, Issue 8,

pp.870-879, Aug.1990.

[11] Michael C.C, McGraw G, schatz. M.A,”Generating

software test data by evolution”, IEEE Transactions on

Software Engineering, Vol 27, Issue 12, pp. 1085-1110,

Dec.2001.

[12] McCabe, Tom, "A Software Complexity Measure", IEEE

Transactions on Software Engineering., Vol.2, No.6,

pp.308-320, December 1976.

[13] M.R.Woodward, D.Hedley and M.A.henell, “Experience

with path analysis and testing of programs”, IEEE

Transactions on Software Engineering”, Vol 6, No.3,

pp.278-286, 1980.

[14] Peres L.M., Vergilio S.R, Jino M and Maldonado J.C.

“Path selection in the Structural Testing: Proposition,

Implementation and Application of Strategies”, XXI

International Conference of the Chilean Computer Science

Society, pp.0240, 2001

[15] Patricia Mouy, Marre B, Williams N and Le

Gall,“Generation Of All Paths Unit Test with Function

Calls ”, 1st International Conference on Software Testing,

Verification and Validation, pp 32-41, April 2008.

[16] Raquel Blanco, Javier Tuya, Belarmino Adenso Diaz, “

Automated test data generation using a scatter search

approach”, Journal of Information and software

Technology, Vol.51,Issue 54, April 2009.

[17] Sangeeta and Dr. Dharmender Kumar, “Automatic Test

Case Generation of C Program Using CFG” , IJCSI

International Journal of Computer Science Issues, Vol. 7,

Issue 4, No 8, July 2010

[18] W. E. Wong, Y. Lei, and X. Ma.”, Effective Generation of

Test Sequences for Structural Testing of Concurrent

Programs “, ICECCS Proceedings of 10th IEEE

International Conference on Engineering of Complex

Computer Systems, pp. 539–548, 2005.

