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ABSTRACT 

This paper explores the common fixed point theorems 
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property (E.A) is proved under a new contractive condition 

which is independent of the previous known contractive 

definitions.  
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1. INTRODUCTION 
 The study of common fixed point of mappings 

satisfying contractive type of conditions has emerged as a very 

active field of research activity during recent years. The most 

general form of the common fixed point theorem pertaining to 

four mappings A, B, S and T of a metric space (X, d) uses either a 

Banach type contractive condition if the form  

d(Ax, By)  k M(x, y);    0 k < 1                                    (1.1) 

where M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty),                            

                                              [d(Sx, By) + d(Ax, Ty)] /2}   (1.2) 

or a Meir Keeler type ( , ) contractive condition, that is given 

> 0, there exists > 0 such that 

      M (x, y) < +   d(Ax, Ay)               (1.3)   

or a contractive condition of the form  

(Ax, Ay)  (M (x, y))                                (1.4) 

involving a contractive gauge function : [0, ) [0, ) 

such that (t) < t for each t > 0. 

Clearly Banach type contractive condition is a special case of 

both Meir Keeler ( , )  contractive and  contractive 

conditions. As  contractive type of condition does not 

guarantee the existence of fixed point unless some additional 

condition is assumed. So various authors have introduced 

different conditions on  

(i) (t) is non decreasing and 
( ( ))

t
t f t

 < 0 for every 

t > 0. (Carbone et al. [6]) 

(ii) (t) is non decreasing, for each t > 0, lim ( )n

n
t = 0  

which implies that     (t) < t. (Jachymski [7]) 

(iii) (t) is upper semi continuous (Boyd and Wong [5], 

Jachymski [7], Pant[16]) 

(iv) (t) is non decreasing, right continuous and (t) < t for 

every t > 0. ( Park and Rhoades[19])  

 

Besides this, we have deduction from Pant et al. [18] than a 

( , ) contractive type of condition (1.2) neither assures the 

existence of fixed point nor implies an analogous  contractive 

condition (1.3). As a result of it two types of contractive 

conditions (1.2) and (1.3) are independent of each other thus to 

ensure the existence of common fixed point under contractive 

type of condition (1.2),  takes on following conditions, used 

by various authors: 

 

(v)  is non decreasing. (Pant [16]) 

(vi)  is lower semi continuous (Jungck [10], Jungck et al. 

[17]) 

 

It follows therefore that the known common fixed point 

theorems can be extended and generalized if instead of assuming 

one of the contractive condition (1.2) or (1.3) with additional 

conditions on  and , we assume contractive condition (1.2) 

together with the following condition of the form: 

1, max{ ,  ,   , ,d Ax By d Sx Ty d Ax Sx d By Ty

                                   
2 , , / 2}d Sx By d Ax Ty  

for 0  1 < 1,  1  2 < 2                                           (1.5)                                                

In this paper, we have proved the common fixed point 

theorems for four mappings adopting this approach.                  
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2. PRELIMINARIES 
Let S and T be the self mappings of a metric space (X, d), S and T 

are commuting if STx =TSx for all x X. According to definition 

of Sessa [23], S and T are defined to be weakly commuting if for 

all x X. 

 d(STx, TSx)  d(Tx, Sx)                                (2.1) 

 Any two self maps of a metric space (X, d) are defined as 

compatible by Jungck [10], if 

  lim
n

d(ST nx , TS nx ) = 0                                (2.2) 

 Whenever { nx } is a sequence in X, such that lim
n

S nx = 

lim
n

T nx = t for some  t X. Jungck [10] defined compatibility 

as generalization of commutativity and weak commutativity. 

 The commuting maps imply weakly commuting which on 

other hand implies compatibility. These are verified by examples 

given in literature. See [10] and [24] 

 Jungck et al. [12] defined pair {S, T} of self maps of 

metric space (X, d) as compatible of type A if 

lim
n

 d(ST nx , T2

nx ) = 0 and lim
n

d(ST nx , S2

nx ) = 0 

                                                                                           (2.3) 

whenever { nx } is a sequence in X, such that lim
n

S nx = 

lim
n

T nx = t for some t X. 

 Clearly weakly commuting implies compatible of type 

(A). but by [12] its converse is not true. 

 Pathak and Khan [20] defined the S and T to be 

compatible mapping of type (B) as a generalization of compatible 

mappings of type (A) if 

1
lim ( , ) [lim ( , ) lim ( , )]

2
n n n n

n n n

d TSx SSx d TSx Tt d Tt TTx

and 

1
lim ( , ) [lim ( , ) lim ( , )]

2
n n n n

n n n

d STx TTx d STx St d St SSx

                     (2.4) 

whenever { nx } is a sequence in X, such that lim
n

S nx = 

lim
n

T nx = t for some t X. 

 The compatible mappings of type (A) are compatible of 

type (B), but its converse is not true. See [10]. However 

compatibility of type (A) and compatibility of type (B) are 

equivalent if S and T are given continuous. 

 Pathak et.al. [21] defined selfmaps S and T of metric 

space (X, d) as compatible mapping of type (P) if 

lim
n

d(SS nx , TT nx ) = 0                            (2.5) 

whenever { nx } is a sequence in X, such that lim
n

S nx = 

lim
n

T nx = t for some t X. 

 Again compatibility of type (A) and compatibility of type 

(P) are equivalent if S and T are given continuous, See [21]. 

  Pathak et.al. [22] defined self maps S and T of metric 

space (X, d) to be compatible mapping of type (C), as 

generalization of compatible mappings of       type (A) if 

1
lim ( , ) [lim ( , ) lim ( , )

3
n n n n

n n n

d TSx SSx d TSx Tt d Tt SSx

                                                        lim ( , )]
n

n

d Tt TTx  and 

1
lim ( , ) [lim ( , ) lim ( , )

3
n n n n

n n n

d STx TTx d STx St d St TTx

lim ( , )]
n

n

d St SSx                                                  (2.6)  

whenever { nx } is a sequence in X, such that lim
n

S nx = 

lim
n

T nx = t for some t X. 

 So, we see that compatibility of type (A) and compatibility 

of type (C) are equivalent if S and T are continuous. See [14]. 

 

Definition 1. [14] S and T are said to be weakly compatible if 

they commute at their coincidence points i.e. if St = Tt for some t 

X then STt = TSt. 

     

Lemma 1.  [10, 12, 20, 21 and 22] If S and T are compatible, or 

compatible of type (A) or compatible of type (P), or compatible of 

type (B), or compatible of type (C), then they are weakly 

compatible. 

 

The following example shows that converse is not true; 

Example 1.   Let X = [0, 20] with usual metric. Defined S, T: X 

X by 

 Sx = 

0 0

15 0 5

5 5 20

if x

x if x

x if x

 and   

              

            Tx = 
0 {0} {5,20]

3 0 5

if x

if x
 

Let nx be the sequence defined by nx  = 5 + 
1

n
, n N, then 

 S nx = nx - 5 0,  T nx = 0 0 . 

   

As n , S(0) = 0 = T(0) and ST(0) = 0 = TS(0) 

Clearly S ant T are weakly compatible maps, since they 

commute at their coincidence point t=0. On other hand, we have 

 ST nx  = S(0) =0,    SS nx = S( nx -5) = nx +10 

 TS nx = T( nx -5)=3        TT nx = T(0) = 0. 

Consequently lim
n

ST nx - TS nx  = 3 0 that proves S and T 

are not compatible. Moreover we have  lim
n

TS nx - SS nx  = 

lim
n

3 - nx - 10  =12 0 
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Thus S and T are not compatible of type (A). Furthermore,       

12 = lim
n

TS nx - SS nx  
1

2
[ lim

n

TS nx - Tt       

                                                    + lim
n

Tt- TT nx ] = 
3

2
 

So, 12  
3

2
 which shows that S and T are not compatible of 

type (B). 

Again 12 = lim
n

TS nx - SS nx  
1

3
[ lim

n

TS nx - Tt   

                  lim
n

Tt - SS nx + lim
n

Tt - TT nx ] =
18

6
= 3 

Thus, 12  3, which shows that S and T are not compatible of 

type (C). Also we have 

  lim
n

SS nx - TT nx  = 15 0 

therefore S and T are not compatible of type (P). 

 

Property (E.A) [1]. Let A and S be two self maps of a metric 

space (X, d), then they are said to satisfy property (E.A.), if there 

exists a sequence { nx } in X, such that lim
n

 A nx  =  lim
n

 S nx  

= t, for some t X. 

 If two maps are noncompatible, then they satisfy the 

property (E.A). However, its converse is not true. To support our 

assertion, we quote some examples from [1]. 

 

Example 2 ([1]). Let X = [0, ). Define T, S: X X by  

                                 Tx =
4

x
,     Sx = 

3

4

x
, x X. 

Consider the sequence { nx } = 
1

n
. Clearly lim

n
 T nx  = lim

n
 

S nx = 0. Then T and S satisfy property (E.A). 

 

Example 3 ([1]).  Let X = [2, ).  Define T, S: X X by  

   Tx = x +1,     Sx = 2x + 1, x X. 

Suppose that property (E.A.) holds; then there exists in X a 

sequence { nx } satisfying  

lim
n

 A nx  =  lim
n

 S nx  = t, for some t X.  

 Therefore, lim
n

nx = t – 1 and  lim
n

nx  =
( 1)

2

t
. Then 

t = 1, which is a contradiction since 1  X. Hence, T and S do 

not satisfy property E.A. 

 

 Lemma 2. (Jachymski [7]) Let A, B, S and T be self 

mappings of a metric space (X, d), such that A(X)  T(X), 

B(X)  S(X). Assume further that for given ε > 0 there exists         

δ > 0 such that for all x ,  y  i n  X .  

  M(x, y) < +   d(Ax, By)    

and   d(Ax, By) < M(x, y) whenever M(x, y) > 0 

where 

 M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Sx, By) +  

                                                                             d(Ax, Ty)] /2} 

Then for each x0 in X, the sequence {yn} in X is defined by the 

rule y2n = Ax2n = Tx2n+1,  y2n+1 = Bx2n+1 = Sx2n+2                                                     

is a Cauchy sequence. 

 

 

3. MAIN RESULTS 
 

Theorem 1. Let A, B, S and T be the self maps defined on a 

metric space (X, d] satisfying the following conditions: 

(1)  Ax   Tx,  Bx    Sx                              (3.1) 

(2) Given  > 0, there exists a    > 0 such that for all x, y in X, 

  M(x, y) < +   d(Ax, By) <  and  (3.2)           

(3) 
1

, max{ [ , ,  , ]d Ax By Sx Ty d Ax Sx d By Ty   

2
[ ,  , ]}d Sx By d Ax Ty  

for  0  1 <1,    1  2 <2                            (3.3)    

 If one of A(x), B(x), S(x) or T(x) is a complete subspace of X,  

then  

(I) A and S have a coincidence 

(II) B and T have coincidence 

Moreover, if A and S, as well as, B and T are weakly 

compatible, then A, B, S and T have a unique common fixed 

point.  

Proof: Let 0x X be any arbitrary point of X. From (3.1), we 

can construct a sequence { yn} in X as follows 

y2n = Ax2n = T x2n+1 and  y2n+1 = Sx2n+2 = Bx2n+1 ,  

                                            n = 0,1,2,……………..            (3.4) 

Suppose d(y2n, y2n+1 ) = 0 for some n. Then y2n =  y2n+1 implies that 

Ax2n = T x2n+1 = Bx2n+1 = S x2n+2 and T and B have a coincidence 

point. Further if d(y2n+1, y2n+2 ) = 0 for some n then Ax2n+2 = T 

x2n+3 = Bx2n+1 = S x2n+2 and A and S have a coincidence point. 

Moreover if we assume that d(yn, yn+1 )  0 for each n, 

then we have M(x, y) > 0,  otherwise d(yn, yn+1 ) = 0     (3.5) which 

is a contradiction.  

We now show that {yn} is a Cauchy sequence. For this 

it is sufficient to show that {y2n} is a Cauchy sequence. Suppose 

that {y2n} is a Cauchy sequence. Then there exists >0, such that 

for each even integer 2k, there exists even integers2m (k) > 2n(k) 

> 2k  such that d(y2n(k), y2m(k) )                   (3.6) 

For every even integer 2k, let 2m(k) be the least positive 

integer exceeding 2n(k) satisfying (3.6) such that   

d(y2n(k), y2m(k)-2 ) <        (3.7) 

Further > 0  d(y2n(k), y2m(k) )  d(y2n(k), y2m(k)-2 ) + d2m(k)-2 +  

                                                             d2m(k)-1             (3.8) 

Then by (3.5), (3.6) and (3.7) it follows that 

 lim
n

 d(y2n(k), y2m(k) ) =              (3.9) 

Also, using triangular inequality 

  d(y2n(k), y2m(k)-1) - d(y2n(k), y2m(k) )   d2m(k)-1,     (3.10)
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  d(y2n(k)+1, y2m(k)-1) - d(y2n(k), y2m(k) )   d2m(k)-1+ d2n(k), 

and so, on using (3.9) we get 

  lim
n

 d(y2n(k), y2m(k)-1 )                     (3.11) 

 lim
n

 d(y2n(k)+1, y2m(k)-1 )       (3.12) 

as k . Thus 

d(y2m(k), y2m(k) )  d2n(k) + d(y2n(k)+1, y2m(k) )  d2n(k)  

                                                   + d(S 2 ( )n kx ,T 2 ( ) 1m kx )     (3.13) 

Thus, on letting k , on both sides of the last inequality, we 

have 

   d(S 2 ( )n kx ,T 2 ( ) 1m kx )   (M( 2 ( )n kx , 2 ( ) 1m kx ))

                                    (3.14) 

where 

M( 2 ( )n kx , 2 ( ) 1m kx ) =max{ 1 [d(y2n(k), y2m(k)-1 )+d2n(k) +  

                      d2m(k)-1]+ 2 [d(y2m(k)+1, y2m(k)-1 ) + d(y2n(k), y2m(k) )]/2}

                    

 (3.15) 

Combining (3.5), (3.6), (3.7), (3.9), (3.11) and (3.12) yields the 

following contradiction from (3.14) 

 ( ) <                       (3.16) 

Thus {y2n} is a Cauchy sequence and so {yn} Cauchy sequence. 

 

Suppose that TX is a complete subsequence of X, then the sub 

sequence yn = T x2n+1 is a Cauchy sequence in TX and so have a 

limit u. Let v
1T u , then Tv =u. since {y2n} is convergent, so 

{yn} converges to u and hence {y2n+1} also converges to u. Now 

on setting x = x2n and y = v, we get 

d(Ax2n, Bv) < max{ 1 [d(Sx2n, Tv)+ d(Ax2n, Sx2n)+ d(Bv, Tv)]+  

                               2 [d(Sx2n, Bv) + d(Ax2n, Tv)] /2}  (3.17) 

at n , we have d(u, Bv) < d(u, Bv) which implies that Bv = 

u. Also since BX  SX, so u = Bv implies that w S-1u, then 

d(Aw,Bx2n+1) < max{ 1 [d(Sw, Tx2n+1) + d(Aw, Sw) + d(Bx2n+1,  

Tx2n+1)]  + 2 [d(Sw, Bx2n+1)+ d(Aw, Tx2n+1)]/2}        (3.18) 

at n , we have d(Aw, u) < d(u, Aw) which implies that u 

=Aw . This makes clear that u = Tv = Bv = Aw = Sw         (3.19)  

Now since u = Tv = Bv, so by weak compatibility of (B, T) it 

follows that TBv = BTv and so we get Bu = BTv = TBv = Tu. 

Also since u = Aw = Sw so by weak compatibility of A and S it 

follows that SAw = ASw and so we get  Au = ASw = SAw = Su. 

Thus from (3.3), we have 

d(Aw,Bu)<max{ 1 [d(Sw,Tu)+d(Aw,Sw)+d(Bu,Tu)]+ 

                                    2 [d(Sw,Bu)+d(Aw,Tu)]/2}   (3.20) 

which gives d(u, Bu) < d(u, Bu) which is a contradiction for 0  

1 <1, 1  2 <2,  this implies that u = Bu. Similarly (3.3) can 

be used to show Au = u. Therefore we have u = Bu = Tu = Au = 

Su. Hence u is the common fixed point of all A, B, S and T. 

 

Now, if we assume SX is complete the argument analogue to 

the previous completeness argument, which proves the theorem. If 

AX is complete then u  BX  SX. So the theorem is 

established. The uniqueness of the common fixed point follows 

easily from condition (3.3). This completes the proof of the 

theorem. 

 

Lemma 3.1.  [10, 12, 20, 21, 22] Let S and T are compatible, 

compatible either of type (A), (type (P), type (B) or type (C)) self 

mappings of a metric space (X, d). If Su = Tu for some u X, it 

follows that STu = TSu. 

From the previous theorem, our result is immediate. 

 

Corollary 3.1.  Let A, B, S and T be any self map of a metric 

space (X, d) satisfying the conditions (1), (2) and (3) of Theorem 

1. Now if pairs {A, S} are compatible i.e. compatible of type 

(A),(type (P), type (B) or type (C), then the four maps having a 

unique common fixed point u X. 

 

Theorem 2:  Let A, B, S and T be the selfmaps of a metric space 

(X, d) satisfying the following conditions; 

(1)AX TX, BX SX                                             (3.21)                                              

 (2) d(Ax,By) < max{ 1 [d(Sx,Ty) + d(Ax,Sx) + d(By,Ty)]+ 

                                                   2 [d(Sx,By)+d(Ax,Ty)]/2} 

     for 0  1 <1,   1  2 < 2.                         (3.22) 

Let one of the mappings (A,S) or (B,S) be weakly compatible, 

satisfying property (E.A.). If the range of one of the mappings be 

a complete subspace of X, then A, B, S and T have a unique 

common fixed point. 

 

Proof: Let B and T satisfy property E.A. Then there exists a 

sequence { nx } in X such that B nx  t and T nx  t for some 

t in X. Since BX  SX, for each nx , there exists ny  in X, such 

that B nx  = S ny . Thus B nx   t, T nx . t and S ny  t.  We 

claim that A ny  t. If not, there exists a sub sequence {A my } 

of {A ny ), a positive integer M and a number r> 0 such that for 

each m M, we have  

d(A my , t)  r,  d(A my ,B mx )  r,                               (3.23)                                          

d(A my ,B mx ) < max{ 1  [d(S my ,T mx ) + d(A my ,S my ) + 

       

d(B mx ,T mx )]  + 2 [d(A my ,T mx )  + d(B mx ,S my )] /2}      

                                                                                          (3.24) 

                          < d (A my ,S my )                                  (3.25)                                                      

a contradiction. Hence A ny t. Now suppose that SX is a 

complete subspace of X. Then, since S ny t, there exists a 

point u in X. Such that t = Su. If Au  Su, the inequality. 

d(Au, B nx ) < max{ 1 [d(Su,T nx )+d(Au,Su)+d(B nx ,T nx )]+ 

                         2 [ d(Au,T nx ) +d(B nx ,Su)] /2}               (3.26) 

On taking n , yields d(Au, Su) < d(Au, Su), a 
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contradiction. Hence Au= Su. Since A and S are weakly 

compatible so it implies that ASu = SAu and so  Au = ASu = SAu 

= Su. 

On the other hand, since AX  TX, there exists a point 

w X, such that Au = Tw. We assert that Tw = Bw. If Bw  Tw, 

then by (2) we get 

d(Au,Bw) <  max{ 1 [d(Su,Tw)+d(Au,Su)+d(Bw,Tw)]+ 

                                              2 [d(Au,Tw)+  d(Bw,Su)]/2} 

               < d(Bw, Au)                                                      (3.27)                                                   

a contradiction. Hence Au = Bw = Tw = Su, which shows that the 

pairs (A, S) and (B, T) have a point of coincidence u and w, 

respectively. The proof is similar if we consider the case when 

pair (A, S) enjoys prorperty (E.A).               

       Now by weak compatibility property of B and T, it implies 

that BTw = TBw and. BBw = BTw = TBw = TTw. Suppose that 

Au AAu.  So we have from (3.22),      

d(Au, AAu) = d(AAu, Bw)  <  max { 1 [d(SAu, Tw) +  

d(AAu, SAu) + d(Bw, Tw)]  + 2 [d(AAu, Tw)+d(Bw, SAu)]/2} 

                  <  d(AAu, Au).                                           ( 3.28)                                                             

which is a contradiction. Thus Au = AAu = SAu and Au is a 

common fixed point of A and S. Similarly Au = Bw is a common 

fixed point of B and T. The proof is similar when TX is assumed 

to be complete subspace of X. The cases in which AX or BX is a 

complete subspace of X are similar to the cases in which TX or 

SX respectively be complete since AX  TX and BX  SX. 

The uniqueness of the common fixed point follows easily from 

(3.22). Hence the theorem. 

 

We now illustrate the above theorem by the way of the following 

example. 

Example 4.  Let X = [0, 1] and d be the usual metric on X. 

Define A, B, S and T: X X by 

Ax = Bx = 0, if x = 0 or x = 1,  Ax = Bx =  
1

2n
, if  

1

2n
  x < 

1

n
, n N;  and    SX = Tx = x  x  X.  

Here (A,S) satisfies property (E.A) . Taking  {
1

2n
}   

[0, 1], we get  lim
n

A(
1

2n
)  = lim

n
(

1

2n
) = 0  = 

lim
n

S(
1

2n
)  = lim

n
(

1

2n
).  

Similarly, (B, T) satisfies property (E.A.). 

 

Then A, B, S and T satisfy all the conditions of above 

Theorem 2. It can be verified in this example that B and T are 

weakly compatible type, since Ax = Sx, occurs if x = 0 or x =  

1

2n
 , n N .Here we have, AS(0) = A0 = 0 =S0 = SA(0) and  

AS(
1

2n
) = A(

1

2n
) = 

1

2n
 =  S(

1

2n
), n N.                                        

 Similarly (B, T)   is weakly compatible. 

 

 Theorem 3:  Let A, B, S and T be weakly compatible selfmaps 

of a metric space (X, d) satisfying the following conditions; 

(1)    AX TX,  BX SX                                           (3.29)                                                           

(2)    d(Ax,By) < max{ 1 [d(Sx,Ty) + d(Ax,Sx) + d(By,Ty)] 

                                             + 2 [d(Sx,By)+d(Ax,Ty)] /2} 

            for 0  1 <1,    1  2 < 2.                           (3.30) 

Let one of the mappings (A, S) or (B, S) be noncompatible, 

satisfying property (E.A). If the range of one of the mappings be a 

complete subspace of X, then A, B, S and T have a unique 

common fixed point and the fixed point is a point of 

discontinuity. 

 

Proof: Suppose that B and T be noncompatible maps, so there 

exists a sequence { nx } in X such that   

lim
n

B nx  = t  and  lim
n

T nx  = t                                       (3.31)                                                        

for some t  X, but lim
n

d(BT nx , TB nx ) is either nonzero or 

nonexistent. Since BX  SX, for each nx  , there exists a ny  

X, such that B nx  = S ny . Thus B nx   t, T nx . t and 

S ny  t.  We claim that A ny  t. If not, there exists a 

subsequence  {A my } of {A ny ), a positive integer M and a 

number r > 0 such that for each m M, we have 

d(A my , t)  r, d(A my ,B mx )  r,                             (3.32)                                                 

 d(A my , B mx ) < max { 1  [d(S my ,T mx )+ d(A my ,S my ) 

+ d(B mx ,T mx )]+ 2  [d(A my ,T mx ) +d(B mx ,S my )] /2}                       

                                                                                         (3.33) 

                

                       <  d(A my , S my )                                    (3.34)                                                      

a contradiction. Hence A ny t. Suppose that SX is a complete 

subspace of X. Then since S ny t, there exists a point u in X. 

Such that t = Su. If Au  Su, the inequality. 

d(Au,B nx ) < max{ 1 [d(Su,T nx ) + d(Au,Su) + d(B nx ,T nx )] 

                                      + 2 [d(Au,T nx )+d(B nx ,Su)]/2} (3.35)                                                                                                                                 

on taking n , yields d(Au, Su) < [d(Au, Su)] a 

contradiction. Hence Au = Su. Since A and S are weakly 

compatible so it implies that ASu= SAu and then AAu = ASu = 

SAu = SSu. 

   On the other hand, since AX  TX, there exists a point 

w X, such that Au = Tw. We assert that Tw = Bw. If Bw  Tw, 

then by (3.30) we get 

d(Au,Bw) <  max{ 1 [d(Su,Tw) + d(Au,Su) + d(Bw,Tw)] 

                                          + 2 [d(Au,Tw)+d(Bw,Su)]/2} 

               < d(Bw, Au)                                                     (3.36)                                                                                 
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a contradiction. Hence Au = Su = Bw = Tw, which shows that the 

pairs (A, S) and (B, T) have a point of coincidence u and w, 

respectively. The proof is similar if we consider the case when 

pair (A, S) enjoys prorperty (E.A).  

              

      Now by weak compatibility property of B and T, it implies 

that BTw = TBw and BBw = BTw = TBw = TTw. Now, suppose 

that Au AAu.  So we have from (3.30) 

d(Au, AAu) = d(AAu, Bw)  

         <  max { 1 [d(SAu, Tw) + d(AAu, SAu) + d(Bw, Tw)]            

                          + 2 [d(AAu, Tw)+d(Bw, SAu)]/2}   (3.37)                               

         <  d(AAu, Au).                                                 (3.38)                                                          

which is a contradiction. Thus Au = AAu = SAu, then Au is a 

common fixed point of A and S. Similarly Au = Bw is a common 

fixed point of B and T. The proof is similar when TX is assumed 

to be complete subspace of X. The cases in which AX or BX is a 

complete subspace of X are similar to the cases in which TX or 

SX respectively be complete since AX  TX and BX  SX. 

Uniqueness of the common fixed point follows easily. 

 

   We have to show now that the mappings are discontinuous at 

the common fixed point. Let us suppose that B is continuous at 

common fixed point t, such that t = Au = Bw. So on taking the 

sequence { nx } as taken in (3.30), we have lim
n

BB nx  = Bt  = t 

and  lim
n

BT nx  = Bt  = t. By weak compatibility property of B 

and T, it follows that BT nx  = TB nx . On letting n , this 

gives us lim
n

BT nx  = lim
n

TB nx  = Bt = t. Thus, we get d(BT nx , 

TB nx ) = d(Bt, Bt) = 0, which contradicts the fact that 

lim
n

d(BT nx , TB nx ) is either nonzero or nonexistent for the 

sequence { nx } of (3.30). Hence B is discontinuous at the fixed 

point. Now, suppose that T is continuous, then for the sequence 

{ nx } of (3.30), we get lim
n

TB nx  = Tt = t and lim
n

TT nx  = Tt = 

t. Hence, the inequality, in view of these limits, gives us; 

 d(At, BT nx ) < max { 1  [d(St, TT nx ) +  d(At, St) +  

          d(BT nx ,TT nx )] + 2  [d(At, TT nx ) + d(BT nx , St)] /2}                

                                                                                         (3.39)                                                     

which gives contradiction, unless lim
n

BT nx  = TT nx   = Tt = t. 

But lim
n

BT nx  = Tt = t. and lim
n

TB nx  = Tt = t which contradicts 

the fact that d(BT nx , TB nx ) is either  nonzero 

or nonexistent. Hence, both B and T are discontinuous at their 

common fixed point. Likewise, it can be shown that A and S are 

also discontinuous at the common fixed point. Thus all the 

selfmaps A, B, S and T are discontinuous at the common fixed 

point. Hence, the theorem is established. 

Our example is motivated by example of Pant [17]. 

 

                              Example 5. Let X= [1, 20] and d be the usual metric on X. 

Define A, B, S, T:X X by 

Ax =   
1 , 1

3 , 1

if x

if x
      Bx=   

1 , 1 5

6 ,1 5

if x or

if x
 

Sx  =  
1 , 1

6 , 1

if x

if x
       Tx =  

7 ,1 5

1 , 5

x if x

x if x
 

T1 = 1 

Then A, B, S and T satisfy all the conditions of above Theorem 2 

and have a unique common fixed point x = 1. It can be verified in 

this example that B and T satisfy the property (E.A). Also, it can 

be seen that all the mappings A, B, S and T are discontinuous at 

the common fixed point. 

 

4. CONCLUSION 

In this paper, we have proved the common fixed point 

theorems for four mappings by removing the assumption of 

continuity, relaxing the compatibility to weak compatibility 

property and also replacing the completeness of space. So our 

result generalizes and improves various other similar results of 

fixed point. Besides this, we have used a new property, 

introduced by Aamri and Moutawakil [1], satisfying selfmaps of 

a metric space, which generalize the notion of noncompatible 

maps. 
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