
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

17

Impact of the Linux Real-time Enhancements on the
System Performances for Multi-core Intel Architectures

Nabil Litayem
Technologue Professor
ISET-Bizerete, Menzel

Abderahmène 7035

 Slim Ben Saoud
Conference Professor

LECAP, EPT-INSAT, Centre urbain
nord, BP 676 Tunis cedex, Tunisia

ABSTRACT

Embedded Linux became a dominant choice in the embedded

entertainment and mobile systems. Their adoption in widely

used control applications is the second phase of their embedded

market domination. One of the most important criteria of the

control RTOS is their determinism/overhead ratio. Actually,

many extensions exist to bring real-time capability into the

Linux kernel. On the other hand standard computer architecture

become widely adopted in the embedded market, with a large

variety of performances and power requirement.

In this paper, we study the impact of timing enhancement

offered by various real-time Linux kernel extensions and their

impact into the overall system performance. The obtained results

are compared with the standard and server kernels

performances.

We used for our study a multi-core Intel® based architecture

since we considered the trend of the embedded control market

for this kind of architectures.

In our work we studied two metrics to reflect the performance of

the studied kernel that are latency and throughput. Such work

can be used to orient the adoption of real-time Linux extension

for a given hardware architecture to reach control application

requirements.

General Terms

Real-time, Benchmark, Linux

Keywords

Real-time Linux, Xenomai, LowLatency, PREEMPT-RT,

control applications

1. INTRODUCTION
Modern control applications require much newer functionality

like GUI (Graphic User Interface), communication possibilities

and great software reusability. Traditional RTOS (Real Time

Operating System) can reach the timing performance but have

many weaknesses concerning nowadays required aspects.

Various traditional RTOS tried to enhance their functionality by

offering additional software components through additional

costly licenses. On the other hand standard Linux kernel obeys

the other's requirements but cannot be used as a hard real-time

operating system.

These reasons impulses several initiatives to integrate real-time

capabilities into the Linux kernel, which can make of Linux a

very serious candidate in the embedded systems field. Actually,

many approaches are available to offer these functionalities

using different architectures [1], [2]. The most adopted solutions

are RTLinux/RTCore, RTAI, Xenomai and PREEMPT-RT [2]

patch. Each one of these real-time enhanced kernel has their

internal architecture, their strength and weaknesses. The widely

available choice in terms of timing performances and

functionalities among different Linux kernel variants makes of

Linux one of the most suitable embedded operating systems,

widely adopted for different embedded applications with

different constraints range.

Actually, PREEMPT-RT patch is finally mainlined in the

current kernel and used by great real-time field actors such Wind

River® in their Linux4 solution. Xenomai [3] is another

successful real-time project widely adopted in hard real-time

application. This extension is actually adopted by Sysgo

company with their real-time Linux solution called ELinOS.

Moreover, few works tries to merge Xenomai with PREEMPT-

RT, in the original solution baptized Xenomai/Solo, which port

Xenomai capabilities to PREEMPT-RT patch.

On the other hand, the embedded processing requirements are

increasing at an exponential rate. The supply in terms of

embedded processors is becoming increasingly broad. Different

platforms can be adopted and used in the embedded field,

classically FPGA and DSP architectures are widely adopted in

the embedded high performance field. Actually, we assist in the

convergence of PC and embedded architecture. Different

conventional microprocessor actors try to enlarge their activities

with processor which can be used in both standard and

embedded computer. Intel® and AMD® with their respectively

ATOMTM and GEODETM processor are considered as interesting

candidates in the embedded field. Other high end processors

designed to desktop and server systems become adopted in

industrial computer designed by many great embedded control

actors such as Siemens® and National Instruments®. These

processors are used by various manufacturers in industrial

control or for hardware-in-the-loop applications. These kinds of

architecture are often adapted to offer special robust peripheral

enhanced to work in industrial environments.

In this paper, we try to investigate the usability of industrial

computer for real-time control applications using various real-

time Linux extensions. For this goal, we evaluate the real-time

performance and throughput of Xenomai, PREEMPT-RT,

Lowlatency, standard and server kernel. Timing performance are

measured using Cyclictest, Unixbench are used for throughput

evaluation. Our timing performance tests are released under a

workload generated using hackbench benchmark. These

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

18

performance evaluation tools were adopted after a qualitative

comparison of various tools.

This approach is adopted to study the timing performance of

Linux and its impact on the overall system performance for both

single and dual-core systems. The studied platform is a standard

computer with CoreTM 2 Duo Intel® microprocessor, 3Go of

DDR2 RAM and based on Ubuntu Linux 10.10. Such a platform

is similar to high-end industrial computers designed for control

purpose.

The following paper is organized as follows. Section 2 presents

a survey of dominant real-time open source Linux solutions.

Qualitative comparison of performance evaluation tools are

presented in section 3. We studied the latency of different kernel

versions using cyclictest time measurement program in Section

4. The system performance evaluation is presented in Section 5

for both single-core and dual-core system. Conclusions and

discussion are related in Section 6

2. REAL-TIME LINUX EXTENSIONS
Computer system could be considered as a real-time system if

the time is a dimension of the correctness. The most important

aspect of such system is deadline meeting.

Linux is a general-purpose operating system designed for

desktop and server usage. Its kernel was previously designed to

guarantee the best resource allocation for all executed processes.

Desktop and server Linux kernels use the CFS (Completely Fair

Scheduler). This scheduler is not adapted to real-time systems

since they are characterized by unfairness. Their successful

adoption in these two fields pushed various embedded system

actors to extend their usage into embedded systems field. Such

adoption has a good recognized effect into the embedded field

but the kernel hasn’t the required timing performance for real-

time applications. Many academics and industrials efforts were

made and proposed to enhance the Linux kernel with real-time

functionalities. Actually there are several existing

implementations of real-time extension for Linux kernel [4].

2.1 Real-time Linux technology
Academic research and industrial efforts have created several

real-time Linux implementations [5], [6]. These extensions can

be categorized into two categories according to the approach

used to improve the timing performance.

The first approach consists of modifying the kernel behavior to

improve its real-time characteristics, by reducing the durations

of high priority task.

Fig. 1: Microkernel based real-time Linux

The second approach consists of using small real-time kernel to

handle real-time tasks and who can run the Linux kernel as a

low priority task. The idea behind this approach is illustrated by

Figure 1. The most known projects using this technology are

RTAI and Xenomai. These two projects are built behind

ADEOS that allow the creation of multiple domains. ADEOS

are also responsible for interrupt management, as every

triggered interrupt is oriented to its registered domain. However,

if one interrupts without knowledge of ADEOS is received by

one domain it’s systematically forwarded to the next domain in

the ADEOS pipe. Figure 2 shows the interrupt management of

ADEOS based real-time Linux.

Fig. 2: ADEOS based real-time Linux

2.2 Main real-time Linux solutions
There has been noteworthy works to transmute Linux into hard

or soft real-time operating system. These works are essentially

based into one of the previously presented technology.

In this section the most popular implementation of these

technologies will be discussed.

2.2.1 Preemptible Kernel (lowlatency)
This extension was previously developed as an external patch

called preempt-kernel by Robert Love [7]. Since 2.5 kernel

version preempt-kernel patch was incorporated into the mainline

kernel to offer better reactivity qualities. Thanks to this

extension every process may be scheduled out practically

everywhere in the kernel.

This project was initiated by the transformation made to the

Linux kernel for SMP (Symmetric Multi-Processor) support.

Such support required the critical section protection from

concurrent access to process running on distinct CPUs. This

protection was realized using a spinlocks.

These spinlocks are used to protect the kernel areas from

concurrent access. Such areas are nearly the same that must be

protected to offer a reentrant kernel.

2.2.2 PREEMPT-RT
The PREEMPT-RT patch is the most successful Linux

modification that transforms the Linux into a fully preemptible

kernel without the help of microkernel [8]. It allows almost the

whole kernel to be preempted, except for a few very small

regions of code. This is done by replacing most kernel spinlocks

with mutexs that support priority inheritance and are

preemptive, as well as moving all interrupts to kernel threads.

Hardware

Micro-Kernel

Real-Time Tasks Linux Kernel

User-Space

Hardware

ADEOS

 Real-Time Kernel

 Real-Time Tasks

Interrupt Pipe

Linux Kernel

User-Space

Hardware interrupts

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

19

(Dubbed interrupt threading), which by giving them their own

context allows them to sleep among other things.

This patch presents new operating system enrichments to reduce

both maximum and average response time of the Linux kernel.

These enhancements are progressively added to the Linux kernel

to offer real-time capabilities. The most important enhancements

are:

 High resolution timers

 Complete kernel preemption

 Interrupts management as threads.

 Hard and soft IRQ as threads

 Priority inheritance mechanism

Some of these new features like Threaded IRQ are currently

pushed to the mainline kernel by the patch maintainers.

2.2.3 RTAI
RTAI is a real-time application [9] interface usable for both uni-

processors and symmetric multi-processors (SMPs). This

extension allows the usage of Linux in many "hard real-time"

applications. As an option, RTAI's "LXRT" allows the control

of real-time tasks, using all of RTAI's hard real-time system

calls, from within Linux memory-protected user space resulting

in soft real-time combined with fine-grained task scheduling.

RTAI is the real-time Linux that has the best integration with

others open source tools scilab/scicos [10], [11]. This extension

is widely used in control applications.

2.2.4 Xenomai
Xenomai [12] is a real-time development framework that can be

integrated with the Linux kernel to provide hard real-time

support. The current version is based on dual kernel approach. It

implements ADEOS (I-Pipe) micro-kernel between the

hardware and the Linux kernel. I-Pipe is responsible for

executing real-time tasks and intercepts, interrupts, blocking

them from reaching the Linux kernel to prevent the preemption

of real-time tasks by Linux kernel. Figure 3 illustrate the

functional behavior of the ADEOS/I-Pipe with the case of

Xenomai implementation. The resulting system is composed

from Linux and small co-kernel running side by side on the

same hardware. Xenomai co-kernel exclusively controls the

real-time applications and real-time interfaces either to kernel-

space modules or to user-space applications.

Fig. 3: Interrupt management in Xenomai

Fig. 4: Xenomai skins architectures

These interfaces called skins can mimic pSOS+, VRTX,

VxWorks, POSIX, uITRON and RTAI API. Due to this feature,

Xenomai was considered as the RTOS chameleon. It was

designed to enable smooth migration from a traditional RTOS to

Linux without having to rewrite the entire application. Figure 4

illustrate the Xenomai skins architecture and show that almost

skis are equivalent to the Native skins.

On the other hand Xenomai support a wide range of architecture

(PowerPC32 and PowerPC64, Blackfin, ARM, x86, x86_64, and

ia64).

3. REAL-TIME PERFORMANCE

MEASURING AND BENCHMARKING
Real-time computer system has three performance aspects that

must be monitored to reveal the overall system performance

[13], [14]. These three aspects are real-time performance,

throughput and stability. Such work can be done using real-time

measurement programs, benchmarks and stress tools. The

obtained results are generally used to measure, analyze and

improve both hardware and software architecture by

manipulating various factors.

3.1 Real time measurement program
To reflect real-time operating system health various

measurement programs exist. Each one has its approach and

focalizes in a well determined performance aspect. Table 1,

resume the most important real-time measurement programs.

The most important feature for such systems is to provide

determinism. Other features such response time, scheduler

robustness, protection from priority inversion, offered

preemption mechanisms etc., can be considered as quality

metrics. Each one of these programs is able to evaluate a

separate or a set of factors. However, the worst-case execution

time and jitter can resume the overall timing performance.

Cyclictest can be used to measure these two metrics by

measuring the time between configured timer expiration, and the

actual expire time. For this reason we decided to adopt

Cyclictest for the rest of this work to reflect the real-time

performance of our system.

Adeos/ I-Pipe

Domain A

Xenomai Nucleus

Domaine B

Linux

 rt_task Process

rt_task rt_task

K
er

n
el

sp
ac

e

u
se

r
sp

ac
e

sk
in

s

Hardware

Adeos

SAL/HAL

Real-time nucleus

Syscall interface

 VRTX uITRO

N
pSOS VxWork

s
POSIX Native

User-space applications
Kernel-based applications

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

20

Table 1. Real-time measurement program

Real-time

measurement

program

Description

Lpptest Benchmark included in the PREEMPT-

RT patch that measure the interrupt

latency received on the parallel port.

RTMB Micro-benchmark suite, designed to

compare many of the common metrics of

real-time performance across several

platforms and several languages (C, C++

and Java).

RealFeel ANSI/C program that test of how well a

periodic interrupt is processed.

Cyclictest ANSI/C program that measure the

scheduling latency of the Linux kernel.

Cyclictest recurrently goes to sleep for a

certain time interval and measures the

actual duration of the sleep to infer the

latency.

LRTBF A benchmarking Framework composed

of a set of drivers and scripts for

evaluating the performance of various

real-time additions for the Linux kernel

Houglass A synthetic real-time application that can

be used to learn how CPU scheduling in

a general-purpose operating system

works at microsecond and millisecond

granularities.

Senoner test A latency benchmark designed to analyze

the Linux behavior under under high

system load.

Bytemark CPU benchmark suite, reporting CPU,

cache, memory, integer and floating-

point performance

3.2 Benchmarking programs
Real-time computer system can be compared with their relative

performance. This can be done by running a number of standard

tests and trials against it. Benchmark program results are

essentially dependents from the hardware but the software

execution environment has a remarkable impact on the obtained

results. The main purpose of Benchmarks is to offer a way of

comparing the performance of several subsystems through

different hardware/software architectures.

Each benchmark is able to cover various sets of system

performances. In the context of Linux based computer system,

various communities or industrial benchmark are available for

different computing purpose. Table 2 resume the most used open

source Linux Benchmarks.

Table 2. Open source Linux Benchmark

Benchmarking

program

Description

hackbench ANSI/C benchmark designed to measure

the performance, overhead, and scalability

of the Linux scheduler.

Lmbench ANSI/C microbenchmarks designed to

measure latency and bandwidth.

UnixBench ANSI/C benchmark designed to provide a

basic indicator of the performance of a

Unix-like system. UnixBench can measure

various aspects of the system's

performance and support multi-CPU

systems.

IOZone ANSI/C filesystem benchmark that

generates and measures a variety of file

operations..

3.3 Stress programs
Stress programs are in general used to test the stability of a

computer system in the building and tuning purposes. For the

Linux kernel several stress programs are used to validate every

kernel release. Each one of these programs, recapitulated in

table 3 can cover several aspects of the kernel functionalities.

Table 3. Open source Linux stress program

Stress

program

Description

dohell Script based on previously presented hackbench

benchmark and the dd command, that heavily

load the entire system

Stress Simple ANS/ C program that can impose a

configurable amount of CPU, memory, I/O, and

disk stress on POSIX-compliant operating

systems

Calibrator Small ANSI/C program designed to extract the

cache memory, main memory and TLB

parameters

Cpu Burn Stress program, designed to heavily load CPU

chips.

4. REAL-TIME CHARACTERISTICS

4.1 Timing performance evaluation
Measuring real-time performance of a Linux based operating

system can require various aspect investigations of the studied

system. The most important aspect of such system is WCET

(Worst Case Execution Time) and Throughput. Table 1 show a

recapitulation of the most adopted benchmarks and test

programs.

Cyclictest benchmark can be used with different parameters to

determine the latency of various samples or only the average and

maximum latency. In our case, we used the verbose mode to

study statistically the latency and the silent mode to determine

the average and the maximum latency. The obtained results for

the studied kernels are plotted in Figure 5 to Figure 9.

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

21

Fig. 5: Statistic latency results of the Xenomai patched Linux
kernel

Fig. 6: Statistic latency results of the PREEMP-RT patched
Linux kernel

Fig. 7: Statistic latency results of the low latency Linux kernel

Fig. 8: Statistic latency results of the
generic Linux kernel

Fig. 9: Statistic latency results of the
server Linux kernel

4.2 Interpretation
The earlier presented results show that the average response

time of the five studied kernels is around 10µsec. The best

maximum latency is obtained with Xenomai which are about

15µsec. This result can be justified by the architecture of

Xenomai that separate real-time and Linux domains.

On the other hand the obtained result with PREEMPT-RT can

encourage the usage of this kernel for hard real-time

applications since the maximum latency is about 62µsec. The

main advantage of such solution is their entire compatibility

with the classic Linux applications.

Low latency kernel show better average results than the standard

kernel but their maximum latency can be a serious limitation for

its adoption in hard real-time applications.

Standard and server kernel are given as a reference result for

other real-time enhanced kernel.

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

22

5. SYSTEM PERFORMANCE

5.1 System performance evaluation and

benchmarking
New improvements in computer technology announce

miscellaneous requirements and constraints for system

performance evaluation, especially with the emergence of multi-

core architectures.

System performance evaluation can be very helpful in the

design-flot since it reflect the performance of a whole system,

including all its aspects. Several system benchmark suites exist.

This benchmark can be classified as follows:

 CPU benchmark

 Embedded and media benchmark.

 Language specific benchmark

 Transaction processing benchmark

 Web server benchmark

 Domain specific benchmark

Every benchmark from the presented categories should be

representative of the applications that can run on the studied

systems. These different categories and its relevant benchmark

are detailed in the book [12].

Actually, with the convergence of desktop and embedded

systems, system benchmark can be used. The most useful

benchmarks in our case are LMBench, UnixBench and Nbench.

We adopted UnixBench for the rest of our work since this

benchmark is updated to support multiprocessor system and has

a great portability under different UNIX® systems.

5.2 UnixBench
UnixBench is designed to extract a basic performance indicator

of a UNIX® system. Various aspects of the system are reflected

using an index to compare the performance of the current system

to a reference system. The entire set of index values is then

combined to make an overall index for the system. UnixBench

can also handle Multi-CPU systems. The advantage of this

benchmark in our study is its capability to reflect the

performance of the overall system (including the operating

system and used compiler) not only the available hardware

which is the case of real systems.

The individual performance reports indicate the performance of

the system in a different specific domain like integer or floating

point computation. The system benchmark score indicates the

performance of the global system. For the two reports, the upper

score indicates better performance.

5.3 System performances using single

processor and 2 cores
UnixBench can detect the various CPU available on the studied

system and parallelize its different benchmark on these CPUs.

The reported values are given for both single and multi-core

configuration. Since we used a dual core processor they obtained

results illustrated in Figure 11 and 12 are for single-core and

dual-core.

The obtained results are an attributed score to the whole

computer system, computed according the result of various

internal benchmarks such as Dhrystone and Whetstone.

Fig. 10: System Benchmarks score for different studied kernel
running under a single-core.

Fig. 11: System Benchmarks score for different studied kernel
running under a dual-core.

5.4 Interpretations
The measured values for single-core architecture show global

performances degradation caused by real-time capabilities for

PREEMPT-RT and lowlatency kernel in the order of 16 %

compared to the standard Linux kernel. Xenomai patched kernel

is shown better global performance than standard Linux kernel.

This result can be explained by the deactivation of the power

management and frequency scaling in the Xenomai patched

kernel. On the other hand the xenomai results are obtained with

unloaded real-time domain.

The dual-core architecture shows a considerable degradation for

the PREEMPT_RT patch in the order of 49% compared to the

standard Linux kernel. More else, we can consider that the

performance of dual-core architecture is 9% higher than single-

core architecture for this kind of PREEMPT-RT kernel.

A wiser choice can be the adoption of higher performance

single-core processor instead of dual-core. These kind of results

can be explained by the maturity of PREEMPT-RT multi-core

support.

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.3, March 2011

23

6. CONCLUSIONS
This paper provided a comparative study of various real-time

enhanced Linux kernels. Our results show that Xenomai and

PREEMPT-RT have a comparable performance of mono-

processor system with a little superiority of Xenomai booth for

latency and throughput. We concluded that the adoption of

PREEMPT-RT can be a wiser choice for monoprocessor real-

time system due to the smooth migration of application

development from standard Linux to PREEMPT-RT.

On the other hand the multiprocessor results show a clear

degradation of the obtained results for PREEMPT-RT patch that

can be an obstacle for the PREEMPT-RT adoption of such

systems. Lowlatency Linux kernel can be a serious candidate for

soft real-time application in a multiprocessor environment since

this extension shows a good behave under such an environment,

additionally LowLatency has the same programming model as

standard Linux kernel.

As follows up to this work, we plan to investigate the capabity

of Xenomai/Solo solution who try to merge PREEMPT-RT and

Xenomai solution.

7. REFERENCES
[1] K. Yaghmour, G. Ben-Yossef, and P. Gerum, “Building

Embedded Linux Systems”, O’Reilly 2008.

[2] M. Mossige, P. Sampath, and R. Rao,“Evaluation of Linux

rt-preemptfor embedded industrial devices for Automation

and Power technologies – Acase study”, In Proceedings of

the Ninth Real-Time Linux Workshop in Linz, November

2007.

[3] P. Gerum, “Xenomai - implementing a rtos emulation

framework on gnu/linux,” 2004, 2008.

[4] M. Tim Jones, “Anatomy of real-time Linux architectures

From soft to hard real-time”, IBM 15 Apr 2008

[5] Z. Chen , X. Luo , Z. Zhang, “Research Reform on

Embedded Linux’s Hard Real-time Capability in

Application”, Embedded Software and Systems Symposia,

2008. ICESS Symposia '08. International Conference on

29-31 July 2008 Page(s):146 - 151.

[6] S. Level, “Anatomy of real-time Linux architectures From

soft to hard real-time”, in IBM, 2008 ed: IBM, 2008.

[7] Arnd C. Heursch, Dirk Grambow, Dirk Roedel and Helmut

Rzehak, “Time-critical tasks in Linux 2.6, concepts to

increase the preemptablity of Linux kernel”, Linux

Automation Konferenz, University of Hannover, Germany,

March 2004.

[8] Dongwook Kang, Woojoong Lee, and Chanik Park,

“Kernel Thread Scheduling in Real-Time Linux for

Wearable Computers”, ETRI Journal, Volume 29, Number

3, June 2007.

[9] F. Jiang, S. Gao Jie Zhang, “A Hardware-in-the-loop

Simulation System of Diesel”, Power and Energy

Engineering Conference, 2009. APPEEC 2009. Asia-

Pacific Engine Based on Linux RTAI 27-31 March 2009

Page(s):1 - 4.

[10] R. Bucher, S. Balemi,”Scilab/Scicos and Linux RTAI - a

unified approach”, Control Applications, 2005. CCA 2005.

Proceedings of 2005 IEEE Conference on 28-31 Aug. 2005

Page(s):1121 - 1126.

[11] G. Doukas, and K. Thramboulidis, “A Real-Time Linux

Based Framework for Model-Driven Engineering in

Control and Automation”, IEEE Industrial Electronics,

Volume PP, 2009 Page(s):1-11.

[12] Byoung Wook Choi, Dong Gwan Shin, Jeong Ho Park, Soo

Yeong Yi, Seet Gerald, “Real-time control architecture

using Xenomai for intelligent service robots in USN

environments”, Springer Intel Serv Robotics 2009

Page(s):139–151

[13] L. Kurian, J. Lieven Eeckhout, “Performance Evaluation

and Benchmarking”, Published in 2006 by CRC Press.

[14] Paul J Fortier, Howard E. Michel , “Computer Systems

Performance Evaluation and Prediction”, Digital Press

2003

