
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

1

Minimum-Process Synchronous Checkpointing in
Mobile Distributed Systems

 Anil Kumar Panghal Mukesh Kumar Rana Parveen kumar

 HCTM, Kaithal HCTM,Kaithal MIET,Meerut

ABSTRACT
Checkpointing is an efficient fault tolerance technique used in

distributed systems. Due to the emerging challenges of the

mobile distributed system as low bandwidth, mobility, lack of

stable storage, frequent disconnections and limited battery

life, the fault tolerance technique designed for distributed

system can not directly implemented on mobile distributed

systems(MDSs). This research paper presents an efficient low

cost synchronous checkpointing algorithm which fit into the

mobile environment.

Keywords
Checkpointing, Distributed system, Mobile computing,

Synchronous

1. INTRODUCTION
One of the most challenging and interesting trend in computer

and a telecommunication industry is the integration of mobile

communication and computing. The resulting distributed

network is referred to as mobile computing system [7].

Mobile computing is a new era that enhances the functionality

of computing equipment by freeing communication from the

location constraints of the wireless infrastructure.

Checkpointing is an important feature in distributed

computing systems. It gives fault tolerance without requiring

additional efforts from the programmer. A checkpoint is a

snapshot of the current state of a process. It saves enough

information in non-volatile stable storage such that, if the

contents of the volatile storage are lost due to process failure,

one can reconstruct the process state from the information

saved in the non-volatile stable storage [1]. If the processes

communicate with each other through messages, rolling back

a process may cause some inconsistency. In the time since its

last checkpoint, a process may have sent some messages. If it

is rolled back and restarted from the point of its last

checkpoint, it may create orphan messages, i.e., messages

whose receive events are recorded in the states of the

destination processes but the send events are lost. Similarly,

messages received during the rolled back period, may also

cause problem. Their sending processes will have no idea that

these messages are to be sent again. Such messages, whose

send events are recorded in the state of the sender process but

the receive events are lost, are called missing messages. A set

of checkpoints, with one checkpoint for every process, is said

to be Consistent Global checkpointing State (CGS), if it does

not contain any orphan message or missing message.

However, generation of missing messages may be acceptable,

if messages are logged by sender. In a distributed system,

each process has to take checkpoints periodically on non-

volatile stable storage. In case of a failure, the system rolls

back to a consistent set of checkpoints. If all the processes

take checkpoints at the same time instant, the set of

checkpoints would be consistent. But since globally

synchronized clocks are very difficult to implement, processes

may take checkpoints within an interval. In order to achieve

synchronization, sometimes processes take temporary

checkpoints. When all processes agree, these checkpoints are

made permanent. The focus of this paper is on checkpointing

techniques, which do not require any intervention on the part

of the application or the programmer. The system

automatically takes checkpoints according to some specified

policy, and recovers automatically after the failed process

restarts.

This approach has the advantages of relieving the application

programmers from the complex and error-prone chores of

implementing fault tolerance and of offering fault tolerance to

existing applications written without consideration of

reliability concerns.

2. RELATED WORK
Prakash - Singhal proposed first non-blocking minimum

process checkpointing protocol for MDCSs which tries to

minimizing the number of number of processes participating

without blocking, that algorithm may produce inconsistencies

in some situations, and they further proves that there does not

exists a minimum-process non-blocking checkpointing

algorithms in reality.

Cao-Singhal showed that algorithm proposed causes

inconsistencies when there are multiple forced checkpoints.

The correctness proof fails to handle the situation when the

sending process P takes multiple forced checkpoints as only

the latest one’s initiator information is attached with the

computation message sent to process Q.

Cao and Singhal achieved non-intrusiveness in minimum-

process algorithm by introducing the concept of mutable

checkpoints to adapt to mobile environments. Proposed

protocol is modified version of the algorithm proposed in

mutable checkpoints that need not be saved on the stable

storage and can be store on the main memory of the MHs and

has not any transferring cost.

3. SYTEM MODEL
The system model of the distributed mobile system used is as

follows:

(i)There are n spatially separated sequential processes

denoted by P0, P1,.. Pn-1, running on MHs or MSSs,

constituting a mobile distributed computing system. Each

MH/MSS has one process running on it.

(ii)The mobile distributed system can be considered as

consisting of “n” Mobile Hosts (MHs) and “m” Mobile

Support Stations (MSSs). All the MSSs are connected through

static wired network. A cell is a small geographical area

around the MSS supports a MH only within this are and there

is a wireless link between a MH to MSS. A MH can

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

2

communicate to another MH only through their reachable

MSS.

(iii)The processes do not share memory or clock and message

passing is the only way for processes to communicate with

each other.

(iv)Each process progresses at its own speed and messages are

exchanged through reliable channels, whose transmission

delays are finite but arbitrary.

(v)The communication links are FIFO.

A process is in the cell of MSS means the process is either

running on the MSS or on an MH supported by it.

It also includes the processes of MHs, which have been

disconnected from the MSS but their checkpoint related

information is still with this MSS. We also assume that the

processes are non-deterministic.

4. PROPOSED CHECKPOINTING

PROTOCOL

This research paper proposes a new checkpointing protocol

for mobile environments. Our synchronous minimum process

checkpointing algorithm has the following characteristics:

(i)It maintains the correct dependencies among processes.

(ii)It piggybacks the necessary information onto normal

messages and ignores the non-existent dependencies;

(iii)It also maintains the information related to location of

MHs, dependency and forced/permanent record on the MSS

level for reducing the searching cost

(iv)To reduce the useless checkpoint, the trigger tuples are

piggybacked with the application message sent after taking

the forced checkpoint.

(v)It also maintains the record of multiple forced checkpoints

(FC) after converting the forced checkpoint into permanent

one.

(vi)At the time of starting a checkpointing algorithm, a

predefined checkpoint period T is set on all the process. All

process in the system take their permanent checkpoints (PC)

after this time period T; however a process may not take PC if

it takes forced checkpoint (FC) before the permanent

checkpoint.

(vii)As there is no common clock and processes do not share a

common memory but every MH and MSS contains a system

clock, with typical clock drift rate p in the order of 10-5 to 10-

6. The system clocks of MSSs can be synchronized using the

network time protocol (NTP). Due to the reliability of MSSs,

and work as mediator of MHs, time in MSSs is used to as

reference. The MSS closest to the receiver, is timer

(viii)A process involves in global state, sends the

acknowledgement directly to the initiator.

(ix)In our proposed checkpointing approach, checkpoints are

taken only if any event occurs between the timeout period to

back up copy of previous checkpointed state are still valid as

shown in Figure 1

Figure 1 Taking Checkpoints

Process Pi is responsible for piggybacking its local time, in

every application message. On receiving message from

process Pi:

 If (current_time () > get_time ()

 Resetimer (get_time)

As shown in figure 1 there are two processes P1, P2 here

expected time to take checkpoint > checkpoint interval

We explain our checkpointing algorithm with the help of an

example. Consider the distributed system as shown in Figure

2. Note that when a computation message is sent after taking

the checkpoint it piggybacked with minset []. The entire

computation message is piggybacked with the csn and

dependency vector. Assume that process P4 initiate

checkpointing process in Figure 2. First process P4 takes its

checkpoint and increment its csn number from C4,0 to C4,1 ,

compute minset[](which in case of Figure 2 is {P1, P3, P5}).

This means that the initiator process is directly or transitively

dependent on these processes. Hence, when P2 initiate a

checkpoint all of these processes should take their checkpoints

in order to maintain global consistent state. Therefore P2 sends

the checkpoint request along with minset [] to process P1, P3

and P5. When P3 receives the checkpoint request it takes the

tentative checkpoint and sends message M4 by attaching

minset [1011100], trigger set(P4, C4,1), and csn3=1. After

receiving message M4, P2 first compare m.csn3 (which is 1)

with its old_csn2 [3] (which is 0). As P2 does not belongs to

minset, not sent any message to the processes which are in

minimum set and m.csn3 > csn2 [3]. Hence, P2 takes forced

checkpoint, update its trigger set to (P4, C4,1), increment its

csn2 from 1 to 2, and updates the csn2[3] from C4,0 to C4,1.

C2,1

C1,1 Checkpointing Interval (tp)

P2

P1

C1,0

C2,0

Expected time to take

Checkpoint C2,1

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

3

Figure 2. An example of our checkpointing approach

After taking forced checkpoint it sends message M5 to P1. P1

takes tentative checkpoint directly due to minset [P1]= =1 and

set c_state ==1(as P1 knows that it is the part of minset and

get the checkpoint request from the initiator in future and

when it get the checkpoint request it ignore the request).P2

check its dependency and find out that it receives computation

message from P2 since its last checkpoints.

So, it sends checkpoint request to the process P1 with weight

and reply with remaining weight and new_ddv2 [P1] ==1 to

the initiator. After receiving the checkpointing request from

P1, P2 converts its forced checkpoints in to tentative one and

reply to the initiator. Initiator compute the Uminset [P1, P2, P3,

P4, P5] by taking the union of minset {P1, P3, P4, P5} and

new_ddv1 {P2}.

At last, when P2 receives positive responses from all relevant

processes(weight = =1) it issues commit request along with

the exact minimum set [P0, P1, P2, P3, P4] to all processes. On

receiving commit following actions are taken. A process, in

the minimum set, converts its tentative checkpoint into

permanent one and discards its earlier permanent checkpoint,

if any.

On the other hand if it receive the negative response from any

one of the processes which belongs to the minset, it sends the

abort message to all processes which belongs to Uminset [].

On receiving abort, processes discard the tentative checkpoint,

if any; reset c_state, tentative, g_chkpt etc and update ddv []

and minset [].The system is consistent.

Performance Analysis:

In this section we analyze our checkpointing algorithm by

comparing with different existing algorithms in different

context. We use following notations to compare our algorithm

with others.

Cair: Cost of sending a message m from any Pi to Pj;

Cbroad: Cost of broadcasting a message to all processes;

Nmin: Number of processes that belongs to minset;

n: total number of MHs in the system;

ndep: Average no. of processes on which a process depends;

Tch: Total time taken to store the checkpoint on stable storage

Figure shows the average searching time on y-axis, no. of

MHs on the X-axis for algorithms proposed in [9] and our

proposed protocol. As depicted figure 4, with the number of

MHs increases, our checkpointing protocol have

approximately two times less searching cost in the comparison

of [9] and changes very slightly on increasing the number of

MHs..

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50

No. of MHs

A
v
e
ra

g
e
 S

e
a
rc

h
in

g
 T

im
e

Proposed Algo.

Cao-Singhal[9]

Figure 3. Average searching time comparison

5. CONCLUSION

This research paper presents an efficient minimum process

synchronous checkpointing algorithm which fit into the

mobile environment. It forces only those minimum number of

MHs which are directly or transitively dependent, to take their

C2,1

C5,0

C6,0

C7,0

C4,0

C

1

,

P7

C1,0 C1,1

M5

M4

C5,1

C4,1

M7

M6

M3

M2

M1

P6

P5

P4

P3

P2

2

P1

1

C3,1

C2,0

C3,0

Permanent Checkpoint Checkpoint Request Message

Computation Message
Forced Checkpoint

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.4, March 2011

4

checkpoints during checkpointing. This helps in power saving

as if a MH is in active mode it consumes more power.

In our algorithm MHs take very less number of checkpoints

which is nearest to minimum. Reduction in the number of

checkpoints helps in the efficient use of resources of mobile

systems as message sending and state saving consumes power

and bandwidth. It has very less searching cost. It requires very

minimum interaction between initiator MH and others. Instead

of above all, our protocol is non-blocking, adaptive, uses very

simple data structure and each MH takes its checkpointing

decision on their own basic. These all features make our

algorithm more suitable for mobile computing environment.

 REFERENCES

[1] Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference on

Parallel and Distributed Information Systems, pp. 73-80,

September 1994.

[2] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on

Software Engineering, vol. 13, no. 1, pp. 23-31, January

1987.

[3] Prakash R. and Singhal M., “Low-Cost Checkpointing

and Failure Recovery in Mobile Computing Systems,”

IEEE Transaction On Parallel and Distributed Systems,

vol. 7, no. 10, pp. 1035-1048, October1996.

[4] Cao G. and Singhal M., On coordinated checkpointing in

Distributed Systems, IEEE Transactions on Parallel and

Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec

1998.

[5] Cao G. and Singhal M., “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[6] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,

A Survey of Rollback-Recovery Protocols in Message-

Passing Systems, ACM Computing Surveys, vol. 34, no.

3, pp. 375- 408, 2002.

[7] G.H. Forman and Zahorjan, “The Challenges of Mobile

Computing” Computer, Vol. 27, no.4, pp.38-47, Apr.

1994.

[8] Singhal, M. Shivaratri, N.-G.: Advanced Concept in

Operating System. McGraw Hill,(1994)

[9] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal

checkpointing for mobile distributed systems

Proceedings,” 19th IEEE International Conference on

Data Engineering, pp 686 – 88, 2003.

[10] Kshemkalyani Ajay D, Singhal, M.: Distributed

Computing Principles, Algorithms, and System (2008)

