
International Journal of Computer Applications (0975 – 8887) 

Volume 17– No.5, March 2011 

30 

A Novel Approach for finding Frequent Item Sets with 

Hybrid Strategies  

J.R.Jeba 

Assistant Professor & Head 
Department of Computer Applications 

Noorul Islam Centre For Higher Education 
Noorul Islam University, Kumaracoil 

Dr.S.P.Victor 

Associate Professor & Head 
Department of Computer Science 
St.Xavier’s College (Autonomous) 

PalayamKottai. 

 

ABSTRACT 
Frequent item sets mining plays an important role in 

association rules mining. Over the years, a variety of 

algorithms for finding frequent item sets in very large 

transaction databases have been developed.  Therefore, a 

number of methods have been proposed recently to discover 

approximate frequent item sets.  This paper proposes an 

efficient SMine (Sorted Mine) Algorithm for finding frequent 

item sets.  This proposed method reduces the number of scans 

in the database.  Our proposed SMine algorithm works well 

based on graph construction.  At last we performed an 

experiment on a real dataset to test the run time of our 

proposed algorithm.  The experiment showed that it was 

efficient for mining datasets. 

 

General Terms 

 Data Mining, Frequent Item sets, Association Rule Mining. 

Keywords 
SMine,item_count, frequent_items. 

 

1. INTRODUCTION 
Association rule mining is a focused area in today‟s data 

mining research.  It usually consists of two phases viz., 

discovery of frequent itemsets and generation of rules from 

the discovered frequent itemsets.  Finding frequent itemsets 

has gained popularity because it has more number of 

applications. 

A number of algorithms for mining frequent item sets have 

been proposed after Agrawal first introducing the problem of 

deriving categorical association rule from transactional 

databases in [1].  These existing algorithms uses the candidate 

generate-and-test approach and the pattern growth approach.  

Apriori [2] and its several variations belong to the first 

approach, while FP-growth [7] and H-Mine [8] are examples 

of the second.  In Apriori[1, 2] as well as many subsequent 

studies[3, 4], each iteration of the candidate generate-and-test 

approach, pairs of frequent k-item sets are joined to form 

candidate (k+1)-item sets, then scanned the database to verify 

their supports. The Apriori algorithm achieves good reduction 

on the size of candidate sets, however, it takes many scans of 

the database to check the candidate item supports as much as 

the most long length of patterns.  In addition another new 

algorithm has been developed [6] which uses top down graph 

based approach.  In addition, many research have been 

developed algorithms using tree structure, such as  CT-ITL[5],  

FP-growth [7], AFP-Tree[9]. 

In this paper, we propose SMine algorithm for mining the set 

of all frequent itemsets in the database by reducing the 

number of scans.  During the first database scan the number of 

occurrences of each item is determined and the infrequent 

ones are discarded.  Then the frequent items are counted in 

each transaction.  The transactions are sorted based on the 

number of frequent items in descending order.  Then graph 

based approach is used to find the frequent item sets.   

The organization of this paper is as follows: In Section 2, we 

put an insight into the detailed problem description.   In 

Section 3, we give a detail of proposed SMine algorithm used 

for generating all frequent itemsets.  Example is given in 

Section 4.  We end with our conclusion in Section 5. 

 

2. PROBLEM DESCRIPTION 
Let I = {I1, I2, ….In} be a set of items.  Let D, the task-

relevant data, be a set of transactions in a supermarket, where 

each transaction T is a set of items, such that T  I.  Each 

transaction is assigned an identifier called TID.  Let A be a set 

of items, a transaction T is said to contain A if and only if 

A T.  An association rule is an implication of the form A B, 

where A I, B I, and A∩B= .  The rule A B holds in the 

transaction set D with support s, where s is the percentage of 

transactions in D that contain A B (i.e., both A and B).  This 

is taken to be the probability P(A B).  The rule A B has 

confidence c in the transaction set D if c is the percentage of 

transactions in D containing A that also contain B.  This is 

taken to be the conditional probability, P(B|A).  That is, 

Support (A B) = P(A B) = s, Confidence (A B) = P(B|A) 

=Support (A B)/Support (A)=c.  Thus association rules is 

composed of the following two steps: 1) Find the large item 

sets that have transaction support above a minimum support 

and 2) From the discovered large item sets generate the 

desired association rules. 

 

In this paper, we have developed a method to discover large 

item sets from the transaction database, thus finding a solution 

for the first sub problem. 

 

3. PROPOSED METHOD 
Step 1: The algorithm scans the database in order to count 

the number of occurrences of each item to find the candidate 

1-itemset with their support count. 

 

Step 2: The set of frequent 1-itemset L1 can then be 

determined by removing the items having less than the 

minimum support count.  It consists of the candidate 1-

itemsets satisfying minimum support.  Let the number of 

frequent 1-itemset be „n‟.  



International Journal of Computer Applications (0975 – 8887) 

Volume 17– No.5, March 2011 

31 

Step 3:   Removes the infrequent items from each 

transaction and counts the number of items in each transaction 

( item_count ). 

Step 4:   The transactions are sorted in descending order 

based on the item count.  

Step 5: Create a table called ‟M‟ with two columns such as 

„no.of.items‟ and „no.of. transactions‟.  Let no=n; 

Step 6: Add a row with  no.of.items  =  no and 

no.of.transactions is equal to the number of transactions 

having item_count >= no.  If no >2, then decrement „no‟ value 

by 1 and  repeat step 6. 

 Step 7: Select the maximum „no.of.items‟ from the table M 

having the „no.of transactions„ equal to or greater than the 

minimum support count.  Let it be m. Create a directed graph 

structure starting from all possible items in m-itemset as the 

header nodes in the first level, all the possible (m-1) itemset in 

the second level, all the possible (m-2) itemset in the next 

level and So on, until 2-itemset. 

Step 8 : Get the „no.of transactions‟ for m-itemset from the 

table M.  Let it be „R‟.  If it is greater than or  equal to the 

minimum support count, then find the support count of each 

unvisited node of the m-itemset by scanning first „R‟ 

transactions.  If the set is frequent, mark this node and all its 

sub nodes as frequent items.  If the set is frequent, all its 

subsets must also be frequent. 

Step 9 :  Go to the next level .Let m=m-1. Repeat step 8 until 

m =2. 

Step 10: All the marked nodes are frequent itemsets. 

 

3.1 SMine Algorithm : 
 

Input : Database, D, of transactions; minimum support 

threshold, min_sup. 

Output : L, frequent itemsets in D. 

Method: 

Begin 

L1= find_frequent_1-itemsets(D); 

n=number of items  in L1; 

L2, L3….., Ln  are initially set to null; 

for each transaction t in D 

{ 

//Removing infrequent items from  

transactions 

 Delete item not in L1  from t . 

  t. item_count = Number of frequent items.  

} 

Sort the transactions in D, descending order  based on 

their item_count. 

call DB_details(D)  

call creategraph(L1, n) 

End 

procedure DB_details(D) 

for( k=n; k>=2; k--) 

      Mk=Number of transactions having item_count >=k; 

// Arrange these values in a table called „M‟ 

 end procedure 

 

procedure creategraph(L1, n )  

// L1 is frequent 1-itemset, n is the number of  

// items in L1 

 while( Mn satisfies min.support count) 

 n=n-1; 

Add all possible  n- itemsets  as the header nodes 

Cn = all possible „n‟ itemsets. 

for ( k=n;  k >= 3;  k--) 

       Call subgraph(Ck) 

for ( k=n;  k >= 2;  k--) 

      Call frequent_items (k) 

end procedure 

 

procedure subgraph(Ck) 

 Ck-1 = {} 

for each item in Ck  

 { 

Ck-1 = Ck-1 U  ( all the possible subset (k-1) itemsets ) 

for each subset (k-1) itemset 

     { 

If  the node is already created  then 

         make a link to the parent node 

 else    

        create a new node for the item and make a link to 

the parent node 

      } 

 }  

end procedure 

 

procedure  frequent_items(k) 

  for each itemset in Ck  

 { 

 If (item is not visited || not marked)  then 

   { 



International Journal of Computer Applications (0975 – 8887) 

Volume 17– No.5, March 2011 

32 

Find the support count by scanning first Mk  transactions . 

If it satisfies the min. support then  

      { 

    Mark this node and all its subnodes up to the level 

2 itemsets are frequent.   

    Add these marked nodes to Lk, Lk-1,  Lk-2, …., L2 in 

their respective array. 

      } 

      else 

             mark this node as infrequent. 

      } 

 } 

end procedure 

 

4. EXAMPLE  
 

Table 1 shows the transactional database with Transactional 

Identity Number(TID), List of item Identity numbers and 

number of items in each transaction. 

 

 

Table 1 : Transactional Database , D 

 

TID List of 

item_IDs 

Item 

Count 

T100 I1, I2, I5,I6 4 

T200 I2, I4 2 

T300 I2, I3,I7 3 

T400 I1, I2, I4 3 

T500 I1, I3 2 

T600 I2, I3 2 

T700 I1, I3 2 

T800 I1, I2, I3, I5 4 

T900 I1, I2, I3 3 

 

Scan the transactional Database, D for count of each 

Candidate items.   It is shown in table 2. 

 
Table 2 : Candidate items, C1  

 

Item Set Sup. Count 

{I1} 6 

{I2} 7 

{I3} 6 

{I4} 2 

{I5} 2 

{I6} 1 

{I7} 1 

 

Compare the candidate support count with minimum support 

count and removes the infrequent items from Table 2 and the 

result is shown in Table 3 

 

 

 

Table 3 : Frequent 1-itemsets, L1 

 

Item Set Sup. Count 

{I1} 6 

{I2} 7 

{I3} 6 

{I4} 2 

{I5} 2 

 

 Removing infrequent items from each transactions and 

update item_count and sort the transactions and it is shown in 

Table 4. 

 
Table 4 : Sorted Database 

 

TID List of item_IDs Item_count 

T800 I1, I2, I3, I5 4 

T100 I1, I2, I5 3 

T400 I1, I2, I4 3 

T900 I1, I2, I3 3 

T200 I2, I4 2 

T300 I2, I3 2 

T500 I1, I3 2 

T600 I2, I3 2 

T700 I1, I3 2 

 

Create a table called ‟M‟ with two columns such as 

„no.of.items‟ and „no.of. transactions‟.Add the rows with  

no.of.items and count the number of transactions having 

item_count >= no.of.items.  It is shown in Table 5.   

 

Table 5: M 

 

No. of 

items 

No. of 

transactions 

 

5 0 M5 

4 1 M4 

3 4 M3 

2 9 M2 

 

Select the maximum „no.of.items‟ from table M having the 

„no.of transactions„ equal to or greater than the minimum 

support count.  In this example m=3.  Create a directed graph 

structure as shown in Figure 1, starting from all possible  3-

itemsets as the header nodes in the first level, all the possible  

2-itemset in the second level. 

 
If the set is frequent, then all its subsets are also frequent.  

From the table 5, we find that L5 and L4 are null, because the 

number of transactions are less than the minimum support 

threshold.  So, we can check the possible 3- itemsets. 

 

It does not need to check the complete database. To find the 

frequent 3-itemset in the above example, it is enough to check 

first four transactions.  If any 3-itemset is frequent, all its 

subsets are also frequent.  Hence to find frequent 2-itemset, it 

is enough to check 5 patterns. The Frequent itemsets are as 

follows. 

 

L1={I1,I2,I3,I4,I5} 

L2={ {I1,I2}, {I1,I3}, {I2,I3}, {I2,I4}, {I1,I5},   {I2,I5}} 

L3 ={ {I1,I2,I3}, {I1,I2,I5}} 



International Journal of Computer Applications (0975 – 8887) 

Volume 17– No.5, March 2011 

33 

 

Fig 1: Graph based approach 

 

 

5. CONCLUSIONS 

 
SMine algorithm reduces the repeated scan of the complete 

database like Apriori.   In this new algorithm only limited 

number of transactions are scanned starting from the first to 

find frequent n-itemset.  It also uses the concept if the set is 

frequent, all its subsets are frequent.  It is implemented 

through the graph based approach.  We have explained this 

new algorithm and illustrated with examples.  In our future 

work, we will implement and compare it with the existing 

pattern mining algorithms. 

 

6. REFERENCES 
 

[1] Ashok Savasere, E. Omiecinski and S. Navathe, “An 

efficient algorithm for mining association rules in large 

databases”,   Proceedings of the 21st International 

Conference on Very large database, 1995, pp. 420-431. 

 

[2] Jia Ling, Koh and Vi-Lang Tu,  “ A Tree-based Approach 

for Efficiently Mining Approximate Frequent Itemsets”, 

IEEE International Conference on Research Challenges in 

Information Science, 2010, pp. 25-36. 

 

[3] Jian Pei ,J. Han, J. Lu, H. Nishio.S.and Tang, “H-Mine: 

Hyper-Structure Mining of Frequent Patterns in Large 

Databases”, ICDM International Conference on Data 

Mining, ICDM, 2001,  pp. 441-448. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] Jiawei Han, Jian Pei, and Yiwen Yin,   “Mining Frequent 

Patterns without Candidate Generation”, Proceedings of 

ACM SIGMOD Conference,  Dallas, TX, 2000, pp.53-87. 

 

[5] Jong Soo Park, M.S. Chen, and P.S. Yu, “An effective 

hash based algorithm for mining association rules”,  

Proceedings of the 1995 ACM SIGMOD International 

Conference on Management of Data, San Jose, California, 

May 22-25, 1995, pp. 175-188. 

 
[6] Ramesh Agrawal and Ramakrishnan Srikant, “Fast 

algorithms for mining association rules”,  proceedings of 

the 20th  VLDB Conference Santiago,Chille, 1994, pp. 

487-499. 

 

[7] Ramesh Agrawal, Tomasz Imielinski, and A. Swami, 

“Mining association rules between sets of items in large 

databases”,  ACM-SIGMOD Int. Conf. Management of 

Data, Washington, D.C., May 1993,  pp 207–216. 

 

[8] Senthil Kumar A.V and R.S.D. Wahidabanu, “A Frequent 

Item Graph Approach for Discovering Frequent Itemsets“, 

Proceedings of 2008 IEEE International Conference on 

Advanced Computer Theory, 2008, pp.952-956. 

 

[9] Yudho Giri Sucahyo and Gopalan.R, “Efficient Frequent 

Item Set Mining using a Compressed Prefix Tree with 

Pattern Growth”,  Proceedings of 14th Australian 

Database Conference, Adelaide, Australia, 2003, pp.95-

104    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


