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ABSTRACT 
This paper presents a new approach for power signal time series data 

mining using S-transform based K-means clustering technique and 

fuzzy decision tree. Initially the power signal time series disturbance 

data are pre-processed through an advanced signal processing tool 

such as S-transform and various statistical features are extracted, 

which are used as inputs to the K-means algorithm for disturbance 

event detection. Particle Swarm Optimization (PSO) technique is 

used to optimize cluster centers which can be inputs to a fuzzy 

decision tree for pattern classification of time varying database like 

the power signal data bases.  

 

Index Terms—Time frequency transform, S-transform, Power 

signal time series data, K-means clustering, decision tree.  

 

 

1. INTRODUCTION 
 
Cluster analysis has become an important technique in exploratory 

data analysis, pattern recognition, machine learning, neural 

computing, and other engineering system studies [1-5]. The 

clustering aims at identifying and extracting significant groups in 

underlying data. Each group, called a cluster, consists of objects that 

are similar to one another and dissimilar to objects of other groups. 

Data are termed as static if all their feature values do not change with 

time or change negligibly.  The bulk of clustering analysis has been 

applied to static data.  Unlike static data, the features of the time 

series comprise values that change with time. Time series clustering 

[6-8] has been very effective in providing pertinent and useful 

information in various application domains as a part of temporal data 

mining research.  Time series data are of interest because of their 

pervasiveness in various areas ranging from science, engineering, 

business, finance, economics, healthcare, etc.  

Various algorithms have been developed to cluster different types of 

time series data.  In order to apply the clustering algorithms, it is 

necessary to convert the time series data to the static one and modify 

the similarity or distance measures for clustering. The various power 

line disturbances include voltage sag, swell, impulsive, and 

oscillatory transients, multiple notches, momentary interruption, 

harmonics, and voltage flickers, etc. Unfortunately most of the 

recorders used for power signal data mining rely on visual inspection  

 

 

 

 
 

 

of data record creating an unprecedented volume of data to be 

inspected by engineers. Thus an automatic recognition or 

classification of the voluminous data is required for improving the 

quality of electricity supply. 

Although wavelet multiresolution analysis combined with a 

large number of neural networks provides efficient classification of 

power quality (PQ) events [9-12] the time domain featured 

disturbances such as sags, swells, etc. may not easily be classified. In 

addition if an important disturbance frequency component is not 

precisely extracted by wavelet transform which consists of octave 

band pass filters the classification accuracy may also be limited. This 

paper, therefore, presents a generalized discrete S-transform [13,14] 

with modified Gaussian window that varies inversely with frequency 

for the detection, localization of power line disturbance signal time 

series database. The modified S-transform simply designated as MST 

produces a time-frequency representation of a time varying signal by 

uniquely combining the frequency dependent resolution while 

simultaneously localizing the real and imaginary spectra. The MST 

of a Power line disturbance signal time series data provides contours 

which closely resemble the disturbance patterns unlike the wavelet 

transform and hence the features extracted from it are very suitable 

for developing highly efficient and accurate classification scheme. 

Further the MST analysis of time varying signal data yields all of the 

quantifiable parameters for localization, detection and quantification 

of signals comprising a time series database. 

After the features are extracted from the time-series data 

using a modified discrete S-transform, a clustering analysis is used to 

group the data into clusters and thereby identifying the class of the 

data.  The well known Fuzzy C-means Algorithm [15] is commonly 

used for data clustering but suffers from trial and error choice of the 

initial cluster centers and also the noise present in the original time 

series data. In addition to this the traditional Fuzzy C-means 

Algorithm gets stuck in the local minima and, therefore, does not 

offer robustness in clustering the features. In order to overcome this 

problem a simpler hybrid  K-means clustering algorithm along with  

Particle swarm optimization (PSO) technique [16,17] is used for 

clustering the features into distinct groups that may be used further 

for classification. Unlike other evolutionary learning algorithms, PSO 

needs smaller parameters to decide and can be easily implemented, 

and has stable convergence characteristic with good computational 

efficiency.  
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2.  MODIFIED DISCRETE S-TRANSFORM 

FOR FEATURE EXTRACTION 

 The S-transform (ST) of a time series ( )tx  is defined as [1]: 
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Thus, an alternative representation for the generalized discrete S-

transform with modified Gaussian window is 
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Where N  is the number of frequency points , and X[m + n] is 

obtained by shifting the discrete Fourier Transform (DFT) of x(k) by 

n. The output of the S-transform is an n×m matrix, whose rows 

pertain to frequency and columns indicate time. Each column thus 

represents the “local spectrum” for that point in time. From the ST 

matrix we obtain the frequency-time contours having the same 

amplitude spectrum and these contours can be used to visually 

classify the nature of the signal database and its change of frequency 

and the harmonic content if any during the distortion. Fig.1 shows a 

block diagram approach for time series data clustering.  

formats for your particular conference.  

 

3. K-MEANS CLUSTERING 
In the field of clustering, K-means algorithm is the most popularly 

used algorithm to find a partition that minimizes mean square error 

(MSE) measure. For space S which has the K groups and the N 

points {x1, x2, …, xM}, the definition of the clustering analysis is as 

follows: In many clustering techniques, the K-means (generally 

called hard C-means) algorithm is one of well-known hard clustering 

techniques. It can allocate the data point xi to the closest cluster 

center zj by using Euclidean distances: 

{ } { }KjNizxd ji ,...,2,1  , ,...,2,1  ,  ∈∈−=   (3)
 

A good method will cluster data set X = {x1, x2, …,xN} into K well 

partitions with  2≤K≤M-1. When we have an unlabelled data set, it is 

very important to define an objective function for a clustering 

analysis method. Intuitively, each cluster shall be as compact as 

possible.  Thus, the objective function of the K-means algorithm is 

created with the Euclidean norm given by:  
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where zj is the jth cluster center. The necessary condition of the 

minimum J is 
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Where jN  is the number of points belonging to cluster Cj. 

 

The K-means clustering process can be stopped when any one of the 

following criteria are satisfied:  when the maximum number of 

iterations has been exceeded, when there is little change in the 

centroid vectors over a number of iterations, or when there are no 

cluster membership changes.  

 

3.1. Particle swarm Optimization 
PSO is a novel stochastic origin in the motion of a flock of birds 

searching for food.  The basic PSO algorithm is started by scattering 

a number of particles called swarms in the function search apace.  

Each particle moves in the search space looking for the global 

minimum or maximum.  During its flight each particle adjusts its 

trajectory by dynamically altering its velocity according to its own 

flying experience and the flying experience of the other particles in 

the search space.  The PSO approach is becoming very popular due 

to its simplicity of implementation and its ability to quickly converge 

to a reasonably good solution. Each particle represents a position in i 

in the j dimensional search space, and is flown through this space 

adjusting its position towards both the particle’s own best position 

found thus far, and the best position in the neighborhood of that 

particle. For a particle moving in a multidimensional search space let 

jix ,  and jiv , denote the position of ith particle in then jth dimension 

and velocity at time t.  The local best position of the ith particle is 

obtained as  
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and the global best position is obtained as 
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where F  denotes the fitness of the particles and is obtained from the 

Euclidian distance and in the section 4.2.     

The modified velocity and position of each particle at time (t+1) can 

be calculated as 
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 where iv  is the velocity of ith particle at time t+1, ix  is the current 

position, w  is the inertia weight factor, where i = 1, 2,…, N; 

21   and, cc are, respectively,  the cognitive, and social factors ; 

rand1,and rand2  are random numbers uniformly distributed within 

[0,1] , K is the constriction factor which is a function 1ϕ  and 2ϕ  

given by 
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3.2. Pso Based Clustering 
 
In the context of clustering, a single particle represents the Nc cluster 

centroid vectors. That is, each particle ix  is constructed as follows: 

ciNijii mmmx ,...,,1=                   (10) 

where jim ,  refers to the j-th cluster centroid vector of the i-th 

particle in cluster Cij. Therefore, a swarm represents a number of 

candidates clustering for the current data vectors. The fitness of the 

particle i is easily measured as the quantization error as   
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where d is defined in equation (15), and ijC  is the number of data 

vectors belonging to cluster Cij.  

The K-means algorithm exhibits a faster, but premature convergence 

due to a large quantization error, while the PSO algorithm gives 

lower quantization errors and a robust convergence.  

)1()()1( ++=+ tvtxtx iii           (12) 

Further the position and the velocity of each particle is limited by the 

following expressions: 
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Also for the jth dimension, the maximum velocity constrained to  
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A small rn  facilitates global exploration (searching new areas), 

while a larger one tends to facilitate local exploration (fine tuning of 

the current search area) and thereby attain an optimal solution in a 

lesser  number of iterations.   

 

4. CLUSTERING ALGORITHM  
Feature extraction is done by applying standard statistical techniques 

to the contours of the modified S-matrix. These features have been 

found to be useful for detection, classification or quantification of 

relevant parameters of the time varying data streams.  The five 

prominent statistical features are extracted from the S-transform 

output, as listed below: 

1. 1F  = max (A) +min (A)-max (B)-min (B)         (15) 

where A is the amplitude versus time graph from the S-matrix 

under disturbance and B is the amplitude versus time graph of the 

S-matrix without disturbance.  

2.  2F = Standard deviation of the magnitude versus time 

spectrum obtained from ST matrix  
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3. 3F =Energy in the S-transform output =
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 4.  4F = Total harmonic distortion (THD) =    
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 where N is the number of points in the FFT, nV the value of the 

nth harmonic component of the FFT. 

 

These features are used to classify the time series data into several 

classes by using a hybrid clustering technique based on PSO and K-

means algorithms. The K-means algorithm tends to converge faster 

(after less function evaluations) than the PSO, but usually with a less 

accurate clustering.  This section shows that the performance of the 

PSO clustering can further be improved by sending the initial swarm 

with the result of the K-means algorithm.  The hybrid algorithm first 

executes K-means algorithm once.  In this case the K-means 

clustering is terminated when the maximum number of iterations is 

exceeded, or when the average change in centroid vectors is less that 

that 0.0001 (a user specified parameter).  The result of the K-means 

algorithm is then used as one of the particles, while the rest of the 

swarm is initialized randomly.   

 

Figs. 2(a) and 2(b) depict the plot of the features F1 versus 

F2 for both the K-means clustering and PSO variants, respectively. 

The figures clearly show the four number of clusters (Cluster-1 to 

Cluster-4) belonging to steady disturbance patterns like voltage sag 

(or dip), voltage swell (rise), harmonics and normal signal time 

series, and transient disturbance patterns like oscillatory transient, 

notches, and spikes. It can be seen that Cluster-1 belongs to voltage 

dip / sag database; Cluster 2 belongs to voltage rise / swell database; 

Cluster-3 to harmonics (both high and low), and Cluster-4 belongs to 

the transient signal time series database.  From Figs. 2(a) and 2(b) it 

can be seen that there may be a number of misclassifications for K-

means clustering, present in the data is <5% of the fundamental 

component.  When the harmonic content is more than 7 to 10 % of 

the fundamental component, the cluster 6 becomes prominent and 

shows such data points. 

 

 

5. FUZZY  DECISION  TREE FOR     

    CLASSIFICATION 
 

Decision Tree (DT) [15-17] is a data mining classification algorithm 

for high-dimension pattern classification.  Each internal node of the 

tree tests the value of a predictor and consequence is represented by 

each branch of the tree.  Leaf nodes represent the terminating node of 

the tree that classifies a particular event.  Further, the confidence and 

support of a decision can be assigned to the terminating node.  In a 

simple decision tree the number of the predictors is limited, while in 

a large dimensioned problem, DT software needs to be used.  Here 

the DT analysis uses the significant features F1, F2, F3, and F4 to 

provide the decision of a power network disturbance event.  

Although a simple binary decision tree can provide classification, an 

uncertainty can arise due to the overlapping nature of the features of 

different disturbance classes. This necessitates the construction of a 

fuzzy decision tree.  The fuzzy DT rules are described below: 

 

Rule 1: If 0<F1<0.95 and .01< F2< .06, Then Cluster-1 

Rule 2: If 1.15<F1<1.8 Then Cluster-2 

Rules 3: If .9<F1<1.1 and .01< F2< .06, Then Cluster-3 

Rule 4: If .85<F1<1.1 and .09<F2<.18, Then Cluster-4 

Rule 5: If .01<F2<.03 and .02<F3<.06, Then Cluster-5 

Rule 6: If .02<F2<.03 and .06<F3<.15, Then Cluster-6 

Rule 7: If .98<F1<1.06 and .005<F3<.03, Then Cluster-7 

Rule 8: If .9<F1<.98 and .05<F3<.09, Then Cluster-8 

Rule 9: If 1.0<F1<1.2 and .05<F3<.1, Then Cluster-9 

 

Trapezoidal membership functions are used to represent the fuzzy 

sets described  in the decision tree rule base.  

 

Using the decision tree (Fig.5) the power disturbance events are 

classified depending on the belongingness of an event to a particular 

cluster.  Accordingly, the following clusters are used to classify a 

given power disturbance event;  

Cluster 1: voltage sag , Cluster 2: voltage swell , Cluster 3: 

harmonics, Cluster 4: Very short duration Transient event, Cluster-5: 

Low order harmonics, Cluster-6: High order harmonics, Cluster 7: 

Oscillatory transients, Cluster 8: Spikes, Cluster 9: Notches. 

A total of 3000 signals are used for training and another 1000 

separate signals are used for testing the clustering based 

classification. The average classification accuracy is found to be very 

nearly 100% for power disturbance databases without any noise in 

the data streams. However, when the databases are contaminated 



International Journal of Computer Applications (0975 – 8887) 

Volume 17– No.7, March 2011 

38 

with noise, the accuracy falls down marginally to an average of 99%. 
Table-3 provides DT based classification of a several power network 

disturbance time series databases in comparison to other existing 

classification techniques.  

 

6. CONCLUSION 
An evolutionary clustering technique has been developed by 

hybridizing the K-means algorithm and PSO for time-series 

clustering of power signal disturbance data. It can be considered as a 

viable and an efficient heuristic to find optimal or near-optimal 

solutions to clustering problems of allocating N data points to K 

clusters. The proposed method is very efficient and simple to 

implement for clustering analysis when the number of clusters is 

known a priori.   
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 Fig. 3  F1- F2  K-Means PSO   

 Cluster 1 Sag, Cluster 2: Swell, Cluster 3: Normal + harmonic,  

    Cluster 4: Transient + Notch + Spike  

Cluster-4 

Cluster-3 Cluster-1 
Cluster-2 

             K-means PSO Output:  

Fig.1 Time series clustering using feature based approach. 
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Fig.2 Fuzzy set for Decision Tree  
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Fig.4 F1 - F2 Fitness Plots  

Fig.5 Decision Tree for Classification 
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Table-1:  Features extracted from modified Fast modified S-transform

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power Signal 

Disturbances 
F1 F2 F3 F4 

Normal 1.002 0 0.046 0 

Sag (60%) 0.597 0.0536 .0315 .0318 

Swell (50%) 1.50 0.0129 .076 .015 

Momentary 

Interruption 

(MI) (5%) 

0.0724 0.035 .019 .0350 

Harmonics 

(0% 3rd + 

10% 5th) 

1.0 0.0339 .0556 .141 

Sag with 

Harmonic 

(60%) 

0.601 .0228 .0408 .1139 

Swell with 

Harmonic 

(50%) 

1.5 .0219 .079 .1155 

Flicker (5 Hz, 

4%) 

0.987 .0168 .026 .0186 

Notch + 

harmonics  

0.939 0.131 .0529 .136 

Spike + 

harmonics 

1.065 0.141 .0627 .1308 

Transient (low 

frequency) 

0.493 0.138 .0163 .01 

Transient 

(high 

frequency) 

1.052 0.149 .014 .043 


