
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

32

Exact Multiple Pattern Matching Algorithm using DNA
Sequence and Pattern Pair

 Raju Bhukya

Assistant Professor
Department of Computer Science and Engineering

National Institute of Technology, A.P, India

 DVLN Somayajulu
Professor

 Department of Computer Science and Engineering
 National Institute of Technology, A.P, India

ABSTRACT
Exact string matching algorithms are essential components in DNA

applications of the computational biology. Pattern matching is an

important task of the pattern discovery process in today's world for

finding the structural and functional behavior in proteins and

genes. Although pattern matching is commonly used in computer

science and information processing, it can be found in everyday

tasks. Molecular biologists often search for the important

information from the databases in different directions of different

uses. With the increasing need for instant information, pattern

matching will continue to grow and change as needed from time to

time. In this research we propose a new pattern matching technique

called an Exact multiple pattern matching algorithms using DNA

sequence and pattern pair. The current approach is used to avoid

unnecessary comparisons in the DNA sequence. Due to this, the

number of comparisons gradually decreases and comparison per

character ratio of the proposed algorithm reduces accordingly

when compared to the some of the existing popular methods.

Proposed algorithm is implemented and compared with existing

algorithms. Comparison results demonstrate that index based

algorithm is efficient than the number of the existing techniques.

General Terms
Single pattern, Multiple pattern, Exact pattern, Inexact pattern

Key Words
Comparisons, DNA Sequence, Index.

1. INTRODUCTION
DNA pattern matching is a fundamental and upcoming area in

computational molecular biology. The problem in pattern

discovery is to determine how often a candidate pattern occurs, as

well as possibly some information on its frequency distribution

across the sequence/text. In general, a pattern will be a description

of a set of strings, each string being a sequence of symbols.

Hence, given a pattern, it is usual to ask for its frequency, as well

as to examine its occurrences in a given sequence/text. Many

algorithms have been developed each designed for a specific type

of search. Although they all serve the same function but they vary

in the way they process the search, and second in the methods they

use to efficiently achieve the optimal processing time.

Bioinformatics is a multidisciplinary science that uses methods,

principles from mathematics, computer science for analyzing the

computer data. DNA is the basic blue print of life and it can be

viewed as a long sequence over the four alphabets A, C, G and T.

DNA contains genetic instructions of an organism. It is mainly

composed of nucleotides of four types. Adenine (A), Cytosine (C),

Guanine (G), and Thymine (T). The amount of DNA extracted

from the organism is increasing exponentially. So pattern matching

techniques plays a vital role in various applications in

computational biology for data analysis related to protein and gene.

It focuses on finding the particular pattern in a given DNA

sequence. The biologists often queries new discoveries against a

collection of sequence databases such as GENBANK, EMBL and

DDBJ to find the similarity sequences.

As the size of the data grows it becomes more difficult for users to

retrieve necessary information from the sequences. Hence more

efficient and robust methods are needed for fast pattern matching

techniques. It is one of the most important areas which have been

studied in bioinformatics. The string matching can be described

as: given a specific strings P generally called pattern searching in a

large sequence/text T to locate P in T. if P is in T, the matching is

found and indicates the position of P in T, else pattern does not

occurs in the given text. Pattern matching techniques has two

categories and is generally divides into multiple pattern matching

and single pattern matching algorithms.

 Single pattern matching

 Multiple pattern matching techniques

In a standard problem, we are required to find all occurrences of

the pattern in the given input text, known as single pattern

matching. Suppose, if more than one pattern are matched against

the given input text simultaneously, then it is known as, multiple

pattern matching. Whereas single pattern matching algorithm is

widely used in network security environments. In network security

the pattern is a string indicating a network intrusion, attack, virus,

and snort, spam or dirty network information, etc. Multiple pattern

matching can search multiple patterns in a text at the same time. It

has a high performance and good practicability, and is more useful

than the single pattern matching algorithms.

Let P = {p1, p2, p3,...,pm} be a set of patterns of m characters and

T={t=t1,t2,t3…tn} in a text of n characters which are strings of

nucleotide sequence characters from a fixed alphabet set called ∑=

{A, C, G, T}. Let T be a large text consisting of characters in ∑. In

other words T is an element of ∑*. The problem is to find all the

occurrences of pattern P in text T. It is an important application

widely used in data filtering to find selected patterns, in security

applications, and is also used for DNA searching. Many existing

pattern matching algorithms are reviewed and classified in two

categories.

 Exact string matching algorithm

 Inexact/approximate string matching algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

33

Exact pattern matching algorithm will find that whether the

probability will lead to either successful or unsuccessful search.

The problem can be stated as: Given a pattern p of length m and a

string/Text T of length n (m ≤ n). Find all the occurrences of p in

T. The matching needs to be exact, which means that the exact

word or pattern is found. Some exact string matching algorithms

are Naïve Brute force algorithm, Boyer-Moore algorithm [3], KMP

Algorithm [7].

Inexact/Approximate pattern matching is sometimes referred as

approximate string matching or matches with k mismatches/

differences. This problem in general can be stated as: Given a

pattern P of length m and string/text T of length n (m ≤ n). Find all

the occurrences of sub string X in T that are similar to P, allowing

a limited number, say k different characters in similar matches. The

Edit/transformation operations are insertion, deletion and

substitution. Inexact/Approximate string matching algorithms are

classified into: Dynamic programming approach, Automata

approach, Bit-parallelism approach, Filtering and Automation

Algorithms. Inexact sequence data arises in various fields and

applications such as computational biology, signal processing and

text processing. Pattern matching algorithms have two main

objectives.

 Reduce the number of character comparisons required in the

worst and average case analysis.

 Reducing the time requirement in the worst and average case

analysis.

In many cases most of the algorithm operates in two stages.

Depending upon the algorithm some of the algorithm uses pre-

processing phase and some algorithm will search without it. Many

Pattern matching algorithms are available with their own merits

and demerits based upon the pattern length and the technique they

use. Some pattern matching algorithm concentrates on pattern

itself. Other algorithm compare the corresponding characters of the

patterns and text from the left to right and some other perform the

character from the right to left. The performance of the algorithm

can be measured based upon the specific order they are compared.

Pattern matching algorithms has two different phases.

 Pre-processing phase or study of the pattern.

 Processing phase or searching phase.

The pre-processing phase collects the full information and is used

to optimize the number of comparisons. Whereas searching phase

finds the pattern by the information collected in pre-processing.

Pattern analysis plays a major part for various analysis like

discrimination of the cancer from gene expression, mutation

evolution, data analysis, feature extraction, searching, disease

analysis, structural and functional analysis, e-books, text

processing, linguistic translation, data compression, search engine,

speech reorganization, information retrieval, genomic data,

protein-protein interaction in cellular activities, computer virus

detection, network intrusion detection, parsers, spam filters, digital

libraries, screen scrapers, word processors, natural language

processing and computational biology.

The rest of the paper is organized as follows. We briefly present

the Background and related work in section 2. Section 3 deals with

Proposed model i.e., EPMSPP algorithm for DNA sequence.

Results and discussion are presented in Section 4 and we make

some concluding remarks in Section 5.

2. BACKGROUND AND RELATED WORK
This section reviews some work related to DNA sequences. An

alphabet set ∑ = {A, C, G, T} is the set of characters for DNA

sequence which are used in this algorithm. The following notations

are used in this paper.

DNA sequence characters ∑= {A, C, G, T}.

 Denotes the empty string.

│P │Denotes the length of the string P.

S[n] Denotes that a text which is a string of length n.

P[m] Denotes a pattern of length m.

CPC-Character per comparison ratio.

String matching mainly deals with problem of finding all

occurrences of a string in a given text. In most of the DNA

applications it is necessary for the user and the developer to be able

to locate the occurrences of specific pattern in a sequence. In

Brute-force algorithm the first character of the pattern P is

compared with the first character of the string T. If it matches, then

pattern P and string T are matched character by character until a

mismatch is found or the end of the pattern P is detected. If

mismatch is found, the pattern P is shifted one character to the

right and the process continues. The complexity of this algorithm

is O(mn). The Bayer-Moore algorithm [3] applies larger shift-

increment for each mis-match detection. The main difference the

Naïve algorithm had is the matching of pattern P in string T is

done from right to left i.e., after aligning P and string T the last

character of P will matched to the first of T . If a mismatch is

detected, say C in T is not in P then P is shifted right so that C is

aligned with the right most occurrence of C in P. The worst case

complexity of this algorithm is O(m+n) and the average case

complexity is O(n/m). In IBKPMPM [11] choose the value of k

and divide both the string and pattern into number of substring of

length k, each substring is called as a partition. We compare all the

first characters of all the partitions, if all the characters are

matching while we are searching then we go for the second

character match and the process continues till the mismatch occurs

or total pattern is matched with the sequence. The worst case

complexity is O(m+n). The KMP algorithm [7] is based on the

finite state machine automation. The pattern P is pre-processed to

create a finite state machine M that accepts the transition. The

finite state machine is usually represented as the transition table.

The complexity of the algorithm for the average and the worst case

performance is O(m+n).

In approximate pattern matching method the oldest and most

commonly used approach is dynamic programming. In 1996 Kurtz

[8] proposed another way to reduce the space requirements of

almost O(mn). The idea was to build only the states and transitions

which are actually reached in the processing of the text. The

automaton starts at just one state and transitions are built as they

are needed. The transitions those were not necessary will not be

build. In the MSMPMA [14] technique the algorithm scans the

input file to find the all occurrences of the pattern based upon the

skip technique. By using this index as the starting point of

matching, it compares the file contents from the defined point with

the pattern contents, and finds the skip value depending upon the

match numbers (ranges from 1 to m-1). Harspool [6] does not use

the good suffix function, instead it uses the bad character shift with

right most character .The time complexity of the algorithm is

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

34

O(mn). Berry-Ravindran[2] calculates the shift value based on the

bad character shift for two consecutive text characters in the text

immediately to the right of the window. This will reduce the

number of comparisons in the searching phase. The time

complexity of the algorithm is O(nm) .Sunday[4] designed an

algorithm quick search which scans the character of the window in

any order and computes its shift with the occurrence shift of the

character T immediately after the right end of the window.

Ukkonen[13]proposed automation method for finding approximate

patterns in strings. He proposed the idea using a DFA for solving

the inexact matching problem. Though automata approach doesn‟t

offer time advantage over Boyer-Moore algorithm[3] for exact

pattern matching. The complexity of this algorithm in worst and

average case is O(m+n). In this every row denotes number of

errors and column represents matching a pattern prefix.

Deterministic automata approach exhibits O(n) worst case time

complexity. The main difficulty with this approach is construction

of the DFA from NFA which takes exponential time and space.

By using dynamic programming approach especially in DNA

sequencing Needleman-Wunsch[9] algorithm and Smith-waterman

algorithms [12] are more complex in finding exact pattern

matching algorithm. By this method the worst case complexity is

O(mn). The major advantage of this method is flexibility in

adapting to different edit distance functions. The Raita algorithm

[10] utilizes the same approach as Horspool algorithm[6] to

obtaining the shift value after an attempt. Instead of comparing

each character in the pattern with the sliding window from right to

left, the order of comparison in Raita algorithm [10] is carried out

by first comparing the rightmost and leftmost characters of the

pattern with the sliding window. If they both match, the remaining

characters are compared from the right to the left. Intuitively, the

initial resemblance can be established by comparing the last and

the first characters of the pattern and the sliding window.

Therefore, it is anticipated to further decrease the unnecessary

comparisons. The Aho-Corasick[1] algorithm consists of

constructing a finite state pattern matching machine from the

keyword and then using the machine to process the text in a single

pass. It can find an occurrence of several patterns in the order of

O(n) time, where n is the length of the text, with pre-processing of

the patterns in linear time.

Two dimensional pattern matching methods are commonly used in

computer graphics. Takaoka and Zhu proposed using a

combination of the KMP [7] and RK methods in an algorithm

developed for two dimensional cases. Three dimensional pattern

matching is useful in solving protein structures, retinal scans,

finger printing, music, OCR and continuous speech. Multi-

dimensional matching algorithms are a natural progression of

string matching algorithms toward multi-dimensional matching

patterns including tree structure, graphs, pictures, and proteins

structures. The Devaki-Paul algorithm[5] for multiple pattern

matching requires a pre-processing of the given input text to

prepare a table of the occurrences of the 256 member ASCII

character set. This table is used to find the probability of having a

match of the pattern in the given input text, which reduces the

number of comparisons, improving the performance of the pattern

matching algorithm. The probability of having a match of the

pattern in the given text is mathematically proved.

3. AN EXACT PATTERN MATCHING

ALGORITHM USING PAIR INDEXING

FOR SEQUENCE AND PATTERN

Initially in the proposed work indexes are used for the DNA

sequence. It first scans the sequence from left to right and indexes

are filled in their corresponding cells in an increasing order as they

appear in the sequence. It has to search a pattern in a string whose

alphabet set ∑ = {A, C, G, T}. Let the string be S of n characters

represent the DNA sequence and pattern P of m characters to be

searched in string S. Instead of creating indexes on individual

characters it creates indexes on pair of characters which reduces

the number of comparison. There are 4 characters in our alphabet

set ∑. So there are 16 possible pairs. Let us call this ∑p = {AA, AC,

AT, AG, CA, CC, CT, CG, TA, TC, TT, TG, GA, GC, GT, GG}. It

also maintains an array which stores the frequency of each pair p in

separate array where p ∑p. After creating the index the algorithm

searches for the pattern in the string using the pair pi in P with least

frequency in sequence S. Using pairs is having an advantage which

is the probability of finding a pair at a particular position is 1/16,

whereas for individual characters it is 1/4, therefore when we use

pair of characters as index which we are able to avoid more

comparisons.

By using the index we find the possible location of pattern in the

sequence. Now to match the pattern in many algorithms we used to

compare sequentially. A better approach is to match in such a way

which maximizes the chances of a mismatch. For doing this first

form an index table for the pattern in the same way as was done for

sequence. Now we match the pattern in descending order of

frequencies of character pairs in pattern P. The one with maximum

count mi is matched first followed by other pairs in decreasing

order of frequencies. Let ∑* be set of all possible strings with pair

set ∑p. Then S ∑*,|S| = n-1 where n is number of characters in S

and |S| is number of pairs in S and |P| = m-1 where m is number of

characters in P. Number of pairs is one less than number of

characters.

3.1 Algorithm
Input: String S of n characters and a pattern P of m characters,

where S, P ∑*

Output: The no. of occurrence and the positions of P in DNA.

Step 1: Integer arrays stab[16][n], ptab[16][n], sidx[16],

pidx[16]

Integer arrays ssort[16]={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15}

Integer arrays psort[16]={0, 1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15}

Integer found:=1, ncmp:=0, npat:=0,

Short integer pointers sp:=S, pp:=P;

Step 2: IF(m%2 == 1)

 odd = 1;

Step 3: FOR i := 0; i < n; i++

stab[(*sp & 1536)>>9 | (*sp & 6)<<1][sidx[(*sp &1536)>>9|(*sp

& 6) << 1]++] = i; //increment sp by one byte

 END FOR

Step 4: Sort array ssort in ascending order according to values in

sidx

Step 5: FOR i := 0; i < n; i++

ptab[(*pp & 1536)>>9 | (*pp & 6)<<1][pidx[(*pp

&1536)>>9|(*pp & 6) << 1]++] = i;

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

35

increment pp by two bytes

END FOR

Step 6: Sort array psort in descending order according to values in

pidx
Step 7: WHILE pidx[sort[k++]] = 0 && k < 16

DO

END DO

y := sort[k-1]

Here y stores the least occurring pair in the string

Step 8: Store in dif the index of first occurrence of y in array p.

Step 9: FOR i := 0; i <=sidx[y]; i++

 found := 1;

 k := stab[y][i] - dif;

 IF k < 0

 continue;

 END IF

 sp := &S[k]

 FOR j = 0; j< m/2; j++

 ncmp+=2;

 a:=ptab[psort[b]][c]

 sp:=&S[k+a*2]

 IF (*sp & 1536)>>9 | (*sp & 6)<<1) != psort[b]

 found := 0;

break;

END IF

C++

 END FOR

 IF odd = 1 && S[k+m] != P[m]

 found := 0

 IF found = 1

 npat++;

PRINT "Pattern Found at location k occurrence no is : npat"

 END IF

 END FOR

The algorithm takes a string representing a DNA sequence as an

input, and for given pattern it checks whether the pattern occurs in

the string or not. As it first builds the table called stab[16][n]. In

this table of indexes stab[16][n] it store the indexes of 16 possible

pairs {p | p ∑p Λ p S}. It also stores the count/occurrences of

each pair p in the array sidx[16].It uses pair {pi | pi P } which has

least count value (sidx[i]) for searching to minimize the number of

comparisons. After this it forms one more table ptab[16][n] to

store indexes of pairs in pattern P. This information is used to

compare pairs in decreasing order of their frequency in pattern P.

The algorithm is suitable for DNA pattern matching because the

numbers of possible character are less and the possible pairs are in

∑p = {AA, AC, AT, AG, CA, CC, CT, CG, TA, TC, TT, TG, GA,

GC, GT, GG}. An indexing technique is used to reduce the pre-

processing time and comparisons. For each pair it computes the

array subscript value in stab by using binary operation on the pair

stored at pointer sp.

 ((*sp) & 1536)>>9 | ((*sp) & 6)<<1

If pointer sp is pointing to the pair CG then 16 bit representation of

value sp i.e., (*sp) will be „01000111 01000011‟. Here the first 8-

bits i.e., „01000111‟ are for letter G with ASCII value 71 and the

last 8-bits „01000011‟ are for character C with ASCII value 67.

The letters are in reverse order because in memory they are stored

in reverse order (Little Endian form). Now when it applies the

operation ((*sp)&1536)>>9 it gets 3 and by applying

((*sp)&6)<<1 it gets 4. It uses operator„|‟ on these two values i.e.,

„3 | 4‟ to get Array subscript 7, to store the index in stab. Here & is

„Binary and operator‟, << is „Left shift operator‟, >> is „right shift

operator‟ and | is „Binary or operator‟.

Table.1. Array subscript values for pair of DNA Characters

((*sp) & 1536)>>9 | ((*sp) & 6)<<1 always returns a unique

subscript value in the range 0-15 for each pair {p | p ∑p} which

is needed for subscripting 2D array of size[16][n]. The subscript

values represent different pairs of characters as shown in the table

1. So for each pair of character of string for the function

(((*sp)&1536)>>9|((*sp) & 6)<<1)) directly references to its

corresponding index in the 2D table stab[16][n]. The array

sidx[16] stores the count of each character in the string.

3.2 Trivial Cases in Comparisons

Case i: If S = i.e., |S| = 0 and P = i.e., |P| = 0 then the number

of occurrences of P in S is 0.

Case ii: If S = i.e. |S| = 0 and for any |P| ≥ 0 then the number of

occurrences of P in S is 0.

Case iii: If S ≠ i.e., |S| ≠ 0 and for any |P| = 0 then the number of

occurrences of P in S is 0.

Case iv: If S ≠ i.e., |S| ≠ 0, P ≠ i.e., |P| ≠ 0 and |S| ≤ |P| then

the number of occurrences of P in S is 0.

3.3 This section describes different examples

using our proposed approach (EPMSPP)

for the DNA sequences.

Let us discuss an example by taking a DNA sequence

S=GCGTCTCGGACGGACACGTCAAAAATGGAACTACAACGGT of

40 characters and P = ACGGAC of 6 characters. The following

index table stab stores the indexes for each possible pair of

S.No (*sp) Binaryform

(Little Endian form)

 (*sp) &

1536)>>9

(*sp) &

6)<<1

 Array

Subscript

1 AA 01000001 01000001 0 0 0

2 AC 01000011 01000001 1 0 1

3 AT 01010100 01000001 2 0 2

4 AG 01000111 01000001 3 0 3

5 CA 01000001 01000011 0 4 4

6 CC 01000011 01000011 1 4 5

7 CT 01010100 01000011 2 4 6

8 CG 01000111 01000011 3 4 7

9 TA 01000001 01010100 0 8 8

10 TC 01000011 01010100 1 8 9

11 TT 01010100 01010100 2 8 10

12 TG 01000111 01010100 3 8 11

13 GA 01000001 01000111 0 12 12

14 GC 01000011 01000111 1 12 13

15 GT 01010100 01000111 2 12 14

16 GG 01000111 01000111 3 12 15

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

36

characters. It stores the total number of occurrences of each pair in

separate array sidx. It then uses a pair pi in patter P which occurs

least number of times in the string S for searching. For above

example the count value for pairs AC and GG are 6 and 3

respectively shown in table 2. Count shows the number of times a

pair has occurred. Here GG occurs least number of times, so pi =

„GG’ which is used for initial alignment.

Table.2. Index values and count for pair of DNA sequences

In this technique it first aligns the pair „GG’ in pattern P with „GG’

in the DNA sequence S. After the alignment is completed it

matches the character. To decide which pair to match first we

create table ptab for storing pattern indexes. For making the

pattern index table we take a character only once in a pair. Each

character is part of only one pair. This is because we require

pattern table for comparisons and we need not compare a character

twice. For above example the count value for pairs AC and GG are

2 and 1 respectively as shown in table 3. Count shows the number

of times a pair has occurred. Here AC occurs most number of

times, so mi = „AC’ which is compared first.

Table.3. Index values and count for pair pattern

Pair INDEXES Count/Occ

AC 0 4 2

GG 2 1

It stores the position of GG in the pattern i.e., 2 in variable dif. Go

to the first occurrence of GG using the above table i.e.,7 and align

the string with pattern by subtracting 2 from the table value to find

the starting pair i.e., 7-2=5. Then start matching pairs in decreasing

order of frequency in pattern i.e., first all AC and then GG.

S= GCGTCTCGGACGGACACGTCAAAAATGGAACTACAACGGT

 P=ACGGAC

The first pair of character doesn‟t matches so move to next

occurrence of GG using stab i.e., 11 and align the sequence with

pattern by subtracting 2 i.e., 11 – 2 = 9.

S= GCGTCTCGGACGGACACGTCAAAAATGGAACTACAACGGT

 P=ACGGAC

The first pair of character matched so we match next AC.

S= GCGTCTCGGACGGACACGTCAAAAATGGAACTACAACGGT

 P=ACGGAC

The next pair of character matches. Now all AC‟s have been

compared so now move to next frequent pair i.e., GG.

S= GCGTCTCGGACGGACACGTCAAAAATGGAACTACAACGGT

 P=ACGGAC

All the pairs in the pattern are matched so pattern is found a

position 9.Now move to next occurrence of GG using stab i.e., 26

and align the sequence with pattern by subtracting 2 i.e., 26 – 2 =

24.

S= GCGTCTCGGACGGACACGTCAAAAATGGAACTACAACGAT

 P=ACGGAC

The pair doesn‟t matches. Now all occurrence of GG have been

checked so search completes. So only 1 occurrence of pattern was

found in the string S.

4. EXPERIMENTAL RESULTS
The below shown sequence dataset has been taken from the testing

of EPMSPP algorithm. The DNA biological sequence S ∑*of size

n=1024 and pattern P ∑*. Let S be the following DNA sequence.

The index table (indexTab[4][1024]) for sequence S is very large

in number of DNA sequence characters size1024. For different

patterns sizes which has been chosen randomly from the DNA

sequence the number of occurrences and the number of

comparisons is shown in the Table.4. As we increase the size of the

pattern the number of comparisons decreases in some of the cases

of the proposed algorithm.

AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGCAATAG

TGTTACCAACTCGGGTGCCTATTGGCCTCCAAAAAAGGC

TGTTCAACGCTCCAAGCTCGTGACCTCGTCACTACGACG

GCGAGTAAGAACGCCGAGAAGGTAAGGGAACTAATGAC

GCGTGGTGAATCCTATGGGTTAGGATCGTGTCTACCCCA

AATTCTTAATAAAAAACCTAGGACCCCCTTCGACCTAGA

CTATCGTATTATGGACAAGCTTTAACTGTCGTACTGTGGA

GGCTTCAAAACGGAGGGACCAAAAAATTTGCTTCTAGCG

TCAATGAAAAGAAGTCGGGTGTATGCCCCAATTCCTTGC

TGCCCGGACGGCCAGTTCATAATGGGACACAACGAATCG

CGGCCGGATATCACATCTGCTCCTGTGATGGAATTGCTG

AATGCGCAGGTGTGCTTATGTACAATCCACGCGGTACTA

CATCTTGTCTCTTATGTAGGGTTCAGTTCTTCGCGCAATC

ATAGCGGTACGAATACTGCGGCTCCATTCGTTTTGCCGTG

TTGATCGGGAATGCACCTCGGGGACTGTTCGATACGACC

TGGGATTTGGCTATACTCCATTCCTCGCGAGTTTTCGATT

GCTCATTAGGCTTTGCGGTAAGTAAGTTCTGGCCACCCA

CTTCGAGAAGTGAATGGCTGGCTCCTGAGCGCGTCCTCC

GTACAATGAAGACCGGTCTCGCGCTAAATTTCCCCCAGC

TTGTACAATAGTCCAGTTTATTATCAAAGATGCGACAAA

TAAATTGATCAGCATAATCGAAGATTGCGGAGCATAAGT

TTGGAAAACTGGGAGGTTGCCAGAAAACTCCGCGCCTAC

TTTCGTCAGGATGATTAAGAGTATCGAGGCCCCGCCGTC

AATACCGATGTTCTTCGAGCGAATAAGTACTGCTATTTTG

CAGACCCTTTGCCAGGCCTTGTCTAAAGGTATGTTACTTA

ATATTGACAATACATGCGTATGGCCTTTTCCGGTTAACTC

CCTG”

For different patterns P‟s the number of occurrences and the

number of comparisons of the proposed algorithms EPMSPP is

shown in the Table.4. Patterns are selected randomly for the

Pair INDEXES Count/Occ

AA 20 21 22 23 28 34 6

AC 9 13 15 29 32 35 6

AT 24 38 2

AG 0

CA 14 19 33 3

CC 0

CT 4 30 2

CG 1 6 10 16 36 5

TA 31 1

TC 3 5 18 3

TT 0

TG 25 1

GA 8 12 27 3

GC 0 1

GT 2 17 2

GG 7 11 26 3

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

37

experimental analysis from the DNA data. To check whether the

given pattern is present in the sequence or not we need an efficient

algorithm with less comparison time and low complexity. By the

current technique different patterns are analyzed and the graph is

plotted by using these results. Here we have taken five fields in the

table .4. The pattern , number of characters in the pattern, number

of occurrences of a pattern, comparison by using the proposed

method and the number of comparisons and comparisons per

character. The number of comparisons per character (CPC) which

is equal to: (Number of comparisons/file size) can be used as a

measurement factor, this factor affects the complexity time, and

when it is decreased the complicity also decreases.

Table.4 .Experimental results of EPMSPP algorithm

By the current technique different patterns are randomly taken

from the DNA file and results are analyzed and the graph is plotted

by using these results accordingly. From the below experimental

results, improvement can be seen that EPMSPP algorithm gives

good performance compared to the some of the popular methods

like IBKPMPM, MSMPMA, Brute-force, Tri-match and naïve

string search techniques. From the above table different pattern

sizes has been taken for the comparison ranging from 2 to 20 of

DNA sequences. Due to the pairing concept we have paired the

characters so for single character it is not possible for the

comparison.

 Table .5. Comparisons of different algorithms with EPMSPP

It has been observed from the experimental result analysis the

following in terms of relative performance of our algorithm with

the existing popular methods. From the results shown in Table.5

performance can be seen with EPMSPP approach and some of the

existing algorithms. The proposed algorithm gives good

performance in two parameters like CPC ratio and number of

comparisons with the algorithms like MSMPMA, Brute-force, Tri-

Match, Naïve string matching and IKPMPM algorithms. In Table.

4. we have the results of proposed model and the CPC ratio of the

proposed model, where as in Table.5 shows the comparison

between different existing algorithms with the proposed technique

in terms of number of comparisons and the CPC ratio. The table.5

shows randomly chosen 8 different patterns from the above shown

DNA data set , whereas Table.4.shows the pattern size starting

from 2 character to 20 characters chosen from the DNA dataset.

Fig 1. Comparison of different algorithms with EPMSPP

Fig.1. Shows the comparisons of different algorithms with the

proposed EPMSPP technique. It is clear that proposed algorithm

outperforms when compared with all other algorithms. The current

technique gives good performance in reducing the number of

comparisons compared with other popular methods. The dotted

line shows the EPMSPP model where as MSMPMA, Brute-Force,

Trie-matching and Naïve searching and IBKPMPM are shown by

solid lines. Towards X-axis we have taken randomly different

pattern sizes ranging from 1 to 20 whereas towards Y-axis shows

the total number of comparisons.

The below shown are some of the advantages of the proposed

algorithm. By our observation the experimental results has been

carried out randomly by taking different pattern sizes from the

given DNA data set.

 Reduction in number of comparisons.

 The ratio of comparisons per character (CPC) has gradually

reduced and is less than 1.

 Suitable for any size of the input file.

 Once the indexes are created for input sequence we need not

create them again.

 For each pattern we start our algorithm from the matching

character of the pattern which decreases the unnecessary

comparisons of other characters.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 8 12 16

EPMSPP MSMPMA

TRI-MATCH BRUTEFORCE

NAÏVE STRING IBKPMPM

Pattern(P‟s)

No of

char

No. of

occur

 Comparison

 EPMSPP

CPC

AG 2 53 106 0.10

CAT 3 11 100 0.09

AACG 4 5 140 0.13

AAGAA 5 2 134 0.13

AAAAAA 6 3 362 0.35

AGAACGC 7 2 130 0.12

AAAAAAGG 8 1 146 0.14

GCTCATTAG 9 1 142 0.13

CCTTTTCCGG 10 1 134 0.13

TTTTGCCGTGT 11 1 140 0.13

TTCTTAATAAAA 12 1 144 0.14

GGGACCAAAAAAT 13 1 144 0.14

TTTTGCCGTGTTGA 14 1 138 0.13

CCTCCAAAAAAGGCT 15 1 124 0.12

GGCTGTTCAACGCTCC 16 1 146 0.14

TTTTCGATTGCTCATTA 17 1 122 0.11

GGGATTTGGCTATACTCC 18 1 146 0.14

GGCCTTGTCTAAAGGTATG 19 1 120 0.11

CCTGAGCGCGTCCTCCGTAC 20 1 124 0.12

Pattern

EPMSPP IBKMPM MSMPMA
Brute-

Force
Tri-Match

Naïve

String

No

of

Com

CPC

No

of

Com

CPC

No

of

Com

CPC

No

of

Com

CPC

No

of

Com

CPC

No.

of

Com

CPC

A NV NV 259 0.2 1024 1.0 1024 1.0 1025 1.0 1024 1.0

AG 106 0.1 518 0.5 1230 1.2 1282 1.2 1284 1.2 1281 1.2

CAT 100 0 542 0.5 1298 1.2 1318 1.2 1321 1.2 1310 1.2

AACG 140 0.1 614 0.6 1359 1.3 1376 1.3 1380 1.3 1376 1.3

AAGAA 134 0.1 607 0.5 1375 1.3 1388 1.3 1393 1.3 1387 1.3

AAAAAAGG 146 0.1 623 0.6 1394 1.3 1409 1.3 1417 1.3 1407 1.3

TTCTTAATAAAA 144 0.1 634 0.6 1390 1.3 1390 1.3 1402 1.3 1399 1.3

GGCTGTTCAACGCTCC 146 0.2 580 0.5 1349 1.3 1349 1.3 1365 1.3 1349 1.3

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

38

 It gives good performance for DNA related sequence

applications.

5. CONCLUSION

This study introduced a new Exact multiple pattern matching

algorithms using DNA sequence and pattern pair. This paper gives

the most efficient method for determining DNA pattern matching

sequences. It is a simple approach for finding the multiple patterns

from a given sequence file. We have taken the file size of 1024

characters and tested randomly by taking different pattern sizes.

The proposed algorithm gives better performance compared with

some of the other popular algorithms in case of number of

comparisons and CPC ratio. Based on the experimental work

carried out with DNA sequence data, EPMSPP approach gives

very good performance related to the other methods.

6. REFERENCES

[1] Aho, A. V., and M. J. Corasick, „„Efficient string matching:

an aid to bibliographic Search, ‟‟ Communications of the

ACM 18 (June 1975), pp. 333 340.

[2] Berry, T. and S. Ravindran, 1999. A fast string matching

algorithm and experimental results. In: Proceedings of the

Prague Stringology Club Workshop ‟99, Liverpool John

Moores University, pp: 16-28.

[3] Boyer R. S., and J. S. Moore, „„A fast string searching

algorithm„Communications of the ACM 20, 762- 772, 1977.

[4] D.M. Sunday, A very fast substring search algorithm, Comm.

ACM 33 (8) (1990) 132–142.

[5] Devaki-Paul, “Novel Devaki-Paul Algorithm for Multiple

Pattern Matching” International Journal of Computer

Applications (0975 – 8887) Vol 13– No.3, January 2011.

[6] Horspool, R.N., 1980. Practical fast searching in strings.

Software practice experience, 10:501-506.

[7] Knuth D., Morris. J Pratt. V Fast pattern matching in strings,

SIAM Journal on Computing, Vol 6(1), 323-350, 1977.

[8] Kurtz. S, Approximate string searching under weighted edit

distance. In proceedings of the 3rd South American workshop

on string processing. Carleton Univ Press, pp. 156-170, 1996

[9] Needleman, S.B Wunsch, C.D(1970). “A general method

applicable to the search for similarities in the amino acid

sequence of two proteins.” J.Mol.Biol.48,443-453.

[10] Raita, T. Tuning the Boyer-Moore-Horspool string-searching

algorithm. Software - Practice Experience 1992, 22(10), 879-

884.

[11] Raju Bhukya, DVLN Somayajulu,”An Index Based K-

Partition Multiple Pattern Matching Algorithm”, Proc. of

International Conference on Advances in Computer Science

2010 pp 83-87.

[12] Smith,T.F and waterman, M (1981). Identification of common

molecular subsequences T.mol.Biol.147,195-197.

[13] Ukkonen,E., Finding approximate patterns in strings J.Algor.

6, 1985, 132-137.

[14] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary,

Multiple Skip Multiple Pattern Matching algorithms. IAENG

International. Vol 34(2),2007.

