
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

22

A Novel Technique for Database Selection and

Document Selection

Anil Agrawal

Ambalika IMT Lucknow

UP, INDIA

Mohd. Husain
AZAD IET, Lucknow

UP, INDIA

Raj Gaurang Tiwari
AZAD IET, Lucknow

UP, INDIA

Subodh Kumar
Ambalika IMT, Lucknow

UP, INDIA

ABSTRACT
The Internet has become a cosmic information source in recent

years and can be considered as the world's largest digital library.

To aid ordinary users in finding desired data in this library,

numerous search engines have been created. Each search engine

has a corresponding database that defines the set of documents

that can be searched by the search engine. Typically, an index

for all documents in the database is created and stored in the

search engine. Text data in the Internet can be partitioned into

numerous databases naturally. Proficient retrieval of desired

data can be realized if we can accurately envisage the usefulness

of each database, because with such information, we only need

to retrieve potentially useful documents from useful databases.

For a given query „q‟ the usefulness of a text database is defined

to be the no. of documents in the database that are sufficiently

relevant to the query „q‟.

In this paper, we propose innovative approaches for database

selection and documents selection.

General Terms

Measurement, Performance, Design, Experimentation

Keywords

Metasearch Engine, Distributed query processing, Document

selection

1. INTRODUCTION
Information retrieval (IR) is the discipline of searching for

documents, for information within documents, and for metadata

about documents, as well as that of searching relational

databases and the World Wide Web. There is overlap in the

treatment of the terms data retrieval, document retrieval,

information retrieval, and text retrieval, but each also has its

individual body of literature, theory, praxis, and technologies.

IR is interdisciplinary, rooted in computer science, mathematics,

library science, information science, information architecture,

cognitive psychology, linguistics, and statistics. Automated

information retrieval systems are used to diminish what has

been called "information overload". Many universities as well

as public libraries exploit IR systems to provide access to books,

journals and other documents. Web search engines are the most

noticeable IR applications.

 An information retrieval process instigates when a user enters a

query into the system. Queries are formal statements of

information needs, for instance search strings in web search

engines. In information retrieval a query does not inimitably

recognize a single object in the collection. Instead, numerous

objects may match the query, possibly with different degrees of

relevancy[6]. An object is an entity that is characterized by

information in a database. User queries are matched against the

database information. Depending on the application the data

objects may be text documents, images, or videos. Often the

documents themselves are not kept or stored directly in the IR

system, but are instead represented in the system by document

surrogates or metadata. Most IR systems compute a numeric

score on how well each object in the database match the query,

and rank the objects according to this value. The top ranking

objects are then shown to the user. The process may then be

iterated if the user wishes to refine the query.

Over the years, Information Retrieval has experienced an

enormous Change due to the surge in World Wide Web and the

advent of modern, inexpensive user interfaces and large storage

systems. Evaluation is at the crux of Information Retrieval. It

investigates the various attributes like user satisfaction, system

effectiveness (observed by the ordering of the retrieved list of

documents), time efficiency etc.

Information retrieval systems are everywhere: Web search

engines, library catalogs, store catalogs, cookbook indexes, and

so on. Information retrieval (IR), also called information storage

and retrieval (ISR or ISAR) or information organization and

retrieval, is the art and science of retrieving from a collection of

items a subset that serves the user‟s purpose.

As he Internet has become a vast information source in recent

years, to help ordinary users find desired data in the Internet,

many search engines have been created. Each search engine has

a corresponding database that defines the set of documents that

can be searched by the search engine. Usually, an index for all

documents in the database is created and stored in the search

engine. For each term which represents a content word or a

combination of several (usually adjacent) content words, this

index can identify the documents that contain the term quickly.

The pre-existence of this is critical for the search engine to

answer user queries efficiently.

Two types or search engines exist. General-purpose search

engines attempt to provide searching capabilities for all

documents in the Internet or on the Web. WebCrawler[10],

HotBot, Lycos and Alta Vista are a few of such well-known

search engines. Special-purpose search engines, on the hand,

focus on documents in confined domains such as documents in

an organization or of a specific interest. Tens of thousands of

special-purpose search engines are currently running in the

Internet.

The amount of data in the Internet is huge (it is believed that by

the end of 2010, there were more than 30000 million web pages

and is increasing at a very high rate. Many believe that

employing a single general-purpose search engine for all data in

the Internet is unrealistic [12]. First, its processing power and

storage capability may not scale to the fast increasing and

virtually unlimited amount of data. Second, gathering all data in

the Internet and keeping them reasonably up-to-data are

extremely difficult if not impossible. Programs (i.e. Robots)

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

23

used by search engines to gather data automatically may slow

down local servers and are increasingly unpopular.

A more practical approach to providing search services to the

entire Internet is the following multi-level approach. At the

bottom level are the local search engines. These search engines

can be grouped, say based on the relatedness of their database,

to form next level search engines (called metasearch engines).

Lower, level metasearch engines can themselves be grouped to

form higher level metasearch engines[5]. This process can be

repeated until there is only one metasearch engine at the top. A

metasearch engine is essentially an interface and it does not

maintain its own index on documents. However, a sophisticated

metasearch engine may maintain information about the contents

of the (meta) search engines at a lower level to provide better

service. When a metasearch engine receives a user query, it first

passes to the appropriate (meta) search engines at the next level

recursively until real search engines are encountered, and then

collects (sometimes, reorganizes) the results from real search

engines, possible going through metasearch engines at lower

levels. A two-level search engine organization is illustrated in

Figure 1.

Figure 1: Two-Level Search Engine Organization

The advantages of this approach are

(a) User queries can (eventually) be evaluated against

smaller databases in parallel, resulting in reduced

response time;

(b) updates to indexes can be localized, i.e., the index of a

local search engine is updated only when documents

in its database are modified; (Although local updates

may need to be propagated to upper level metadata

that represent the contents of local databases, the

propagation can be done infrequently as the metadata

are typically statistical in nature and can tolerate

certain degree of inaccuracy.)

(c) Local information can be gathered more easily and in

amore timely manner;

(d) The demand on storage space and processing power at

each local search engine is more manageable. In other

words, many problems associated with employing a

single super search engine can be overcome or greatly

alleviated when this multi-level approach is used.

When the number of search engines that cane be invoked by a

metasearch engine is large, a serious inefficiency may arise.

Typically, for a given query, only a small fraction of all search

engines may contain useful documents to the query. As a result,

if every search engine is blindly invoked for each user query,

then substantial unnecessary network traffic will be created

when the query is sent to useless search engines. In addition,

local resources will be wasted when useless database are

searched. A better approach is to first identify those search

engines that are most likely to provide useful results to a given

query and then pass the query to only these search engines for

desired documents. A challenging problem with this approach is

how to identify potentially useful search engines. The current

solution to this problem is to rank all underlying databases in

decreasing order of usefulness for each query using some

metadata that describe the contents of each database. Often, the

ranking is based on some measure which ordinary users may not

be able to utilize to fit their needs. For a given query, the current

approach can tell the user, to some degree of accuracy, which

search engine is likely to be the most useful, the second most

useful, etc. While such a ranking can be helpful, it cannot tell

the user how useful any particular search engine is.

The main contribution of this paper is a set of novel algorithms

aimed at improving the overall effectiveness of the web search

process through the database and document selection processes.

In the first part of our work we present an algorithm DBSEL for

database selection. This algorithm selects those databases from

no. of databases which contain query „q‟. This algorithm test

each database with its documents stored in it. If any document

of database contains the query „q‟ at least one time then we

select that database. If all the documents of database does not

contains the query „q‟ then that database will not be selected.

In the second part of our work we present an algorithm

HighRelDoc for documents selection. This algorithm search all

the selected databases and select only those documents from

each database in which the query „q‟ occurs at least one time.

After that this algorithm ranks all the selected documents

according to the no. of occurrence of query „q‟ in descending

order. Finally this algorithm returns the top „n‟ most relevant

documents from the sorted list of documents for any positive

integer „n‟.

2. DATABASE SELECTION AND

DOCUMENT SELECTION PROBLEM
To help ordinary users find desired data from the Web, many

search engines have been created. Each search engine has a text

database that is defined by the set of documents that can be

searched by the search engine[8]. In this paper, search engine

and database will be used interchangeably. Usually, an inverted

file index for all documents in the database is created and stored

in the search engine. For each term which can represent a

significant word or a combination of several (usually adjacent)

significant words, this index can identify the documents that

contain the term quickly.

Frequently, the information needed by a user is stored in

multiple databases. As an example, consider the case when a

user wants to find research papers in some subject area. It is

likely that the desired papers are scattered in a number of

publishers‟ databases. Substantial effort would be needed for the

user to search each database and identify useful papers from the

retrieved papers. A solution to this problem is to implement a

metasearch engine on top of many local search engines. A

metasearch engine is a system that supports unified access to

query r

rn q

r2

r1

q

q

Search

Engine

1

Search

Engine

2

Search

Engine

n

……

…

Metasearch Engine

result r

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

24

multiple existing search engines. It does not maintain its own

index on documents. However, a sophisticated metasearch

engine may maintain information about the contents of its

underlying search engines to provide better service. When a

metasearch engine receives a user query, it first passes the query

to the appropriate local search engines, and then collects

(sometimes reorganizes) the results from its local search

engines. With such a metasearch engine, only one query is

needed from the above user to invoke multiple search engines.

Building a metasearch engine is also an effective way to

increase the search coverage of the Web. As more and more

data are put on the Web at faster paces, the coverage of the Web

by individual search engines has been steadily decreasing. By

combining the coverages of multiple search engines, a

metasearch engine can have a much larger coverage of the Web.

A closer examination of the metasearch approach reveals the

following problems.

1. If the number of local search engines in a metasearch

engine is large, then, it is likely that for a given query,

only a small percentage of all search engines may

contain sufficiently useful documents to the query. In

order to avoid or reduce the possibility of invoking

useless search engines for a query, we should first

identify those search engines that are most likely to

provide useful results to the query and then pass the

query to only the identified search engines. Examples

of systems that employ this approach include gGlOSS

[1], Savvy Search [2], D-WISE [3], CORI Net [4].

The problem of identifying potentially useful

databases to search is known as the database selection

problem.

2. If a user only wants the n most similar documents

across all local databases, for some positive integer n,

then the n documents to be retrieved from the

identified databases need to be carefully specified and

retrieved. This is the document selection problem.

Both the problems are described in figure 2.

Database Selection Document Selection

Figure 2: Database and document selection

The methodology that we propose to retrieve the n most

relevant documents across multiple databases for a given query

consists of the following two steps:

1. By using algorithm DBSEL we select those databases

from number of databases which contain our query

„q‟.

2. After databases selection we retrieve „n‟ most relevant

documents from the selected databases by using

algorithm HighRelDoc.

3. AN ALGORITHM FOR DATABASE

SELECTION
We want to select those databases from number of databases

which contain our query „q‟. For this we proposed an

Algorithm DBSEL. The Basic idea of this algorithm is that we

test databases in the order DB1, DB2, DB3, DB4, B5,……….,

DBN, until we get the databases which contain the query „q‟.

This algorithm works as follows:

1. Test each database with its documents stored in it. If

any document of database contains the query „q‟ at

least one time then we select that database.

2. If all the documents of database does not contains the

query „q‟ then that database will not be selected.

DBSEL Algorithm

1. Let the‟qlen‟ is the length of query „q‟;

2. i = 1;

3. while (i < = No. of Databases)

{

 j=1, s=0;

 while (j < = No. of Documents in DBi)

 {

(a) Let no. of occurrences of query „q‟ in jth document noc =

0;

(b) k=1;

(c) Obtain the length „dlen‟ of jth document;

 while (k < = dlen)

 {

i. Take the „qlen‟ characters from jth document

starting from kth position;

ii. Compare the query „q‟ with these „qlen‟

characters;

iii. If both are equal then noc =noc + 1;

iv. k = k + 1;

}

(d) Take the no. of occurrences of query „q‟ in jth document of

ith database

dnoc [i, j] = noc;

s = s + noc;

j = j + 1;

 }

 if (s > 0) then

 { Select ith database SD[i] = DBi; }

 else

 { ith database will not be selected; }

 i=i+1;

 }

4. AN ALGORITHM FOR DOCUMENTS

SELECTION
After database selection we retrieve documents from the

databases in the order DB1, DB2, DB3, DB4, DB5, DBN, until

„n‟ most relevant documents contained in the selected

databases are obtained. For this we proposed an algorithm

.

.

.

.

DB1

DB2

DB3

DB4

DB5

DBn

DB1

DB3

DB5

d1

d2

d3

Result

Merger

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

25

HighRelDoc to retrieve documents from the selected

databases. This algorithm works as follows:

1. We search all the selected databases in the order DB1,

DB2, DB3, DB4, DB5,………., DBN. We select only

those documents from each database in which the

query „q‟ occurs at least one time.

2. Rank all the selected documents according to the no.

of occurrence of query „q‟ in descending order.

3. Return the top „n‟ most relevant documents from the

sorted list of documents for any positive integer „n‟.

HighRelDoc Algorithm

1. i = 1,

2. Let the total no. of selected documents t = 0;

3. while(i < = No. of selected Databases)

{

 j=1;

 while (j < = No. of documents in selected

DBi)

{

if (dnoc [i, j] > 0)

 {

(a) Select the jth document of ith

database Sdoc[

i , j] = DB[i , j];

(b) Take the no. of occurrences of

query „q‟ in selected jth document of

ith database

 Sdnoc [i, j] = dnoc [i, j];

(c) t=t+1;

 }

 j = j + 1;

}

i = i + 1;

}

4. Rank all the selected documents according to the no.

of occurrence of query „q‟ in descending order.

5. Return the top „n‟ most relevant documents from the

sorted list of documents for any positive integer „n‟.

4. EXPERIMENTAL EVALUATION
Here we compare previous high-correlation method and

OptDocRetrv algorithm with our DBSEL and HighRelDoc

algorithms. Here, we compare the performance of the

following estimation methods in retrieving the n most relevant

documents for n = 5, 10 from the 9 databases.

1. The high-correlation method does not provide any detail on

how a cutoff in database selection is chosen nor which

documents are picked from each chosen database.

2. The previous OptDocRetrv algorithm retrieves documents

from the databases, after the databases have been ranked.

3. Our DBSEL algorithm gives the cut off value while

selecting the databases. Thus overhead incurred in

processing the databases that are not related to query is

minimized.

4. Our HighRelDoc algorithm selects the documents when all

the documents of all selected databases have been ranked.

That gives more correct results in comparison with the

OptDocRetrv algorithm which retrieve documents from the

databases, after the databases have been ranked.

5.1 Experimental Results
Our DBSEL and HighRelDoc algorithms were implemented in

.Net Framework. The snapshots of our work are given below.

Figure 3: Input Page For Query ‘q’

Figure 4: Result

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.8, March 2011

26

5. CONCLUSION
With the increase of the number of search engines on the World

Wide Web, providing easy, efficient and effective access to text

information from multiple sources has increasingly become

necessary. In this paper, we proposed two new methods for

estimating the number of potentially useful databases and

documents in selected databases. Our estimation methods are

based upon established statistical theory and general database

representation framework. Our experimental results indicate that

these methods can yield substantial improvements over existing

techniques. Our contributions consist of:

a. An algorithm DBSEL for selecting those databases from

no. of databases which contain given query „q‟.

b. An algorithm HighRelDoc to return the top „n‟ most

relevant documents with respect to a given query from a

collection of selected databases for any positive integer „n‟.

6. REFERENCES

[1] L. Gravano and H. Garcia-Molina, “Generalizing

GlOSS to Vector-Space databases and Broker

Hierarchies,” Int‟l Conf. Very Large Data Bases, p. 78-89,

Sep. 1995.

[2] B. Jansen, A. Spink, J. Bateman, and T. Saracevic,

“Real Life Information Retrieval: A Study of User Queries

on the Web,” Proc. ACM Special Interest Group on

Information Retrieval Forum, vol. 32, no. 1, 1998.

[3] B. Yuwono and D. Lee, “Server Ranking for

Distributed Text Resource Systems on the Internet,” Proc.

Fifth Int‟l Conf. Database Systems for Advanced

Applications, pp. 391-400, Apr. 1997.

[4] 4. J. Callan, Z. Lu, and W. Bruce Croft, “Searching

Distributed Collections with Inference Networks,” Proc.

ACM Special Interest Group on Information Retrieval

Conf. pp. 21-28, July 1995.

[5] Patricia Correia Saraiva, Edleno Silva deMoura, Nivio

Ziviani,WagnerMeira, Rodrigo Fonseca, and Berthier

Ribeiro-Neto. Rank–Preserving Two–Level Caching for

Scalable Search Engines. In ACM, editor, Proceedings of

the SIGIR2001 conference, New Orleans, LA, September

2001. SIGIR.

[6] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N.

Ziviani. Distributed query processing using partitioned

inverted files. In Proc. of the 9th String Processing and

Information Retrieval Symposium (SPIRE), September

2002.

[7] Paolo Boldi, Bruno Codenotti, Massimo Santini, and

Sebastiano Vigna. Trovatore: Towards a Highly Scalable

Distributed Web Crawler. InWWWPosters 2001, 2001.

[8] N. Craswell, P. Bailey, and D. Hawking. Server

Selection on theWorldWideWeb. In Proceedings of the

Fifth ACM Conference on Digital Libraries, pages 37–46,

2000.

[9] B. Yuwono and D. Lee, “Server Ranking for

Distributed Text Resource Systems on the Internet,” Proc.

Fifth Int‟l Conf. Database Systems for Advanced

Applications, pp. 391-400, Apr. 1997.

[10] Charu C. Aggarwal, Fatima Al-Garawi, and Philip S.

Yu. Intelligent Crawling on the World Wide Web with

Arbitrary Predicates. In Proceedings of the World Wide

Web 2001 (WWW10), pages 96–105, 2001.

[11] S. Mukherjea. WTMS: A System for Collecting and

Analyzing Topic-SpecicWeb Information. Computer

Networks, 33(1):457–471, 2000.

[12] Boris Chidlovskii, Claudia Roncancio, and Marie-

Luise Schneider. Semantic Cache Mechanism for

Heterogeneous Web Querying. In Proceedings of the

WWW8 Conference / Searching and Querying, 1999.

[13] J. Cho and H. Garcia-Molina. Estimating Frequency

of Change. Technical report, Stanford University, 2000.

[14] Junghoo Cho and Hector Garcia-Molina.

Synchronizing a Database to Improve Freshness. pages

117–128, 2000.

AUTHOR BIOGRAPHIES

Mr. Anil Agrawal received his Masters degree in Computer

Science from Allahabad Agricultural Institute- Deemed

University, Allahabad in 2007. Currently he is working as

Assistant Professor at Ambalika Institute of Management and

Technology, Lucknow, India. His research interest includes

Data Mining.

Prof (Dr.) Mohd. Husain is working as Director at AZAD

Institute of Engineering and Technology, Lucknow, India. He

got his Masters Degree from UP Technical University & Ph.D

Degree from Integral University in 2007. He has more than 12

years teaching experience and 10 years research experience in

the field of Data mining. He has published more than 100

International and National publications

Mr. Raj Gaurang Tiwari is pursuing Ph. D. in Computer

Science from Dravidian University. He received his Masters

degree in Computer Applications from Dr. B. R. Ambedkar

University, Agra in 2002 and Masters degree in Computer Sc.

and Engg. From Gautam Buddh Technical University, Lucknow

in 2010. Currently he is working as Assistant Professor at

AZAD Institute of Engineering and Technology, Lucknow,

India. His research interests are Knowledge-Based Engineering

and Web Engineering. He authored more than 35 International

and national journal and conference papers.

Mr. Subodh Kumar is working as Senior Lecturer at

Ambalika Institute of Management and Technology, Lucknow,

India. His research interest includes Data Mining.

